from optuna._experimental import experimental_func
from optuna.study import Study
from optuna.trial import TrialState
from optuna.visualization._timeline import _get_timeline_info
from optuna.visualization._timeline import _TimelineBarInfo
from optuna.visualization._timeline import _TimelineInfo
from optuna.visualization.matplotlib._matplotlib_imports import _imports
if _imports.is_successful():
from optuna.visualization.matplotlib._matplotlib_imports import Axes
from optuna.visualization.matplotlib._matplotlib_imports import matplotlib
from optuna.visualization.matplotlib._matplotlib_imports import plt
_INFEASIBLE_KEY = "INFEASIBLE"
[docs]
@experimental_func("3.2.0")
def plot_timeline(study: Study) -> "Axes":
"""Plot the timeline of a study.
.. seealso::
Please refer to :func:`optuna.visualization.plot_timeline` for an example.
Args:
study:
A :class:`~optuna.study.Study` object whose trials are plotted with
their lifetime.
Returns:
A :class:`matplotlib.axes.Axes` object.
"""
_imports.check()
info = _get_timeline_info(study)
return _get_timeline_plot(info)
def _get_state_name(bar_info: _TimelineBarInfo) -> str:
if bar_info.state == TrialState.COMPLETE and bar_info.infeasible:
return _INFEASIBLE_KEY
else:
return bar_info.state.name
def _get_timeline_plot(info: _TimelineInfo) -> "Axes":
_cm = {
TrialState.COMPLETE.name: "tab:blue",
TrialState.FAIL.name: "tab:red",
TrialState.PRUNED.name: "tab:orange",
_INFEASIBLE_KEY: "#CCCCCC",
TrialState.RUNNING.name: "tab:green",
TrialState.WAITING.name: "tab:gray",
}
# Set up the graph style.
plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly.
fig, ax = plt.subplots()
ax.set_title("Timeline Plot")
ax.set_xlabel("Datetime")
ax.set_ylabel("Trial")
if len(info.bars) == 0:
return ax
ax.barh(
y=[b.number for b in info.bars],
width=[b.complete - b.start for b in info.bars],
left=[b.start for b in info.bars],
color=[_cm[_get_state_name(b)] for b in info.bars],
)
# There are 5 types of TrialState in total.
# However, the legend depicts only types present in the arguments.
legend_handles = []
for state_name, color in _cm.items():
if any(_get_state_name(b) == state_name for b in info.bars):
legend_handles.append(matplotlib.patches.Patch(color=color, label=state_name))
ax.legend(handles=legend_handles, loc="upper left", bbox_to_anchor=(1.05, 1.0))
fig.tight_layout()
assert len(info.bars) > 0
first_start_time = min([b.start for b in info.bars])
last_complete_time = max([b.complete for b in info.bars])
margin = (last_complete_time - first_start_time) * 0.05
ax.set_xlim(right=last_complete_time + margin, left=first_start_time - margin)
ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S"))
plt.gcf().autofmt_xdate()
return ax