Note
Go to the end to download the full example code.
plot_hypervolume_history
- optuna.visualization.matplotlib.plot_hypervolume_history(study, reference_point)[source]
Plot hypervolume history of all trials in a study with Matplotlib.
Note
You need to adjust the size of the plot by yourself using
plt.tight_layout()
orplt.savefig(IMAGE_NAME, bbox_inches='tight')
.- Parameters:
- Returns:
A
matplotlib.axes.Axes
object.- Return type:
Note
Added in v3.3.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.
The following code snippet shows how to plot optimization history.
/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/stable/docs/visualization_matplotlib_examples/optuna.visualization.matplotlib.hypervolume_history.py:29: ExperimentalWarning:
plot_hypervolume_history is experimental (supported from v3.3.0). The interface can change in the future.
import optuna
import matplotlib.pyplot as plt
def objective(trial):
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)
v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1
study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)
reference_point=[100, 50]
optuna.visualization.matplotlib.plot_hypervolume_history(study, reference_point)
plt.tight_layout()
Total running time of the script: (0 minutes 0.162 seconds)