plot_rank

optuna.visualization.matplotlib.plot_rank(study, params=None, *, target=None, target_name='Objective Value')[source]

Plot parameter relations as scatter plots with colors indicating ranks of target value.

Note that trials missing the specified parameters will not be plotted.

See also

Please refer to optuna.visualization.plot_rank() for an example.

Warning

Output figures of this Matplotlib-based plot_rank() function would be different from those of the Plotly-based plot_rank().

Parameters:
  • study (Study) – A Study object whose trials are plotted for their target values.

  • params (list[str] | None) – Parameter list to visualize. The default is all parameters.

  • target (Callable[[FrozenTrial], float] | None) –

    A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted.

    Note

    Specify this argument if study is being used for multi-objective optimization.

  • target_name (str) – Target’s name to display on the color bar.

Returns:

A matplotlib.axes.Axes object.

Return type:

Axes

Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

The following code snippet shows how to plot the parameter relationship as a rank plot.

Rank (Objective Value)
/home/docs/checkouts/readthedocs.org/user_builds/optuna/envs/stable/lib/python3.11/site-packages/optuna/_experimental.py:31: ExperimentalWarning:

Argument ``constraints_func`` is an experimental feature. The interface can change in the future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/stable/docs/visualization_matplotlib_examples/optuna.visualization.matplotlib.rank.py:33: ExperimentalWarning:

plot_rank is experimental (supported from v3.2.0). The interface can change in the future.


<Axes: title={'center': 'Rank (Objective Value)'}, xlabel='x', ylabel='y'>

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])

    c0 = 400 - (x + y) ** 2
    trial.set_user_attr("constraint", [c0])

    return x**2 + y


def constraints(trial):
    return trial.user_attrs["constraint"]


sampler = optuna.samplers.TPESampler(seed=10, constraints_func=constraints)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.matplotlib.plot_rank(study, params=["x", "y"])

Total running time of the script: (0 minutes 0.235 seconds)

Gallery generated by Sphinx-Gallery