plot_param_importances

optuna.visualization.matplotlib.plot_param_importances(study, evaluator=None, params=None, *, target=None, target_name='Objective Value')[source]

Plot hyperparameter importances with Matplotlib.

See also

Please refer to optuna.visualization.plot_param_importances() for an example.

Parameters:
  • study (Study) – An optimized study.

  • evaluator (BaseImportanceEvaluator | None) – An importance evaluator object that specifies which algorithm to base the importance assessment on. Defaults to FanovaImportanceEvaluator.

  • params (list[str] | None) – A list of names of parameters to assess. If None, all parameters that are present in all of the completed trials are assessed.

  • target (Callable[[FrozenTrial], float] | None) –

    A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted. For multi-objective optimization, all objectives will be plotted if target is None.

    Note

    This argument can be used to specify which objective to plot if study is being used for multi-objective optimization. For example, to get only the hyperparameter importance of the first objective, use target=lambda t: t.values[0] for the target parameter.

  • target_name (str) – Target’s name to display on the axis label. Names set via set_metric_names() will be used if target is None, overriding this argument.

Returns:

A matplotlib.axes.Axes object.

Return type:

Axes

Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

The following code snippet shows how to plot hyperparameter importances.

Hyperparameter Importances
/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/stable/docs/visualization_matplotlib_examples/optuna.visualization.matplotlib.param_importances.py:26: ExperimentalWarning:

plot_param_importances is experimental (supported from v2.2.0). The interface can change in the future.


<Axes: title={'left': 'Hyperparameter Importances'}, xlabel='Hyperparameter Importance', ylabel='Hyperparameter'>

import optuna


def objective(trial):
    x = trial.suggest_int("x", 0, 2)
    y = trial.suggest_float("y", -1.0, 1.0)
    z = trial.suggest_float("z", 0.0, 1.5)
    return x**2 + y**3 - z**4


sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)

optuna.visualization.matplotlib.plot_param_importances(study)

Total running time of the script: (0 minutes 1.136 seconds)

Gallery generated by Sphinx-Gallery