from __future__ import annotations
from collections.abc import Callable
import numpy as np
from optuna._experimental import experimental_func
from optuna.importance._base import BaseImportanceEvaluator
from optuna.logging import get_logger
from optuna.study import Study
from optuna.trial import FrozenTrial
from optuna.visualization._param_importances import _get_importances_infos
from optuna.visualization._param_importances import _ImportancesInfo
from optuna.visualization.matplotlib._matplotlib_imports import _imports
if _imports.is_successful():
from optuna.visualization.matplotlib._matplotlib_imports import Axes
from optuna.visualization.matplotlib._matplotlib_imports import Figure
from optuna.visualization.matplotlib._matplotlib_imports import plt
_logger = get_logger(__name__)
AXES_PADDING_RATIO = 1.05
[docs]
@experimental_func("2.2.0")
def plot_param_importances(
study: Study,
evaluator: BaseImportanceEvaluator | None = None,
params: list[str] | None = None,
*,
target: Callable[[FrozenTrial], float] | None = None,
target_name: str = "Objective Value",
) -> "Axes":
"""Plot hyperparameter importances with Matplotlib.
.. seealso::
Please refer to :func:`optuna.visualization.plot_param_importances` for an example.
Args:
study:
An optimized study.
evaluator:
An importance evaluator object that specifies which algorithm to base the importance
assessment on.
Defaults to
:class:`~optuna.importance.FanovaImportanceEvaluator`.
params:
A list of names of parameters to assess.
If :obj:`None`, all parameters that are present in all of the completed trials are
assessed.
target:
A function to specify the value to display. If it is :obj:`None` and ``study`` is being
used for single-objective optimization, the objective values are plotted.
For multi-objective optimization, all objectives will be plotted if ``target``
is :obj:`None`.
.. note::
This argument can be used to specify which objective to plot if ``study`` is being
used for multi-objective optimization. For example, to get only the hyperparameter
importance of the first objective, use ``target=lambda t: t.values[0]`` for the
target parameter.
target_name:
Target's name to display on the axis label. Names set via
:meth:`~optuna.study.Study.set_metric_names` will be used if ``target`` is :obj:`None`,
overriding this argument.
Returns:
A :class:`matplotlib.axes.Axes` object.
"""
_imports.check()
importances_infos = _get_importances_infos(study, evaluator, params, target, target_name)
return _get_importances_plot(importances_infos)
def _get_importances_plot(infos: tuple[_ImportancesInfo, ...]) -> "Axes":
# Set up the graph style.
plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly.
fig, ax = plt.subplots()
ax.set_title("Hyperparameter Importances", loc="left")
ax.set_xlabel("Hyperparameter Importance")
ax.set_ylabel("Hyperparameter")
height = 0.8 / len(infos) # Default height split between objectives.
for objective_id, info in enumerate(infos):
param_names = info.param_names
pos = np.arange(len(param_names))
offset = height * objective_id
importance_values = info.importance_values
if not importance_values:
continue
# Draw horizontal bars.
ax.barh(
pos + offset,
importance_values,
height=height,
align="center",
label=info.target_name,
color=plt.get_cmap("tab20c")(objective_id),
)
_set_bar_labels(info, fig, ax, offset)
ax.set_yticks(pos + offset / 2, param_names)
ax.legend(loc="best")
return ax
def _set_bar_labels(info: _ImportancesInfo, fig: "Figure", ax: "Axes", offset: float) -> None:
renderer = fig.canvas.get_renderer()
for idx, (val, label) in enumerate(zip(info.importance_values, info.importance_labels)):
text = ax.text(val, idx + offset, label, va="center")
# Sometimes horizontal axis needs to be re-scaled
# to avoid text going over plot area.
bbox = text.get_window_extent(renderer)
bbox = bbox.transformed(ax.transData.inverted())
_, plot_xmax = ax.get_xlim()
bbox_xmax = bbox.xmax
if bbox_xmax > plot_xmax:
ax.set_xlim(xmax=AXES_PADDING_RATIO * bbox_xmax)