Note
Go to the end to download the full example code.
plot_optimization_history
- optuna.visualization.plot_optimization_history(study, *, target=None, target_name='Objective Value', error_bar=False)[source]
Plot optimization history of all trials in a study.
- Parameters:
study (Study | Sequence[Study]) – A
Study
object whose trials are plotted for their target values. You can pass multiple studies if you want to compare those optimization histories.target (Callable[[FrozenTrial], float] | None) –
A function to specify the value to display. If it is
None
andstudy
is being used for single-objective optimization, the objective values are plotted.Note
Specify this argument if
study
is being used for multi-objective optimization.target_name (str) – Target’s name to display on the axis label and the legend.
error_bar (bool) – A flag to show the error bar.
- Returns:
A
plotly.graph_objects.Figure
object.- Return type:
Figure
The following code snippet shows how to plot optimization history.
import optuna
from plotly.io import show
def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x**2 + y
sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
fig = optuna.visualization.plot_optimization_history(study)
show(fig)
Total running time of the script: (0 minutes 0.133 seconds)