plot_slice

optuna.visualization.matplotlib.plot_slice(study, params=None, *, target=None, target_name='Objective Value')[source]

Plot the parameter relationship as slice plot in a study with Matplotlib.

See also

Please refer to optuna.visualization.plot_slice() for an example.

Parameters:
  • study (Study) – A Study object whose trials are plotted for their target values.

  • params (list[str] | None) – Parameter list to visualize. The default is all parameters.

  • target (Callable[[FrozenTrial], float] | None) –

    A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted.

    Note

    Specify this argument if study is being used for multi-objective optimization.

  • target_name (str) – Target’s name to display on the axis label.

Returns:

A matplotlib.axes.Axes object.

Return type:

Axes

Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

The following code snippet shows how to plot the parameter relationship as slice plot.

Slice Plot
/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/stable/docs/visualization_matplotlib_examples/optuna.visualization.matplotlib.slice.py:25: ExperimentalWarning:

plot_slice is experimental (supported from v2.2.0). The interface can change in the future.


array([<Axes: xlabel='x', ylabel='Objective Value'>, <Axes: xlabel='y'>],
      dtype=object)

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x**2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_slice(study, params=["x", "y"])

Total running time of the script: (0 minutes 0.139 seconds)

Gallery generated by Sphinx-Gallery