CONTENTS:

1 Key Features ... 3

2 Basic Concepts ... 5

3 Communication ... 7

4 Contribution ... 9

5 License ... 11

6 Reference .. 13
 6.1 Installation .. 13
 6.2 Tutorial ... 13
 6.3 API Reference .. 33
 6.4 FAQ .. 227

7 Indices and tables .. 235

Python Module Index .. 237

Index ... 239
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.
Optuna has modern functionalities as follows:

• *Lightweight, versatile, and platform agnostic architecture*
 – Handle a wide variety of tasks with a simple installation that has few requirements.

• *Pythonic search spaces*
 – Define search spaces using familiar Python syntax including conditionals and loops.

• *Efficient optimization algorithms*
 – Adopt state-of-the-art algorithms for sampling hyper parameters and efficiently pruning unpromising trials.

• *Easy parallelization*
 – Scale studies to tens or hundreds or workers with little or no changes to the code.

• *Quick visualization*
 – Inspect optimization histories from a variety of plotting functions.
We use the terms study and trial as follows:

- Study: optimization based on an objective function
- Trial: a single execution of the objective function

Please refer to sample code below. The goal of a study is to find out the optimal set of hyperparameter values (e.g., classifier and svm_c) through multiple trials (e.g., n_trials=100). Optuna is a framework designed for the automation and the acceleration of the optimization studies.

```python
import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('classifier', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_loguniform('svr_c', 1e-10, 1e10)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.load_boston(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.
```
Chapter Three

Communication

- GitHub Issues for bug reports, feature requests and questions.
- Gitter for interactive chat with developers.
- Stack Overflow for questions.
Any contributions to Optuna are welcome! When you send a pull request, please follow the contribution guide.
MIT License (see LICENSE).
6.1 Installation

Optuna supports Python 3.6 or newer.

We recommend to install Optuna via pip:

```
$ pip install optuna
```

You can also install the development version of Optuna from master branch of Git repository:

```
$ pip install git+https://github.com/optuna/optuna.git
```

You can also install Optuna via conda:

```
$ conda install -c conda-forge optuna
```

6.2 Tutorial

If you are new to Optuna or want a general introduction, we highly recommend the below video.

6.2.1 Key Features

Showcases Optuna’s Key Features.

Lightweight, versatile, and platform agnostic architecture

Optuna is entirely written in Python and has few dependencies. This means that we can quickly move to the real example once you get interested in Optuna.
Quadratic Function Example

Usually, Optuna is used to optimize hyperparameters, but as an example, let’s optimize a simple quadratic function: \((x - 2)^2\).

First of all, import `optuna`.

```python
import optuna
```

In optuna, conventionally functions to be optimized are named `objective`.

```python
def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2
```

This function returns the value of \((x - 2)^2\). Our goal is to find the value of \(x\) that minimizes the output of the `objective` function. This is the “optimization.” During the optimization, Optuna repeatedly calls and evaluates the `objective` function with different values of \(x\).

A `Trial` object corresponds to a single execution of the objective function and is internally instantiated upon each invocation of the function.

The `suggest` APIs (for example, `suggest_float()`) are called inside the objective function to obtain parameters for a trial. `suggest_float()` selects parameters uniformly within the range provided. In our example, from \(-10\) to \(10\).

To start the optimization, we create a study object and pass the objective function to method `optimize()` as follows.

```python
study = optuna.create_study()
study.optimize(objective, n_trials=100)
```

You can get the best parameter as follows.

```python
best_params = study.best_params
found_x = best_params["x"]
print("Found x: \{\}, (x - 2)^2: \{\}".format(found_x, (found_x - 2) ** 2))
```

Out:

```
Found x: 1.9834632616820875, (x - 2)^2: 0.00027346371419511455
```

We can see that the \(x\) value found by Optuna is close to the optimal value of \(2\).

Note: When used to search for hyperparameters in machine learning, usually the objective function would return the loss or accuracy of the model.
Study Object

Let us clarify the terminology in Optuna as follows:

- **Trial**: A single call of the objective function
- **Study**: An optimization session, which is a set of trials
- **Parameter**: A variable whose value is to be optimized, such as x in the above example

In Optuna, we use the study object to manage optimization. Method `create_study()` returns a study object. A study object has useful properties for analyzing the optimization outcome.

To get the dictionary of parameter name and parameter values:

```python
study.best_params
```

Out:

```python
{'x': 1.9834632616820875}
```

To get the best observed value of the objective function:

```python
study.best_value
```

Out:

```python
0.00027346371419511455
```

To get the best trial:

```python
study.best_trial
```

Out:

```python
FrozenTrial(number=81, values=[0.00027346371419511455], datetime_start=datetime.
  2021, 1, 12, 7, 42, 0, 62622), datetime_complete=datetime.datetime(2021, 1,
  12, 7, 42, 0, 62622), params={'x': 1.9834632616820875}, distributions={'x':
  UniformDistribution(high=10, low=-10)}, userattrs={}, systemattrs={}
```

To get all trials:

```python
study.trials
```

Out:

```python
[FrozenTrial(number=0, values=[1.79880940506639], datetime_start=datetime.
  2021, 1, 12, 7, 41, 59, 776597), datetime_complete=datetime.datetime(2021,
  1, 12, 7, 41, 59, 776840), params={'x': 0.658765715817557}, distributions={'x':
  UniformDistribution(high=10, low=-10)}, userattrs={}, systemattrs={}
  intermediate_values={}, trial_id=0, state=TrialState.COMPLETE, value=None),
  FrozenTrial(number=1, values=[1.3740997201705794], datetime_start=datetime.
  2021, 1, 12, 7, 41, 59, 777526), datetime_complete=datetime.datetime(2021,
  1, 12, 7, 41, 59, 777946), params={'x': 5.705948815041761}, distributions={'x':
  UniformDistribution(high=10, low=-10)}, userattrs={}, systemattrs={}
  intermediate_values={}, trial_id=1, state=TrialState.COMPLETE, value=None),
  FrozenTrial(number=2, values=[2.0170396949088127], datetime_start=datetime.
  2021, 1, 12, 7, 41, 59, 777946), datetime_complete=datetime.datetime(2021,
  1, 12, 7, 41, 59, 778102), params={'x': 6.818394225311936}, distributions={'x':
  UniformDistribution(high=10, low=-10)}, userattrs={}, systemattrs={}
  intermediate_values={}, trial_id=2, state=TrialState.COMPLETE, value=None),
  (continues on next page)
```
To get the number of trials:

```python
len(study.trials)
```

Out:

```
100
```

By executing `optimize()` again, we can continue the optimization.

```python
study.optimize(objective, n_trials=100)
```

To get the updated number of trials:

```python
len(study.trials)
```

Out:

```
200
```

As the objective function is so easy that the last 100 trials don’t improve the result. However, we can check the result again:

```python
best_params = study.best_params
found_x = best_params["x"]
print("Found x: ", (x - 2)^2: ").format(found_x, (found_x - 2) ** 2)
```

Out:

```
Found x: 2.0029789268074194, (x - 2)^2: 8.874004923961951e-06
```

Total running time of the script: (0 minutes 0.829 seconds)

Pythonic Search Space

For hyperparameter sampling, Optuna provides the following features:

- `optuna.trial.Trial.suggest_categorical()` for categorical parameters
- `optuna.trial.Trial.suggest_int()` for integer parameters
- `optuna.trial.Trial.suggest_float()` for floating point parameters

With optional arguments of `step` and `log`, we can discretize or take the logarithm of integer and floating point parameters.

```python
import optuna

def objective(trial):
    # Categorical parameter
    optimizer = trial.suggest_categorical("optimizer", ["MomentumSGD", "Adam"])

    # Integer parameter
    num_layers = trial.suggest_int("num_layers", 1, 3)
```

(continues on next page)
Integer parameter (log)
num_channels = trial.suggest_int("num_channels", 32, 512, log=True)

Integer parameter (discretized)
num_units = trial.suggest_int("num_units", 10, 100, step=5)

Floating point parameter
dropout_rate = trial.suggest_float("dropout_rate", 0.0, 1.0)

Floating point parameter (log)
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-2, log=True)

Floating point parameter (discretized)
drop_path_rate = trial.suggest_float("drop_path_rate", 0.0, 1.0, step=0.1)

Defining Parameter Spaces

In Optuna, we define search spaces using familiar Python syntax including conditionals and loops.

Also, you can use branches or loops depending on the parameter values.

For more various use, see examples.

- **Branches:**

```python
import sklearn.ensemble
import sklearn.svm

def objective(trial):
    classifier_name = trial.suggest_categorical("classifier", ["SVC", "RandomForest"])
    if classifier_name == "SVC":
        svc_c = trial.suggest_float("svc_c", 1e-10, 1e10, log=True)
        classifier_obj = sklearn.svm.SVC(C=svc_c)
    else:
        rf_max_depth = trial.suggest_int("rf_max_depth", 2, 32, log=True)
        classifier_obj = sklearn.ensemble.RandomForestClassifier(max_depth=rf_max_depth)
```

- **Loops:**

```python
import torch
import torch.nn as nn

def create_model(trial, in_size):
    n_layers = trial.suggest_int("n_layers", 1, 3)

    layers = []
    for i in range(n_layers):
        n_units = trial.suggest_int("n_units_l\{i\}", format(i), 4, 128, log=True)
        layers.append(nn.Linear(in_size, n_units))
        layers.append(nn.ReLU())
        in_size = n_units
    layers.append(nn.Linear(in_size, 10))
```

(continues on next page)
return nn.Sequential(*layers)

Note on the Number of Parameters

The difficulty of optimization increases roughly exponentially with regard to the number of parameters. That is, the number of necessary trials increases exponentially when you increase the number of parameters, so it is recommended to not add unimportant parameters.

Total running time of the script: (0 minutes 0.001 seconds)

Efficient Optimization Algorithms

Optuna enables efficient hyperparameter optimization by adopting state-of-the-art algorithms for sampling hyperparameters and pruning efficiently unpromising trials.

Sampling Algorithms

Samplers basically continually narrow down the search space using the records of suggested parameter values and evaluated objective values, leading to an optimal search space which giving off parameters leading to better objective values. More detailed explanation of how samplers suggest parameters is in optuna.samplers.BaseSampler.

Optuna provides the following sampling algorithms:

- Tree-structured Parzen Estimator algorithm implemented in optuna.samplers.TPESampler
- CMA-ES based algorithm implemented in optuna.samplers.CmaEsSampler
- Grid Search implemented in optuna.samplers.GridSampler
- Random Search implemented in optuna.samplers.RandomSampler

The default sampler is optuna.samplers.TPESampler.

Switching Samplers

import optuna

By default, Optuna uses TPESampler as follows.

```python
study = optuna.create_study()
print(f"Sampler is {study.sampler.__class__.__name__}")
```

Out:

Sampler is TPESampler

If you want to use different samplers for example RandomSampler and CmaEsSampler,
study = optuna.create_study(sampler=optuna.samplers.RandomSampler())
print(f"Sampler is {study.sampler.__class__.__name__}"
)

study = optuna.create_study(sampler=optuna.samplers.CmaEsSampler())
print(f"Sampler is {study.sampler.__class__.__name__}"
)

Out:
Sampler is RandomSampler
Sampler is CmaEsSampler

Pruning Algorithms

Pruners automatically stop unpromising trials at the early stages of the training (a.k.a., automated early-stopping).

Optuna provides the following pruning algorithms:

- Asynchronous Successive Halving algorithm implemented in `optuna.pruners.SuccessiveHalvingPruner`
- Hyperband algorithm implemented in `optuna.pruners.HyperbandPruner`
- Median pruning algorithm implemented in `optuna.pruners.MedianPruner`
- Threshold pruning algorithm implemented in `optuna.pruners.ThresholdPruner`

We use `optuna.pruners.MedianPruner` in most examples, though basically it is outperformed by `optuna.pruners.SuccessiveHalvingPruner` and `optuna.pruners.HyperbandPruner` as in this benchmark result.

Activating Pruners

To turn on the pruning feature, you need to call `report()` and `should_prune()` after each step of the iterative training. `report()` periodically monitors the intermediate objective values. `should_prune()` decides termination of the trial that does not meet a predefined condition.

We would recommend using integration modules for major machine learning frameworks. Exclusive list is `optuna.integration` and usecases are available in `optuna/examples`.

```python
import logging
import sys

import sklearn.datasets
import sklearn.linear_model
import sklearn.model_selection

def objective(trial):
    iris = sklearn.datasets.load_iris()
    classes = list(set(iris.target))
    train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split(
        iris.data, iris.target, test_size=0.25, random_state=0
    )

    alpha = trial.suggest_loguniform("alpha", 1e-5, 1e-1)
    clf = sklearn.linear_model.SGDClassifier(alpha=alpha)
```
for step in range(100):
 clf.partial_fit(train_x, train_y, classes=classes)

 # Report intermediate objective value.
 intermediate_value = 1.0 - clf.score(valid_x, valid_y)
 trial.report(intermediate_value, step)

 # Handle pruning based on the intermediate value.
 if trial.should_prune():
 raise optuna.TrialPruned()

return 1.0 - clf.score(valid_x, valid_y)

Set up the median stopping rule as the pruning condition.

Add stream handler of stdout to show the messages
optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))
study = optuna.create_study(pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=20)

Out:

A new study created in memory with name: no-name-9aab45fb-7a48-4250-8f61-160471fb18a7
Trial 0 finished with value: 0.13157894736842102 and parameters: {'alpha': 1.
→2571311714995396e-05}. Best is trial 0 with value: 0.13157894736842102.
Trial 1 finished with value: 0.23684210526315785 and parameters: {'alpha': 5.
→987381047454353e-05}. Best is trial 0 with value: 0.13157894736842102.
Trial 2 finished with value: 0.13157894736842102 and parameters: {'alpha': 0.
→002583741013668615}. Best is trial 0 with value: 0.13157894736842102.
Trial 3 finished with value: 0.2894736842105263 and parameters: {'alpha': 4.
→08541429650651e-05}. Best is trial 0 with value: 0.13157894736842102.
Trial 4 finished with value: 0.07894736842105265 and parameters: {'alpha': 0.
→00017750218314355678}. Best is trial 4 with value: 0.07894736842105265.
Trial 5 finished with value: 0.02631578947368418 and parameters: {'alpha': 0.
→008584142634414963}. Best is trial 5 with value: 0.02631578947368418.
Trial 6 pruned.
Trial 7 pruned.
Trial 8 pruned.
Trial 9 pruned.
Trial 10 pruned.
Trial 11 pruned.
Trial 12 pruned.
Trial 13 pruned.
Trial 14 pruned.
Trial 15 pruned.
Trial 16 pruned.
Trial 17 finished with value: 0.07894736842105265 and parameters: {'alpha': 0.
→02295702654855829}. Best is trial 5 with value: 0.02631578947368418.
Trial 18 finished with value: 0.23684210526315785 and parameters: {'alpha': 0.
→029375404596614484}. Best is trial 5 with value: 0.02631578947368418.
Trial 19 pruned.

As you can see, several trials were pruned (stopped) before they finished all of the iterations. The format of message is "Trial <Trial Number> pruned.".
Which Sampler and Pruner Should be Used?

From the benchmark results which are available at optuna/optuna - wiki “Benchmarks with Kurobako”, at least for not deep learning tasks, we would say that

- For `optuna.samplers.RandomSampler`, `optuna.pruners.MedianPruner` is the best.
- For `optuna.samplers.TPESampler`, `optuna.pruners.Hyperband` is the best.

However, note that the benchmark is not deep learning. For deep learning tasks, consult the below table from Ozaki et al, Hyperparameter Optimization Methods: Overview and Characteristics, in IEICE Trans, Vol.103-D No.9 pp.615-631, 2020,

<table>
<thead>
<tr>
<th>Parallel Compute Resource</th>
<th>Categorical/Conditional Hyperparameters</th>
<th>Recommended Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td>No</td>
<td>TPE. GP-EI if search space is low-dimensional and continuous.</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>TPE. GP-EI if search space is low-dimensional and continuous</td>
</tr>
<tr>
<td>Sufficient</td>
<td>No</td>
<td>CMA-ES, Random Search</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Random Search or Genetic Algorithm</td>
</tr>
</tbody>
</table>

Integration Modules for Pruning

To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following libraries.

For the complete list of Optuna’s integration modules, see `optuna.integration`.

For example, `XGBoostPruningCallback` introduces pruning without directly changing the logic of training iteration. (See also example for the entire script.)

```python
pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'validation-error →')
bst = xgb.train(param, dtrain, evals=[(dvalid, 'validation')], callbacks=[pruning_callback])
```

Total running time of the script: (0 minutes 1.961 seconds)

Easy Parallelization

It’s straightforward to parallelize `optuna.study.Study.optimize()`.

If you want to manually execute Optuna optimization:

1. start an RDB server (this example uses MySQL)
2. create a study with `–storage` argument
3. share the study among multiple nodes and processes

Of course, you can use Kubernetes as in the kubernetes examples.

To just see how parallel optimization works in Optuna, check the below video.
Create a Study

You can create a study using `optuna create-study` command. Alternatively, in Python script you can use `optuna.create_study()`.

```bash
$ mysql -u root -e "CREATE DATABASE IF NOT EXISTS example"
$ optuna create-study --study-name "distributed-example" --storage "mysql://root@localhost/example"
```

Then, write an optimization script. Let’s assume that `foo.py` contains the following code.

```python
import optuna

def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    return (x - 2) ** 2

if __name__ == "__main__":
    study = optuna.load_study(
        study_name="distributed-example", storage="mysql://root@localhost/example"
    )
    study.optimize(objective, n_trials=100)
```

Share the Study among Multiple Nodes and Processes

Finally, run the shared study from multiple processes. For example, run `Process 1` in a terminal, and do `Process 2` in another one. They get parameter suggestions based on shared trials’ history.

Process 1:

```bash
$ python foo.py
[I 2020-07-21 13:45:02,973] Trial 0 finished with value: 45.35553104173011 and
→parameters: {'x': 8.73465151598285}. Best is trial 0 with value: 45.35553104173011.
[I 2020-07-21 13:45:04,013] Trial 2 finished with value: 4.6002397305938905 and
→parameters: {'x': 4.144816945707463}. Best is trial 1 with value: 0.
...```

Process 2 (the same command as process 1):

```bash
$ python foo.py
[I 2020-07-21 13:45:03,748] Trial 1 finished with value: 0.028194513284051464 and
→parameters: {'x': 1.8320877810162361}. Best is trial 1 with value: 0.
→028194513284051464.
...```

Note: We do not recommend SQLite for distributed optimizations at scale because it may cause deadlocks and serious performance issues. Please consider to use another database engine like PostgreSQL or MySQL.
Quick Visualization for Hyperparameter Optimization Analysis

Optuna provides various visualization features in `optuna.visualization` to analyze optimization results visually.

This tutorial walks you through this module by visualizing the history of lightgbm model for breast cancer dataset.

```python
import lightgbm as lgb
import numpy as np
import sklearn.datasets
import sklearn.metrics
from sklearn.model_selection import train_test_split
import optuna
from optuna.visualization import plot_contour
from optuna.visualization import plot_edf
from optuna.visualization import plot_intermediate_values
from optuna.visualization import plot_optimization_history
from optuna.visualization import plot_parallel_coordinate
from optuna.visualization import plot_param_importances
from optuna.visualization import plot_slice

SEED = 42
np.random.seed(SEED)

Define the objective function.

```python
def objective(trial):
 data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)
 train_x, valid_x, train_y, valid_y = train_test_split(data, target, test_size=0.25)
 dtrain = lgb.Dataset(train_x, label=train_y)
 dvalid = lgb.Dataset(valid_x, label=valid_y)

 param = {
 "objective": "binary",
 "metric": "auc",
 "verbosity": -1,
 "boosting_type": "gbdt",
 "bagging_fraction": trial.suggest_float("bagging_fraction", 0.4, 1.0),
 "bagging_freq": trial.suggest_int("bagging_freq", 1, 7),
 "min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
 }

 # Add a callback for pruning.
 pruning_callback = optuna.integration.LightGBMPruningCallback(trial, "auc")
 gbm = lgb.train(
 param, dtrain, valid_sets=[dvalid], verbose_eval=False, callbacks=[pruning_callback]
)
```

(continues on next page)
```python
study = optuna.create_study(
 direction="maximize",
 sampler=optuna.samplers.TPESampler(seed=SEED),
 pruner=optuna.pruners.MedianPruner(n_warmup_steps=10),
)
study.optimize(objective, n_trials=100, timeout=600)
```

**Plot functions**

Visualize the optimization history. See `plot_optimization_history()` for the details.

```python
plot_optimization_history(study)
```

Visualize the learning curves of the trials. See `plot_intermediate_values()` for the details.

```python
plot_intermediate_values(study)
```

Visualize high-dimensional parameter relationships. See `plot_parallel_coordinate()` for the details.

```python
plot_parallel_coordinate(study)
```

Select parameters to visualize.

```python
plot_parallel_coordinate(study, params=['bagging_freq', 'bagging_fraction'])
```

Visualize hyperparameter relationships. See `plot_contour()` for the details.

```python
plot_contour(study)
```

Select parameters to visualize.

```python
plot_contour(study, params=['bagging_freq', 'bagging_fraction'])
```

Visualize individual hyperparameters as slice plot. See `plot_slice()` for the details.

```python
plot_slice(study)
```

Select parameters to visualize.

```python
plot_slice(study, params=['bagging_freq', 'bagging_fraction'])
```

Visualize parameter importances. See `plot_param_importances()` for the details.

```python
plot_param_importances(study)
```

Visualize empirical distribution function. See `plot_edf()` for the details.
6.2.2 Recipes

Showcases the recipes that might help you using Optuna with comfort.

Saving/Resuming Study with RDB Backend

An RDB backend enables persistent experiments (i.e., to save and resume a study) as well as access to history of studies. In addition, we can run multi-node optimization tasks with this feature, which is described in Easy Parallelization. In this section, let’s try simple examples running on a local environment with SQLite DB.

**Note:** You can also utilize other RDB backends, e.g., PostgreSQL or MySQL, by setting the storage argument to the DB’s URL. Please refer to SQLAlchemy’s document for how to set up the URL.

New Study

We can create a persistent study by calling `create_study()` function as follows. An SQLite file `example.db` is automatically initialized with a new study record.

```python
import logging
import sys

import optuna

Add stream handler of stdout to show the messages
optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))

study_name = "example-study" # Unique identifier of the study.
storage_name = "sqlite:///{}.db".format(study_name)
study = optuna.create_study(study_name=study_name, storage=storage_name)

Out:
A new study created in RDB with name: example-study

To run a study, call `optimize()` method passing an objective function.

```python
def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    return (x - 2) ** 2
```

```python
study.optimize(objective, n_trials=3)
```

Out:
Optuna Documentation, Release 2.4.0

Trial 0 finished with value: 0.6558811748529965 and parameters: {'x': 1.
˓→1901350885159943}. Best is trial 0 with value: 0.6558811748529965.
Trial 1 finished with value: 101.08514253909274 and parameters: {'x': -8.
˓→054110728408194}. Best is trial 0 with value: 0.6558811748529965.
Trial 2 finished with value: 19.95008921330107 and parameters: {'x': 6.
˓→466552273655942}. Best is trial 0 with value: 0.6558811748529965.

Resume Study
To resume a study, instantiate a Study object passing the study name example-study and the DB URL
sqlite:///example-study.db.
study = optuna.create_study(study_name=study_name, storage=storage_name, load_if_
˓→exists=True)
study.optimize(objective, n_trials=3)

Out:
Using an existing study with name 'example-study' instead of creating a new one.
Trial 3 finished with value: 0.07086172203574814 and parameters: {'x': 1.
˓→7338013485463382}. Best is trial 3 with value: 0.07086172203574814.
˓→154419303100905}. Best is trial 3 with value: 0.07086172203574814.
Trial 5 finished with value: 36.126658048633615 and parameters: {'x': 8.
˓→010545569965643}. Best is trial 3 with value: 0.07086172203574814.

Experimental History
We can access histories of studies and trials via the Study class.
example-study as:

For example, we can get all trials of

study = optuna.create_study(study_name=study_name, storage=storage_name, load_if_
˓→exists=True)
df = study.trials_dataframe(attrs=("number", "value", "params", "state"))

Out:
Using an existing study with name 'example-study' instead of creating a new one.

The method trials_dataframe() returns a pandas dataframe like:
print(df)

Out:
0
1
2
3
4
5

26

number
0
1
2
3
4
5

value params_x
0.655881 1.190135
101.085143 -8.054111
19.950089 6.466552
0.070862 1.733801
124.421070 -9.154419
36.126658 8.010546

state
COMPLETE
COMPLETE
COMPLETE
COMPLETE
COMPLETE
COMPLETE

Chapter 6. Reference


A `Study` object also provides properties such as `trials`, `best_value`, `best_params` (see also Lightweight, versatile, and platform agnostic architecture).

```python
def print(result, best_params, best_value, best_trial, trials):
    print("Best params: ", best_params)
    print("Best value: ", best_value)
    print("Best Trial: ", best_trial)
    print("Trials: ", trials)
```

```
print("Best params: ", study.best_params)
print("Best value: ", study.best_value)
print("Best Trial: ", study.best_trial)
print("Trials: ", study.trials)
```

```
Out:
Best params: {'x': 1.7338013485463382}
Best value: 0.07086172203574814
Best Trial: FrozenTrial(number=3, values=[0.07086172203574814],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 577447),
datetime_complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 633565),
params={'x': 1.7338013485463382},
intermediate_values=[], trial_id=4, state=TrialState.COMPLETE, value=None)
Trials: [FrozenTrial(number=0, values=[0.6558811748529965],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 251788),
complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 303669),
params={'x': -8.054110728408194},
distributions={'x': UniformDistribution(high=10, low=-10),
intermediate_values=[], trial_id=1, state=TrialState.COMPLETE, value=None),
FrozenTrial(number=1, values=[101.08514253909274],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 392275),
complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 420117),
params={'x': 6.466552273655942},
distributions={'x': UniformDistribution(high=10, low=-10),
intermediate_values=[], trial_id=2, state=TrialState.COMPLETE, value=None),
FrozenTrial(number=2, values=[19.95008921330107],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 465265),
complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 500840),
params={'x': 1.7338013485463382},
distributions={'x': UniformDistribution(high=10, low=-10),
intermediate_values=[], trial_id=3, state=TrialState.COMPLETE, value=None),
FrozenTrial(number=3, values=[124.42106998939008],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 687507),
complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 718680),
params={'x': 8.010545569965643},
distributions={'x': UniformDistribution(high=10, low=-10),
intermediate_values=[], trial_id=4, state=TrialState.COMPLETE, value=None),
FrozenTrial(number=4, values=[36.126658048633615],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 759856),
complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 792175),
params={'x': 8.010545569965643},
distributions={'x': UniformDistribution(high=10, low=-10),
intermediate_values=[], trial_id=5, state=TrialState.COMPLETE, value=None),
FrozenTrial(number=5, values=[36.126658048633615],
start=datetime.datetime(2021, 1, 12, 7, 42, 12, 759856),
complete=datetime.datetime(2021, 1, 12, 7, 42, 12, 792175),
params={'x': 8.010545569965643},
distributions={'x': UniformDistribution(high=10, low=-10),
intermediate_values=[], trial_id=6, state=TrialState.COMPLETE, value=None)]
```

Total running time of the script: 0 minutes 1.349 seconds
User Attributes

This feature is to annotate experiments with user-defined attributes.

Adding User Attributes to Studies

A *Study* object provides `set_user_attr()` method to register a pair of key and value as an user-defined attribute. A key is supposed to be a str, and a value be any object serializable with `json.dumps`.

```python
import sklearn.datasets
import sklearn.model_selection
import sklearn.svm
import optuna

study = optuna.create_study(storage="sqlite:///example.db")
study.set_user_attr("contributors", ["Akiba", "Sano"])
study.set_user_attr("dataset", "MNIST")

We can access annotated attributes with `user_attr` property.

```python
study.user_attrs # {'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}
```

StudySummary object, which can be retrieved by `get_all_study_summaries()`, also contains user-defined attributes.

```python
study_summaries = optuna.get_all_study_summaries("sqlite:///example.db")
study_summaries[0].user_attrs # {'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}
```

See also:

`optuna study set-user-attr` command, which sets an attribute via command line interface.

**Adding User Attributes to Trials**

As with *Study*, a *Trial* object provides `set_user_attr()` method. Attributes are set inside an objective function.

```python
def objective(trial):
 iris = sklearn.datasets.load_iris()
 x, y = iris.data, iris.target

 svc_c = trial.suggest_loguniform("svc_c", 1e-10, 1e10)
 clf = sklearn.svm.SVC(C=svc_c)
 accuracy = sklearn.model_selection.cross_val_score(clf, x, y).mean()
```
trial.set_user_attr("accuracy", accuracy)

    return 1.0 - accuracy  # return error for minimization

study.optimize(objective, n_trials=1)

We can access annotated attributes as:

study.trials[0].user_attrs

Out:

{'accuracy': 0.9400000000000001}

Note that, in this example, the attribute is not annotated to a Study but a single Trial.

Total running time of the script: ( 0 minutes 0.730 seconds)

### Command-Line Interface

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>create-study</td>
<td>Create a new study.</td>
</tr>
<tr>
<td>delete-study</td>
<td>Delete a specified study.</td>
</tr>
<tr>
<td>dashboard</td>
<td>Launch web dashboard (beta).</td>
</tr>
<tr>
<td>storage upgrade</td>
<td>Upgrade the schema of a storage.</td>
</tr>
<tr>
<td>studies</td>
<td>Show a list of studies.</td>
</tr>
<tr>
<td>study optimize</td>
<td>Start optimization of a study.</td>
</tr>
<tr>
<td>study set-user-attr</td>
<td>Set a user attribute to a study.</td>
</tr>
</tbody>
</table>

Optuna provides command-line interface as shown in the above table.

Let us assume you are not in IPython shell and writing Python script files instead. It is totally fine to write scripts like the following:

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -10, 10)
 return (x - 2)**2

if __name__ == "__main__":
 study = optuna.create_study()
 study.optimize(objective, n_trials=100)
 print("Best value: {} (params: {})

Out:

Best value: 0.0001250852443787777 (params: {'x': 1.9888158485177114})

However, we can reduce boilerplate codes by using our optuna command. Let us assume that foo.py contains only the following code.

```
def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    return (x - 2) ** 2

Even so, we can invoke the optimization as follows. (Don’t care about --storage sqlite:///example.db for now, which is described in Saving/Resuming Study with RDB Backend.)

$ cat foo.py
def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return (x - 2) ** 2

$ STUDY_NAME=`optuna create-study --storage sqlite:///example.db`
$ optuna study optimize foo.py objective --n-trials=100 --storage sqlite:///example.db --study-name $STUDY_NAME

[I 2018-05-09 10:40:25,197] Current best value is 54.353767789264026 with parameters: {'x': -5.372500782588228}.
...
[I 2018-05-09 10:40:26,204] Current best value is 2.280758099793617e-06 with parameters: {'x': 1.9984897821018828}.

Please note that foo.py only contains the definition of the objective function. By giving the script file name and the method name of objective function to optuna study optimize command, we can invoke the optimization.

Total running time of the script: ( 0 minutes 0.417 seconds)

User-Defined Sampler

Thanks to user-defined samplers, you can:

• experiment your own sampling algorithms,
• implement task-specific algorithms to refine the optimization performance, or
• wrap other optimization libraries to integrate them into Optuna pipelines (e.g., SkoptSampler).

This section describes the internal behavior of sampler classes and shows an example of implementing a user-defined sampler.

Overview of Sampler

A sampler has the responsibility to determine the parameter values to be evaluated in a trial. When a suggest API (e.g., suggest_uniform()) is called inside an objective function, the corresponding distribution object (e.g., UniformDistribution) is created internally. A sampler samples a parameter value from the distribution. The sampled value is returned to the caller of the suggest API and evaluated in the objective function.

To create a new sampler, you need to define a class that inherits BaseSampler. The base class has three abstract methods: infer_relative_search_space(), sample_relative(), and sample_independent().

As the method names imply, Optuna supports two types of sampling: one is relative sampling that can consider the correlation of the parameters in a trial, and the other is independent sampling that samples each parameter independently.

At the beginning of a trial, infer_relative_search_space() is called to provide the relative search space for the trial. Then, sample_relative() is invoked to sample relative parameters from the search space. During
the execution of the objective function, `sample_independent()` is used to sample parameters that don’t belong to the relative search space.

**Note:** Please refer to the document of `BaseSampler` for further details.

### An Example: Implementing SimulatedAnnealingSampler

For example, the following code defines a sampler based on Simulated Annealing (SA):

```python
import numpy as np
import optuna

class SimulatedAnnealingSampler(optuna.samplers.BaseSampler):
 def __init__(self, temperature=100):
 self._rng = np.random.RandomState()
 self._temperature = temperature # Current temperature.
 self._current_trial = None # Current state.

 def sample_relative(self, study, trial, search_space):
 if search_space == {}:
 return {}
 # Simulated Annealing algorithm.
 # 1. Calculate transition probability.
 prev_trial = study.trials[-2]
 if self._current_trial is None or prev_trial.value <= self._current_trial.value:
 probability = 1.0
 else:
 probability = np.exp((self._current_trial.value - prev_trial.value) / self._temperature)
 self._temperature *= 0.9 # Decrease temperature.

 # 2. Transit the current state if the previous result is accepted.
 if self._rng.uniform(0, 1) < probability:
 self._current_trial = prev_trial

 # 3. Sample parameters from the neighborhood of the current point.
 # The sampled parameters will be used during the next execution of
 # the objective function passed to the study.

 params = {}
 for param_name, param_distribution in search_space.items():
 if not isinstance(param_distribution, optuna.distributions.UniformDistribution):
 raise NotImplementedError("Only suggest_uniform() is supported")
 current_value = self._current_trial.params[param_name]
 width = (param_distribution.high - param_distribution.low) * 0.1
 neighbor_low = max(current_value - width, param_distribution.low)
 neighbor_high = min(current_value + width, param_distribution.high)
 params[param_name] = self._rng.uniform(neighbor_low, neighbor_high)

 return params
```

(continues on next page)
# The rest are unrelated to SA algorithm: boilerplate

```python
def infer_relative_search_space(self, study, trial):
 return optuna.samplers.intersection_search_space(study)

def sample_independent(self, study, trial, param_name, param_distribution):
 independent_sampler = optuna.samplers.RandomSampler()
 return independent_sampler.sample_independent(study, trial, param_name, param_distribution)
```

**Note:** In favor of code simplicity, the above implementation doesn’t support some features (e.g., maximization). If you’re interested in how to support those features, please see `examples/samplers/simulated_annealing.py`.

You can use `SimulatedAnnealingSampler` in the same way as built-in samplers as follows:

```python
def objective(trial):
 x = trial.suggest_uniform("x", -10, 10)
 y = trial.suggest_uniform("y", -5, 5)
 return x ** 2 + y

sampler = SimulatedAnnealingSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)

best_trial = study.best_trial
print("Best value: ", best_trial.value)
print("Parameters that achieve the best value: ", best_trial.params)
```

Out:

```
Best value: -4.544328713417864
Parameters that achieve the best value: {'x': 0.5605051665180278, 'y': -4.85849475511265}
```

In this optimization, the values of `x` and `y` parameters are sampled by using `SimulatedAnnealingSampler.sample_relative` method.

**Note:** Strictly speaking, in the first trial, `SimulatedAnnealingSampler.sample_independent` method is used to sample parameter values. Because `intersection_search_space()` used in `SimulatedAnnealingSampler.infer_relative_search_space` cannot infer the search space if there are no complete trials.

**Total running time of the script:** (0 minutes 0.395 seconds)
6.3 API Reference

6.3.1 optuna

The `optuna` module is primarily used as an alias for basic Optuna functionality coded in other modules. Currently, two modules are aliased: (1) from `optuna.study`, functions regarding the Study lifecycle, and (2) from `optuna.exceptions`, the TrialPruned Exception raised when a trial is pruned.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.create_study</code></td>
<td>Create a new Study.</td>
</tr>
<tr>
<td><code>optuna.load_study</code></td>
<td>Load the existing Study that has the specified name.</td>
</tr>
<tr>
<td><code>optuna.delete_study</code></td>
<td>Delete a Study object.</td>
</tr>
<tr>
<td><code>optuna.get_all_study_summaries</code></td>
<td>Get all history of studies stored in a specified storage.</td>
</tr>
<tr>
<td><code>optuna.TrialPruned</code></td>
<td>Exception for pruned trials.</td>
</tr>
</tbody>
</table>

**optuna.create_study**

```python
def objective(trial):
 x = trial.suggest_uniform("x", 0, 10)
 return x ** 2
```

Create a new `Study`.

**Example**

```python
import optuna

study = optuna.create_study()
study.optimize(objective, n_trials=3)
```

**Parameters**

- **storage** *(Optional[Union[str, optuna.storages._base.BaseStorage]])* – Database URL. If this argument is set to None, in-memory storage is used, and the Study will not be persistent.

**Note:**

When a database URL is passed, Optuna internally uses SQLAlchemy to handle the database. Please refer to SQLAlchemy’s document for further details. If you want to specify non-default options to SQLAlchemy Engine, you can instantiate `RDBStorage` with your desired options and pass it to the `storage` argument instead of a URL.

- **sampler** *(Optional[optuna.samplers._base.BaseSampler])* – A sampler object that implements background algorithm for value suggestion. If None is specified, `TPESampler` is used during single-objective optimization and `NSGAIISampler` during multi-objective optimization. See also `samplers`. 
• **pruner** *(Optional[optuna.pruners._base.BasePruner]*) – A pruner object that decides early stopping of unpromising trials. If `None` is specified, `MedianPruner` is used as the default. See also **pruners**.

• **study_name** *(Optional[str]*) – Study’s name. If this argument is set to None, a unique name is generated automatically.

• **direction** *(Optional[str]*) – Direction of optimization. Set `minimize` for minimization and `maximize` for maximization.

  **Note:** If none of `direction` and `directions` are specified, the direction of the study is set to “minimize”.

• **directions** *(Optional[Sequence[str]*) – A sequence of directions during multi-objective optimization.

• **load_if_exists** *(bool)* – Flag to control the behavior to handle a conflict of study names. In the case where a study named `study_name` already exists in the `storage`, a `DuplicatedStudyError` is raised if `load_if_exists` is set to `False`. Otherwise, the creation of the study is skipped, and the existing one is returned.

Returns A **Study** object.

Raises **ValueError** – If the length of `directions` is zero. Or, if `direction` is neither ‘minimize’ nor ‘maximize’ when it is a string. Or, if the element of `directions` is neither `minimize` nor `maximize`. Or, if both `direction` and `directions` are specified.

Return type **optuna.study.Study**

See also: 

**optuna.create_study**() is an alias of **optuna.study.create_study**().

### optuna.load_study

**optuna.load_study** *(study_name, storage, sampler=None, pruner=None)*

Load the existing **Study** that has the specified name.

### Example

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", 0, 10)
 return x ** 2

study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study")
study.optimize(objective, n_trials=3)

loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.db")
assert len(loaded_study.trials) == len(study.trials)
```
**Parameters**

- **study_name** *(str)* – Study’s name. Each study has a unique name as an identifier.

- **storage** *(Union[ str, optuna.storages._base.BaseStorage]*) – Database URL such as `sqlite:///example.db`. Please see also the documentation of `create_study()` for further details.

- **sampler** *(Optional[optuna.samplers._base.BaseSampler]*) – A sampler object that implements background algorithm for value suggestion. If `None` is specified, `TPESampler` is used as the default. See also `samplers`.

- **pruner** *(Optional[optuna.pruners._base.BasePruner]*) – A pruner object that decides early stopping of unpromising trials. If `None` is specified, `MedianPruner` is used as the default. See also `pruners`.

**Return type** `optuna.study.Study`

See also:

`optuna.load_study()` is an alias of `optuna.study.load_study()`.

**optuna.delete_study**

`optuna.delete_study(study_name, storage)`

Delete a Study object.

**Example**

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

optuna.delete_study(study_name="example-study", storage="sqlite:///example.db")
```

**Parameters**

- **study_name** *(str)* – Study’s name.

- **storage** *(Union[ str, optuna.storages._base.BaseStorage]*) – Database URL such as `sqlite:///example.db`. Please see also the documentation of `create_study()` for further details.

**Return type** `None`

See also:

`optuna.delete_study()` is an alias of `optuna.study.delete_study()`.

6.3. API Reference 35
optuna.get_all_study_summaries

optuna.get_all_study_summaries(storage)
Get all history of studies stored in a specified storage.

Example

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)
study_summaries = optuna.study.get_all_study_summaries(storage="sqlite:///example.db")
assert len(study_summaries) == 1
study_summary = study_summaries[0]
assert study_summary.study_name == "example-study"
```

Parameters

- **storage** *(Union[str, optuna.storages._base.BaseStorage]*) – Database URL such as sqlite:///example.db. Please see also the documentation of create_study() for further details.

Returns

List of study history summarized as StudySummary objects.

Return type

List[optuna._study_summary.StudySummary]

See also:

- optuna.get_all_study_summaries() is an alias of optuna.study.get_all_study_summaries().

optuna.TrialPruned

exception optuna.TrialPruned
Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is supposed to be raised after optuna.trial.Trial.should_prune() as shown in the following example.

See also:

- optuna.TrialPruned is an alias of optuna.exceptions.TrialPruned.
Example

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
 alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
 clf = SGDClassifier(alpha=alpha)
 n_train_iter = 100

 for step in range(n_train_iter):
 clf.partial_fit(X_train, y_train, classes=classes)

 intermediate_value = clf.score(X_valid, y_valid)
 trial.report(intermediate_value, step)

 if trial.should_prune():
 raise optuna.TrialPruned()

 return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)
```

6.3.2 optuna.cli

The `cli` module implements Optuna’s command-line functionality using the `cliff` framework.

```
optuna
 [--version]
 [-v | -q]
 [--log-file LOG_FILE]
 [--debug]
 [--storage STORAGE]

--version
 show program’s version number and exit

-v, --verbose
 Increase verbosity of output. Can be repeated.

-q, --quiet
 Suppress output except warnings and errors.

--log-file <LOG_FILE>
 Specify a file to log output. Disabled by default.
```
---debug
    Show tracebacks on errors.

---storage <STORAGE>
    DB URL. (e.g. sqlite:///example.db)

create-study

Create a new study.

```bash
crontab create-study
 [--study-name STUDY_NAME]
 [--direction {minimize,maximize}]
 [--skip-if-exists]
```

---study-name <STUDY_NAME>
    A human-readable name of a study to distinguish it from others.

---direction <DIRECTION>
    Set direction of optimization to a new study. Set ‘minimize’ for minimization and ‘maximize’ for maximization.

---skip-if-exists
    If specified, the creation of the study is skipped without any error when the study name is duplicated.

This command is provided by the optuna plugin.

dashboard

Launch web dashboard (beta).

```bash
crontab dashboard
 [--study STUDY]
 [--study-name STUDY_NAME]
 [--out OUT]
 [--allow-websocket-origin BOKEH_ALLOW_WEB_SOCKET_ORIGINS]
```

---study <STUDY>
    This argument is deprecated. Use --study-name instead.

---study-name <STUDY_NAME>
    The name of the study to show on the dashboard.

---out <OUT>, -o <OUT>
    Output HTML file path. If it is not given, a HTTP server starts and the dashboard is served.

---allow-websocket-origin <BOKEH_ALLOW_WEB_SOCKET_ORIGIN>
    Allow websocket access from the specified host(s). Internally, it is used as the value of bokeh’s
    subcommands/serve.html for more details.

This command is provided by the optuna plugin.
delete-study

Delete a specified study.

```
optuna delete-study [--study-name STUDY_NAME]
```

```
--study-name <STUDY_NAME>
 The name of the study to delete.
```

This command is provided by the optuna plugin.

storage upgrade

Upgrade the schema of a storage.

```
optuna storage upgrade
```

This command is provided by the optuna plugin.

studies

Show a list of studies.

```
optuna studies
 [-f {csv, json, table, value, yaml}]
 [-c COLUMN]
 [--quote {all, minimal, none, nonnumeric}]
 [--noindent]
 [--max-width <integer>]
 [--fit-width]
 [--print-empty]
 [--sort-column SORT_COLUMN]
```

```
-f <FORMATTER>, --format <FORMATTER>
 the output format, defaults to table

-c COLUMN, --column COLUMN
 specify the column(s) to include, can be repeated to show multiple columns

--quote <QUOTE_MODE>
 when to include quotes, defaults to nonnumeric

--noindent
 whether to disable indenting the JSON

--max-width <integer>
 Maximum display width, <1 to disable. You can also use the CLIFF_MAX_TERM_WIDTH environment variable, but the parameter takes precedence.

--fit-width
 Fit the table to the display width. Implied if --max-width greater than 0. Set the environment variable CLIFF_FIT_WIDTH=1 to always enable

--print-empty
 Print empty table if there is no data to show.
--sort-column SORT_COLUMN
specify the column(s) to sort the data (columns specified first have a priority, non-existing columns are ignored), can be repeated

This command is provided by the optuna plugin.

study optimize

Start optimization of a study. Deprecated since version 2.0.0.

```bash
optuna study optimize
    [--n-trials N_TRIALS]
    [--timeout TIMEOUT]
    [--n-jobs N_JOBS]
    [--study STUDY]
    [--study-name STUDY_NAME]
file
method
```

--n-trials <N_TRIALS>
The number of trials. If this argument is not given, as many trials run as possible.

--timeout <TIMEOUT>
Stop study after the given number of second(s). If this argument is not given, as many trials run as possible.

--n-jobs <N_JOBS>
The number of parallel jobs. If this argument is set to -1, the number is set to CPU counts.

--study <STUDY>
This argument is deprecated. Use --study-name instead.

--study-name <STUDY_NAME>
The name of the study to start optimization on.

file
Python script file where the objective function resides.

method
The method name of the objective function.

This command is provided by the optuna plugin.

study set-user-attr

Set a user attribute to a study.

```bash
optuna study set-user-attr
    [--study STUDY]
    [--study-name STUDY_NAME]
    --key KEY
    --value VALUE
```

--study <STUDY>
This argument is deprecated. Use --study-name instead.

--study-name <STUDY_NAME>
The name of the study to set the user attribute to.
--key <KEY>, -k <KEY>
Key of the user attribute.

--value <VALUE>, -v <VALUE>
Value to be set.

This command is provided by the optuna plugin.

6.3.3 optuna.distributions

The `distributions` module defines various classes representing probability distributions, mainly used to suggest initial hyperparameter values for an optimization trial. Distribution classes inherit from a library-internal `BaseDistribution`, and is initialized with specific parameters, such as the `low` and `high` endpoints for a `UniformDistribution`.

Optuna users should not use distribution classes directly, but instead use utility functions provided by `Trial` such as `suggest_int()`.

```
<table>
<thead>
<tr>
<th>optuna.distributions.UniformDistribution</th>
<th>A uniform distribution in the linear domain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>optuna.distributions.LogUniformDistribution</td>
<td>A uniform distribution in the log domain.</td>
</tr>
<tr>
<td>optuna.distributions.DiscreteUniformDistribution</td>
<td>A discretized uniform distribution in the linear domain.</td>
</tr>
<tr>
<td>optuna.distributions.IntUniformDistribution</td>
<td>A uniform distribution on integers.</td>
</tr>
<tr>
<td>optuna.distributions.IntLogUniformDistribution</td>
<td>A uniform distribution on integers in the log domain.</td>
</tr>
<tr>
<td>optuna.distributions.CategoricalDistribution</td>
<td>A categorical distribution.</td>
</tr>
<tr>
<td>optuna.distributions.distribution_to_json</td>
<td>Serialize a distribution to JSON format.</td>
</tr>
<tr>
<td>optuna.distributions.json_to_distribution</td>
<td>Deserialize a distribution in JSON format.</td>
</tr>
<tr>
<td>optuna.distributions.check_distribution_compatibility</td>
<td>A function to check compatibility of two distributions.</td>
</tr>
</tbody>
</table>
```

optuna.distributions.UniformDistribution

class optuna.distributions.UniformDistribution(low, high)
A uniform distribution in the linear domain.

This object is instantiated by `suggest_uniform()`, and passed to `samplers` in general.

```
low
Lower endpoint of the range of the distribution. `low` is included in the range.

high
Upper endpoint of the range of the distribution. `high` is excluded from the range.
```

Raises `ValueError` – If `low` value is larger than `high` value.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>single()</code></td>
<td>Test whether the range of this distribution contains just a single value.</td>
</tr>
<tr>
<td><code>to_external_repr(param_value_in_internal_repr)</code></td>
<td>Convert internal representation of a parameter value into external representation.</td>
</tr>
<tr>
<td><code>to_internal_repr(param_value_in_external_repr)</code></td>
<td>Convert external representation of a parameter value into internal representation.</td>
</tr>
</tbody>
</table>

single()
Test whether the range of this distribution contains just a single value.

Returns: `True` if the range of this distribution contains just a single value, otherwise `False`.

Return type: `bool`

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters:

- `param_value_in_internal_repr (float)` – Optuna’s internal representation of a parameter value.

Returns: Optuna’s external representation of a parameter value.

Return type: `Any`

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters:

- `param_value_in_external_repr (Any)` – Optuna’s external representation of a parameter value.

Returns: Optuna’s internal representation of a parameter value.

Return type: `float`

optuna.distributions.LogUniformDistribution

```python
class optuna.distributions.LogUniformDistribution(low, high)
```

A uniform distribution in the log domain.

This object is instantiated by `suggest_loguniform()`, and passed to `samplers` in general.

low
Lower endpoint of the range of the distribution. `low` is included in the range.

high
Upper endpoint of the range of the distribution. `high` is excluded from the range.

Raises ValueError – If `low` value is larger than `high` value, or `low` value is smaller than or equal to 0.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>single()</td>
<td>Test whether the range of this distribution contains just a single value.</td>
</tr>
<tr>
<td>to_external_repr()</td>
<td>Convert internal representation of a parameter value into external representation.</td>
</tr>
<tr>
<td>to_internal_repr()</td>
<td>Convert external representation of a parameter value into internal representation.</td>
</tr>
</tbody>
</table>

single()

Test whether the range of this distribution contains just a single value.

- **Returns** `True` if the range of this distribution contains just a single value, otherwise `False`.
- **Return type** `bool`

to_external_repr()

Convert internal representation of a parameter value into external representation.

- **Parameters** `param_value_in_internal_repr` (`float`) – Optuna’s internal representation of a parameter value.
- **Returns** Optuna’s external representation of a parameter value.
- **Return type** `Any`

to_internal_repr()

Convert external representation of a parameter value into internal representation.

- **Parameters** `param_value_in_external_repr` (`Any`) – Optuna’s external representation of a parameter value.
- **Returns** Optuna’s internal representation of a parameter value.
- **Return type** `float`

optuna.distributions.DiscreteUniformDistribution

class `optuna.distributions.DiscreteUniformDistribution` (`low`, `high`, `q`)

A discretized uniform distribution in the linear domain.

This object is instantiated by `suggest_discrete_uniform()`, and passed to samplers in general.

Note: If the range `[low, high]` is not divisible by `q`, `high` will be replaced with the maximum of \(kq + \text{low} < \text{high} \), where \(k \) is an integer.

- **low**
 - Lower endpoint of the range of the distribution. `low` is included in the range.
- **high**
 - Upper endpoint of the range of the distribution. `high` is included in the range.
- **q**
 - A discretization step.

Raises `ValueError` – If `low` value is larger than `high` value.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>single()</code></td>
<td>Test whether the range of this distribution contains just a single value.</td>
</tr>
<tr>
<td><code>to_external_repr()</code></td>
<td>Convert internal representation of a parameter value into external representation.</td>
</tr>
<tr>
<td><code>to_internal_repr()</code></td>
<td>Convert external representation of a parameter value into internal representation.</td>
</tr>
</tbody>
</table>

`single()`

Test whether the range of this distribution contains just a single value.

Returns

- **True** if the range of this distribution contains just a single value, otherwise **False**.

Return type

- **bool**

`to_external_repr(param_value_in_internal_repr)`

Convert internal representation of a parameter value into external representation.

Parameters

- `param_value_in_internal_repr` *(float)* – Optuna’s internal representation of a parameter value.

Returns

- Optuna’s external representation of a parameter value.

Return type

- **Any**

`to_internal_repr(param_value_in_external_repr)`

Convert external representation of a parameter value into internal representation.

Parameters

- `param_value_in_external_repr` *(Any)* – Optuna’s external representation of a parameter value.

Returns

- Optuna’s internal representation of a parameter value.

Return type

- **float**

`optuna.distributions.IntUniformDistribution`

class

`optuna.distributions.IntUniformDistribution(low, high, step=1)`

A uniform distribution on integers.

This object is instantiated by `suggest_int()`, and passed to `samplers` in general.

Note: If the range `[low, high]` is not divisible by step, high will be replaced with the maximum of \(k \times \text{step} + \text{low} \) \(< \text{high} \), where \(k \) is an integer.

Parameters

- `low` *(int)* – Lower endpoint of the range of the distribution. \(\text{low} \) is included in the range.

- `high` *(int)* – Upper endpoint of the range of the distribution. \(\text{high} \) is included in the range.

- `step` *(int)* – A step for spacing between values.

** Raises **

- `ValueError` – If `low` value is larger than `high` value, or `step` value is smaller or equal to 0.
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>single()</code></td>
<td>Test whether the range of this distribution contains just a single value.</td>
</tr>
<tr>
<td><code>to_external_repr(param_value_in_internal_repr)</code></td>
<td>Convert internal representation of a parameter value into external representation.</td>
</tr>
<tr>
<td><code>to_internal_repr(param_value_in_external_repr)</code></td>
<td>Convert external representation of a parameter value into internal representation.</td>
</tr>
</tbody>
</table>

`single()`

Test whether the range of this distribution contains just a single value.

Returns

- `True` if the range of this distribution contains just a single value, otherwise `False`.

Return type

`bool`

`to_external_repr(param_value_inInternalRepr)`

Convert internal representation of a parameter value into external representation.

Parameters

- `param_value_in_internal_repr` (`float`) – Optuna’s internal representation of a parameter value.

Returns

Optuna’s external representation of a parameter value.

Return type

`int`

`to_internal_repr(param_value_in_external_repr)`

Convert external representation of a parameter value into internal representation.

Parameters

- `param_value_in_external_repr` (`int`) – Optuna’s external representation of a parameter value.

Returns

Optuna’s internal representation of a parameter value.

Return type

`float`

`optuna.distributions.IntLogUniformDistribution`

class `optuna.distributions.IntLogUniformDistribution(low, high, step=1)`

A uniform distribution on integers in the log domain.

This object is instantiated by `suggest_int()`, and passed to samplers in general.

low

Lower endpoint of the range of the distribution. `low` is included in the range.

high

Upper endpoint of the range of the distribution. `high` is included in the range.

step

A step for spacing between values.

Warning: Deprecated in v2.0.0. `step` argument will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change.

Samplers and other components in Optuna relying on this distribution will ignore this value and assume that `step` is always 1. User-defined samplers may continue to use other values besides 1 during the deprecation.
Raises `ValueError` – If low value is larger than high value, or low value is smaller than 1.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>single()</code></td>
<td>Test whether the range of this distribution contains just a single value.</td>
</tr>
<tr>
<td><code>to_external_repr()</code></td>
<td>Convert internal representation of a parameter value into external representation.</td>
</tr>
<tr>
<td><code>to_internal_repr()</code></td>
<td>Convert external representation of a parameter value into internal representation.</td>
</tr>
</tbody>
</table>

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>step</code></td>
<td><code>single()</code> Test whether the range of this distribution contains just a single value. Returns <code>True</code> if the range of this distribution contains just a single value, otherwise <code>False</code>. Return type <code>bool</code></td>
</tr>
<tr>
<td></td>
<td><code>to_external_repr(param_value_in_internal_repr)</code> Convert internal representation of a parameter value into external representation. Parameters <code>param_value_in_internal_repr (float)</code> – Optuna’s internal representation of a parameter value. Returns Optuna’s external representation of a parameter value. Return type <code>int</code></td>
</tr>
<tr>
<td></td>
<td><code>to_internal_repr(param_value_in_external_repr)</code> Convert external representation of a parameter value into internal representation. Parameters <code>param_value_in_external_repr (int)</code> – Optuna’s external representation of a parameter value. Returns Optuna’s internal representation of a parameter value. Return type <code>float</code></td>
</tr>
</tbody>
</table>

`optuna.distributions.CategoricalDistribution`

class `optuna.distributions.CategoricalDistribution (choices)`
A categorical distribution.

This object is instantiated by `suggest_categorical()`, and passed to `samplers` in general.

Parameters `choices` – Parameter value candidates.

Note: Not all types are guaranteed to be compatible with all storages. It is recommended to restrict the types of the choices to `None, bool, int, float` and `str`.

46 Chapter 6. Reference
choices
Parameter value candidates.

Raises ValueError – If choices do not contain any elements.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>single()</code></td>
<td>Test whether the range of this distribution contains just a single value.</td>
</tr>
<tr>
<td><code>to_external_repr(param_value_in_internal_repr)</code></td>
<td>Convert internal representation of a parameter value into external representation.</td>
</tr>
<tr>
<td><code>to_internal_repr(param_value_in_external_repr)</code></td>
<td>Convert external representation of a parameter value into internal representation.</td>
</tr>
</tbody>
</table>

single()

Test whether the range of this distribution contains just a single value.

- **Returns**: True if the range of this distribution contains just a single value, otherwise False.
- **Return type**: bool

to_external_repr(param_value_in_internal_repr)

Convert internal representation of a parameter value into external representation.

- **Parameters**
 - `param_value_in_internal_repr (float)` – Optuna’s internal representation of a parameter value.
- **Returns**: Optuna’s external representation of a parameter value.
- **Return type**: Union[None, bool, int, float, str]

to_internal_repr(param_value_in_external_repr)

Convert external representation of a parameter value into internal representation.

- **Parameters**
 - `param_value_in_external_repr (Union[None, bool, int, float, str])` – Optuna’s external representation of a parameter value.
- **Returns**: Optuna’s internal representation of a parameter value.
- **Return type**: float

optuna.distributions.distribution_to_json

`optuna.distributions.distribution_to_json(dist)`

Serialize a distribution to JSON format.

- **Parameters**
 - `dist (optuna.distributions.BaseDistribution)` – A distribution to be serialized.
- **Returns**: A JSON string of a given distribution.
- **Return type**: str
optuna.distributions.json_to_distribution

`optuna.distributions.json_to_distribution(json_str)`

Deserializes a distribution in JSON format.

Parameters

- `json_str (str)` – A JSON-serialized distribution.

Returns

A deserialized distribution.

Raises

`ValueError` – If the unknown class is specified.

Return type

`optuna.distributions.BaseDistribution`

optuna.distributions.check_distribution_compatibility

`optuna.distributions.check_distribution_compatibility(dist_old, dist_new)`

A function to check compatibility of two distributions.

Note that this method is not supposed to be called by library users.

Parameters

- `dist_old (optuna.distributions.BaseDistribution)` – A distribution previously recorded in storage.
- `dist_new (optuna.distributions.BaseDistribution)` – A distribution newly added to storage.

Returns

True denotes given distributions are compatible. Otherwise, they are not.

Raises

`ValueError` – If different distribution kinds are set to `dist_old` and `dist_new`, or `dist_old.choices` doesn’t match `dist_new.choices` for `CategoricalDistribution`.

Return type

`None`

6.3.4 optuna.exceptions

The `exceptions` module defines Optuna-specific exceptions deriving from a base `OptunaError` class. Of special importance for library users is the `TrialPruned` exception to be raised if `optuna.trial.Trial.should_prune()` returns `True` for a trial that should be pruned.

<table>
<thead>
<tr>
<th>Exception</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.exceptions.OptunaError</code></td>
<td>Base class for Optuna specific errors.</td>
</tr>
<tr>
<td><code>optuna.exceptions.TrialPruned</code></td>
<td>Exception for pruned trials.</td>
</tr>
<tr>
<td><code>optuna.exceptions.CLIUsageError</code></td>
<td>Exception for CLI.</td>
</tr>
<tr>
<td><code>optuna.exceptions.StorageInternalError</code></td>
<td>Exception for storage operation.</td>
</tr>
<tr>
<td><code>optuna.exceptions.DuplicatedStudyError</code></td>
<td>Exception for a duplicated study name.</td>
</tr>
</tbody>
</table>
optuna.exceptions.OptunaError

exception optuna.exceptions.OptunaError
Base class for Optuna specific errors.

optuna.exceptions.TrialPruned

exception optuna.exceptions.TrialPruned
Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is supposed to be raised after optuna.trial.Trial.should_prune() as shown in the following example.

See also:
optuna.TrialPruned is an alias of optuna.exceptions.TrialPruned.

Example

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
    alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)
```
optuna.exceptions.CLIUsageError

exception optuna.exceptions.CLIUsageError
Exception for CLI.

CLI raises this exception when it receives invalid configuration.

optuna.exceptions.StorageInternalError

exception optuna.exceptions.StorageInternalError
Exception for storage operation.

This error is raised when an operation failed in backend DB of storage.

optuna.exceptions.DuplicatedStudyError

exception optuna.exceptions.DuplicatedStudyError
Exception for a duplicated study name.

This error is raised when a specified study name already exists in the storage.

6.3.5 optuna.importance

The `importance` module provides functionality for evaluating hyperparameter importances based on completed trials in a given study. The utility function `get_param_importances()` takes a `Study` and optional evaluator as two of its inputs. The evaluator must derive from `BaseImportanceEvaluator`, and is initialized as a `FanovaImportanceEvaluator` by default when not passed in. Users implementing custom evaluators should refer to either `FanovaImportanceEvaluator` or `MeanDecreaseImpurityImportanceEvaluator` as a guide, paying close attention to the format of the return value from the Evaluator's `evaluate()` function.

<table>
<thead>
<tr>
<th>optuna.importance.get_param_importances</th>
<th>Evaluate parameter importances based on completed trials in the given study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>optuna.importance.FanovaImportanceEvaluator</td>
<td>fANOVA importance evaluator.</td>
</tr>
<tr>
<td>optuna.importance.MeanDecreaseImpurityImportanceEvaluator</td>
<td>Mean Decrease Impurity (MDI) parameter importance evaluator.</td>
</tr>
</tbody>
</table>

optuna.importance.get_param_importances

`optuna.importance.get_param_importances(study, *, evaluator=None, params=None, target=None)`

Evaluate parameter importances based on completed trials in the given study.

The parameter importances are returned as a dictionary where the keys consist of parameter names and their values importances. The importances are represented by floating point numbers that sum to 1.0 over the entire dictionary. The higher the value, the more important. The returned dictionary is of type `collections.OrderedDict` and is ordered by its values in a descending order.

If `params` is `None`, all parameter that are present in all of the completed trials are assessed. This implies that conditional parameters will be excluded from the evaluation. To assess the importances of conditional parameters, a list of parameter names can be specified via `params`. If specified, only completed trials that contain all of the parameters will be considered. If no such trials are found, an error will be raised.
If the given study does not contain completed trials, an error will be raised.

Note: If `params` is specified as an empty list, an empty dictionary is returned.

See also:

See `plot_param_importances()` to plot importances.

Parameters

- **study** (*optuna.study.Study*) – An optimized study.
- **evaluator** (*Optional[optuna.importance._base.BaseImportanceEvaluator]*) – An importance evaluator object that specifies which algorithm to base the importance assessment on. Defaults to `FanovaImportanceEvaluator`.
- **params** (*Optional[List[str]*) – A list of names of parameters to assess. If `None`, all parameters that are present in all of the completed trials are assessed.
- **target** (*Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]*) – A function to specify the value to evaluate importances. If it is `None` and `study` is being used for single-objective optimization, the objective values are used. **Note:** Specify this argument if `study` is being used for multi-objective optimization.

Returns
An `collections.OrderedDict` where the keys are parameter names and the values are assessed importances.

Raises *ValueError* – If `target` is `None` and `study` is being used for multi-objective optimization.

Return type `Dict[str, float]`

optuna.importance.FanovaImportanceEvaluator

class `optuna.importance.FanovaImportanceEvaluator(*, n_trees=64, max_depth=64, seed=None)`

FANOVA importance evaluator.

Implements the FANOVA hyperparameter importance evaluation algorithm in An Efficient Approach for Assessing Hyperparameter Importance.

Given a study, FANOVA fits a random forest regression model that predicts the objective value given a parameter configuration. The more accurate this model is, the more reliable the importances assessed by this class are.

Note: Requires the sklearn Python package.

Note: Pairwise and higher order importances are not supported through this class. They can be computed using `_Fanova` directly but is not recommended as interfaces may change without prior notice.
Note: The performance of fANOVA depends on the prediction performance of the underlying random forest model. In order to obtain high prediction performance, it is necessary to cover a wide range of the hyperparameter search space. It is recommended to use an exploration-oriented sampler such as RandomSampler.

Note: For how to cite the original work, please refer to https://automl.github.io/fanova/cite.html.

Parameters

- **n_trees** – The number of trees in the forest.
- **max_depth** – The maximum depth of the trees in the forest.
- **seed** – Controls the randomness of the forest. For deterministic behavior, specify a value other than None.

Methods

```python
evaluate(study[, params, target])
```

Evaluate parameter importances based on completed trials in the given study.

```python
evaluate(study, params=None, *, target=None)
```

Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:

Please refer to `get_param_importances()` for how a concrete evaluator should implement this method.

Parameters

- **study** (`optuna.study.Study`) – An optimized study.
- **params** (`Optional[List[str]]`) – A list of names of parameters to assess. If None, all parameters that are present in all of the completed trials are assessed.
- **target** (`Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]`) – A function to specify the value to evaluate importances. If it is None and study is being used for single-objective optimization, the objective values are used.

Note: Specify this argument if study is being used for multi-objective optimization.

Returns

An `collections.OrderedDict` where the keys are parameter names and the values are assessed importances.

Raises **ValueError** – If target is None and study is being used for multi-objective optimization.

Return type **Dict[str, float]**
optuna.importance.MeanDecreaseImpurityImportanceEvaluator

class optuna.importance.MeanDecreaseImpurityImportanceEvaluator(*, n_trees=64, max_depth=64, seed=None)

Mean Decrease Impurity (MDI) parameter importance evaluator.

This evaluator fits a random forest that predicts objective values given hyperparameter configurations. Feature importances are then computed using MDI.

Note: This evaluator requires the sklearn Python package and is based on sklearn.ensemble.RandomForestClassifier.feature_importances_.

Parameters

- **n_trees** – Number of trees in the random forest.
- **max_depth** – The maximum depth of each tree in the random forest.
- **seed** – Seed for the random forest.

Methods

evaluate(study[, params, target]) Evaluate parameter importances based on completed trials in the given study.

evaluate (study, params=None, *, target=None) Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:

Please refer to get_param_importances() for how a concrete evaluator should implement this method.

Parameters

- **study** (optuna.study.Study) – An optimized study.
- **params** (Optional[List[str]]) – A list of names of parameters to assess. If None, all parameters that are present in all of the completed trials are assessed.
- **target** (Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]) – A function to specify the value to evaluate importances. If it is None and study is being used for single-objective optimization, the objective values are used.

Note: Specify this argument if study is being used for multi-objective optimization.

Returns An collections.OrderedDict where the keys are parameter names and the values are assessed importances.
Raises **ValueError** – If `target` is `None` and `study` is being used for multi-objective optimization.

Return type Dict[str, float]

6.3.6 optuna.integration

The `integration` module contains classes used to integrate Optuna with external machine learning frameworks. For most of the ML frameworks supported by Optuna, the corresponding Optuna integration class serves only to implement a callback object and functions, compliant with the framework's specific callback API, to be called with each intermediate step in the model training. The functionality implemented in these callbacks across the different ML frameworks includes:

1. Reporting intermediate model scores back to the Optuna trial using `optuna.trial.report()`,
2. According to the results of `optuna.trial.Trial.should_prune()`, pruning the current model by raising `optuna.TrialPruned()`, and
3. Reporting intermediate Optuna data such as the current trial number back to the framework, as done in `MLflowCallback`.

For scikit-learn, an integrated `OptunaSearchCV` estimator is available that combines scikit-learn `BaseEstimator` functionality with access to a class-level `Study` object.

AllenNLP

<table>
<thead>
<tr>
<th>optuna.integration.AllenNLPExecutor</th>
<th>AllenNLP extension to use optuna with Jsonnet config file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>optuna.integration.allennlp.dump_best_config</td>
<td>Save JSON config file after updating with parameters from the best trial in the study.</td>
</tr>
<tr>
<td>optuna.integration.AllenNLPPruningCallback</td>
<td>AllenNLP callback to prune unpromising trials.</td>
</tr>
</tbody>
</table>

optuna.integration.AllenNLPExecutor

```python
class optuna.integration.AllenNLPExecutor(trial, config_file, serialization_dir, metrics='best_validation_accuracy', *, include_package=None, force=False, file_friendly_logging=False)
```

AllenNLP extension to use optuna with Jsonnet config file.

This feature is experimental since AllenNLP major release will come soon. The interface may change without prior notice to correspond to the update.

See the examples of `objective function`.

You can also see the tutorial of our AllenNLP integration on AllenNLP Guide.

Note: From Optuna v2.1.0, users have to cast their parameters by using methods in Jsonnet. Call `std.parseInt` for integer, or `std.parseJson` for floating point. Please see the `example configuration`.

Chapter 6. Reference
Note: In AllenNLPExecutor, you can pass parameters to AllenNLP by either defining a search space using Optuna suggest methods or setting environment variables just like AllenNLP CLI. If a value is set in both a search space in Optuna and the environment variables, the executor will use the value specified in the search space in Optuna.

Parameters

- **trial** – A Trial corresponding to the current evaluation of the objective function.
- **config_file** – Config file for AllenNLP. Hyperparameters should be masked with std. extVar. Please refer to the config example.
- **serialization_dir** – A path which model weights and logs are saved.
- **metrics** – An evaluation metric for the result of objective.
- **force** – If True, an executor overwrites the output directory if it exists.
- **file_friendly_logging** – If True, tqdm status is printed on separate lines and slows tqdm refresh rate.
- **include_package** – Additional packages to include. For more information, please see AllenNLP documentation.

Note: Added in v1.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

Methods

run()

Train a model using AllenNLP.

Return type float

optuna.integration.allennlp.dump_best_config

Save JSON config file after updating with parameters from the best trial in the study.

Parameters

- **input_config_file** *(str)* – Input Jsonnet config file used with AllenNLPExecutor.
- **output_config_file** *(str)* – Output JSON config file.
- **study** *(optuna.study.Study)* – Instance of Study. Note that optimize() must have been called.

Return type None
optuna.integration.AllenNLPPruningCallback

class optuna.integration.AllenNLPPruningCallback(trial=None, monitor=None)
AllenNLP callback to prune unpromising trials.
See the example if you want to add a pruning callback which observes a metric.
You can also see the tutorial of our AllenNLP integration on AllenNLP Guide.

Note: When AllenNLPPruningCallback is instantiated in Python script, trial and monitor are mandatory.
On the other hand, when AllenNLPPruningCallback is used with AllenNLPExecutor, trial and monitor would be None. AllenNLPExecutor sets environment variables for a study name, trial id, monitor, and storage. Then AllenNLPPruningCallback loads them to restore trial and monitor.

Parameters

- trial – A Trial corresponding to the current evaluation of the objective function.
- monitor – An evaluation metric for pruning, e.g. validation_loss or validation_accuracy.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Methods

register(*args, **kwargs) Stub method for EpochCallback.register.

classmethod register(*args, **kwargs)
Stub method for EpochCallback.register.
This method has the same signature as Registrable.register in AllenNLP.

Parameters

- args (Any) –
- kwargs (Any) –

Return type Callable
BoTorch

<table>
<thead>
<tr>
<th>Function Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.integration.BoTorchSampler</code></td>
<td>A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.</td>
</tr>
<tr>
<td><code>optuna.integration.botorch.qei_candidates_func</code></td>
<td>Quasi MC-based batch Expected Improvement (qEI).</td>
</tr>
<tr>
<td><code>optuna.integration.botorch.qehvi_candidates_func</code></td>
<td>Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).</td>
</tr>
<tr>
<td><code>optuna.integration.botorch.qparego_candidates_func</code></td>
<td>Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.</td>
</tr>
</tbody>
</table>

optuna.integration.BoTorchSampler

class `optuna.integration.BoTorchSampler(*, candidates_func=None, constraints_func=None, n_startup_trials=10, independent_sampler=None)`

A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.

This sampler allows using BoTorch’s optimization algorithms from Optuna to suggest parameter configurations. Parameters are transformed to continuous space and passed to BoTorch, and then transformed back to Optuna’s representations. Categorical parameters are one-hot encoded.

See also:

See an example how to use the sampler.

See also:

See the BoTorch homepage for details and for how to implement your own `candidates_func`.

Note: An instance of this sampler should be not used with different studies when used with constraints. Instead, a new instance should be created for each new study. The reason for this is that the sampler is stateful keeping all the computed constraints.

Parameters

- **candidates_func** – An optional function that suggests the next candidates. It must take the training data, the objectives, the constraints, the search space bounds and return the next candidates. The arguments are of type `torch.Tensor`. The return value must be a `torch.Tensor`. However, if `constraints_func` is omitted, constraints will be `None`. For any constraints that failed to compute, the tensor will contain NaN.

If omitted, is determined automatically based on the number of objectives. If the number of objectives is one, Quasi MC-based batch Expected Improvement (qEI) is used. If the number of objectives is larger than one but smaller than four, Quasi MC-based batch Expected Hypervolume Improvement (qEHVI) is used. Otherwise, for larger number of objectives, the faster Quasi MC-based extended ParEGO (qParEGO) is used.

The function should assume maximization of the objective.

See also:

See `optuna.integration.botorch.qei_candidates_func()` for an example.
• **constraints_func** – An optional function that computes the objective constraints. It must take a *FrozenTrial* and return the constraints. The return value must be a sequence of *float* s. A value strictly larger than 0 means that a constraint is violated. A value equal to or smaller than 0 is considered feasible.

If omitted, no constraints will be passed to candidates_func nor taken into account during suggestion if candidates_func is omitted.

• **n_startup_trials** – Number of initial trials, that is the number of trials to resort to independent sampling.

• **independent_sampler** – An independent sampler to use for the initial trials and for parameters that are conditional.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after_trial (study, trial, state, values)</td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td>infer_relative_search_space (study, trial)</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td>reseed_rng ()</td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td>sample_independent (study, trial, param_name, ...)</td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td>sample_relative (study, trial, search_space)</td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

after_trial *(study, trial, state, values)*

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** *(optuna.study.Study)* – Target study object.

- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

- **state** *(optuna.trial._state.TrialState)* – Resulting trial state.

- **values** *(Optional[Sequence[float]])* – Resulting trial values. Guaranteed to not be *None* if trial succeeded.

Return type *None*

infer_relative_search_space *(study, trial)*

Infer the search space that will be used by relative sampling in the target trial.
This method is called right before `sample_relative()` method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.

Parameters

- **study** (`optuna.study.Study`) – Target study object.
- **trial** (`optuna.trial._frozen.FrozenTrial`) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type `Dict[str, optuna.distributions.BaseDistribution]`

See also:
Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type `None`

sample_independent(study, trial, param_name, param_distribution)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** (`optuna.study.Study`) – Target study object.
- **trial** (`optuna.trial._frozen.FrozenTrial`) – Target trial object. Take a copy before modifying this object.
- **param_name** (`str`) – Name of the sampled parameter.
- **param_distribution** (`optuna.distributions.BaseDistribution`) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type `Any`

sample_relative(study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.
Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** (*optuna.study.Study*) – Target study object.
- **trial** (*optuna.trial._frozen.FrozenTrial*) – Target trial object. Take a copy before modifying this object.
- **search_space** (*Dict[str, optuna.distributions.BaseDistribution]*) – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.integration.botorch.qei_candidates_func

`optuna.integration.botorch.qei_candidates_func(train_x, train_obj, train_con, bounds)` Quasi MC-based batch Expected Improvement (qEI).

The default value of `candidates_func` in BoTorchSampler with single-objective optimization.

Parameters

- **train_x** (*torch.Tensor*) – Previous parameter configurations. A torch.Tensor of shape (n_trials, n_params). n_trials is the number of already observed trials and n_params is the number of parameters. n_params may be larger than the actual number of parameters if categorical parameters are included in the search space, since these parameters are one-hot encoded. Values are not normalized.
- **train_obj** (*torch.Tensor*) – Previously observed objectives. A torch.Tensor of shape (n_trials, n_objectives). n_trials is identical to that of train_x. n_objectives is the number of objectives. Observations are not normalized.
- **train_con** (*Optional[torch.Tensor]*) – Objective constraints. A torch.Tensor of shape (n_trials, n_constraints). n_constraints is the number of constraints. A constraint is violated if strictly larger than 0. If no constraints are involved in the optimization, this argument will be None.
- **bounds** (*torch.Tensor*) – Search space bounds. A torch.Tensor of shape (n_params, 2). n_params is identical to that of train_x. The first and the second column correspond to the lower and upper bounds for each parameter respectively.

Returns Next set of candidates. Usually the return value of BoTorch’s `optimize_acqf`.

Return type torch.Tensor

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
optuna.integration.botorch.qehvi_candidates_func

Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

The default value of candidates_func in BotorchSampler with multi-objective optimization when the number of objectives is three or less.

See also:
qei_candidates_func() for argument and return value descriptions.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- train_x (torch.Tensor)
- train_obj (torch.Tensor)
- train_con (Optional[torch.Tensor])
- bounds (torch.Tensor)

Return type torch.Tensor

optuna.integration.botorch.qparego_candidates_func

Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.

The default value of candidates_func in BotorchSampler with multi-objective optimization when the number of objectives is larger than three.

See also:
qei_candidates_func() for argument and return value descriptions.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- train_x (torch.Tensor)
- train_obj (torch.Tensor)
- train_con (Optional[torch.Tensor])
- bounds (torch.Tensor)

Return type torch.Tensor
Catalyst

```python
optuna.integration.CatalystPruningCallback
```
Catalyst callback to prune unpromising trials.

```python
class optuna.integration.CatalystPruningCallback(trial, metric='loss')
```
Catalyst callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes the accuracy of Catalyst's `SupervisedRunner`.

Parameters

- `trial` – A `Trial` corresponding to the current evaluation of the objective function.
- `metric` (str) – Name of a metric, which is passed to `catalyst.core.State.valid_metrics` dictionary to fetch the value of metric computed on validation set. Pruning decision is made based on this value.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Methods

```python
on_epoch_end(state)
```

Chainer

```python
optuna.integration.ChainerPruningExtension
```
Chainer extension to prune unpromising trials.

```python
class optuna.integration.ChainerPruningExtension(trial, observation_key, pruner_trigger)
```
Chainer extension to prune unpromising trials.

See the example if you want to add a pruning extension which observes validation accuracy of a Chainer Trainer.

Parameters

- `trial` – A `Trial` corresponding to the current evaluation of the objective function.
- `observation_key` – An evaluation metric for pruning, e.g., `main/loss` and `validation/main/accuracy`. Please refer to `chainer.Reporter` reference for further details.
• **pruner_trigger** – A trigger to execute pruning. pruner_trigger is an instance of `IntervalTrigger` or `ManualScheduleTrigger`. `IntervalTrigger` can be specified by a tuple of the interval length and its unit like `(1, 'epoch')`.

optuna.integration.ChainerMNStudy

```python
class optuna.integration.ChainerMNStudy(study, comm)
```

A wrapper of `Study` to incorporate Optuna with ChainerMN.

See also:

ChainerMNStudy provides the same interface as `Study`. Please refer to `optuna.study.Study` for further details.

See the example if you want to optimize an objective function that trains neural network written with ChainerMN.

Parameters

- **study** – A `Study` object.
- **comm** – A ChainerMN communicator.

Methods

```python
optimize(func[, n_trials, timeout, catch])
```

Optimize an objective function.

This method provides the same interface as `optuna.study.Study.optimize()` except the absence of `n_jobs` argument.

Parameters

- **func** (Callable[[ChainerMNTrial, CommunicatorBase], float])–
- **n_trials** (Optional[int])–
- **timeout** (Optional[float])–
- **catch** (Tuple[Type[Exception], ..])–

Return type None

fast.ai

```python
optuna.integration.
FastAIv1PruningCallback
```

FastAI callback to prune unpromising trials for fastai.

```python
optuna.integration.
FastAIv2PruningCallback
```

FastAI callback to prune unpromising trials for fastai.

```python
optuna.integration.
FastAIv2PruningCallback
```

alias of `optuna.integration.fastaiv2.FastAIv2PruningCallback`
optuna.integration.FastAIV1PruningCallback

```python
class optuna.integration.FastAIV1PruningCallback(learn, trial, monitor)
    FastAI callback to prune unpromising trials for fastai.
```

Note: This callback is for fastai<2.0.

See the example if you want to add a pruning callback which monitors validation loss of a Learner.

Example

Register a pruning callback to `learn.fit` and `learn.fit_one_cycle`.

```python
learn.fit(n_epochs, callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")])
learn.fit_one_cycle(
    n_epochs,
    cyc_len,
    max_lr,
    callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")],
)
```

Parameters

- **learn** – fastai.basic_train.Learner.
- **trial** – A Trial corresponding to the current evaluation of the objective function.
- **monitor** – An evaluation metric for pruning, e.g. valid_loss and Accuracy. Please refer to fastai.callbacks.TrackerCallback reference for further details.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

```python
on_epoch_end(epoch, **kwargs)
```

optuna.integration.FastAIV2PruningCallback

```python
class optuna.integration.FastAIV2PruningCallback(trial, monitor='valid_loss')
    FastAI callback to prune unpromising trials for fastai.
```

Note: This callback is for fastai>=2.0.

See the example if you want to add a pruning callback which monitors validation loss of a Learner.
Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

```python
learn = cnn_learner(dls, resnet18, metrics=[error_rate])
learn.fit(n_epochs, cbs=[FastAIPruningCallback(trial)])  # Monitor "valid_loss"
learn.fit_one_cycle(  
n_epochs,  
lr_max,  
cbs=[FastAIPruningCallback(trial, monitor="error_rate")],  # Monitor "error_rate"
)
```

Parameters

- **trial** – A `Trial` corresponding to the current evaluation of the objective function.
- **monitor** – An evaluation metric for pruning, e.g. `valid_loss` or `accuracy`. Please refer to `fastai.callback.TrackerCallback` reference for further details.

Methods

- `after_epoch()`
- `after_fit()`

`optuna.integration.FastAIPruningCallback`

Keras

`optuna.integration.KerasPruningCallback`

Keras callback to prune unpromising trials.

`optuna.integration.KerasPruningCallback`

class `optuna.integration.KerasPruningCallback`(
 trial,
 monitor,
 interval=1
)
Keras callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes validation accuracy.

Parameters

- **trial** – A `Trial` corresponding to the current evaluation of the objective function.
- **monitor** – An evaluation metric for pruning, e.g. `val_loss` and `val_accuracy`. Please refer to `keras.Callback` reference for further details.
- **interval** – Check if trial should be pruned every n-th epoch. By default `interval=1` and pruning is performed after every epoch. Increase `interval` to run several epochs faster before applying pruning.
Warning: Deprecated in v2.1.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.1.0.

Recent Keras release (2.4.0) simply redirects all APIs in the standalone keras package to point to tf.keras. There is now only one Keras: tf.keras. There may be some breaking changes for some workflows by upgrading to keras 2.4.0. Test before upgrading. REF:https://github.com/keras-team/keras/releases/tag/2.4.0

Methods

```python
on_epoch_end(epoch[, logs])
```

LightGBM

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.integration.LightGBMPruningCallback</code></td>
<td>Callback for LightGBM to prune unpromising trials.</td>
</tr>
<tr>
<td><code>optuna.integration.lightgbm.train</code></td>
<td>Wrapper of LightGBM Training API to tune hyperparameters.</td>
</tr>
<tr>
<td><code>optuna.integration.lightgbm.LightGBMTuner</code></td>
<td>Hyperparameter tuner for LightGBM.</td>
</tr>
<tr>
<td><code>optuna.integration.lightgbm.LightGBMTunerCV</code></td>
<td>Hyperparameter tuner for LightGBM with cross-validation.</td>
</tr>
</tbody>
</table>

optuna.integration.LightGBMPruningCallback

```python
class optuna.integration.LightGBMPruningCallback(trial, metric, valid_name='valid_0')
```

Callback for LightGBM to prune unpromising trials.

See the example if you want to add a pruning callback which observes AUC of a LightGBM model.

Parameters

- **trial** — A `Trial` corresponding to the current evaluation of the objective function.
- **metric** — An evaluation metric for pruning, e.g., `binary_error` and `multi_error`. Please refer to LightGBM reference for further details.
- **valid_name** — The name of the target validation. Validation names are specified by `valid_names` option of train method. If omitted, valid_0 is used which is the default name of the first validation. Note that this argument will be ignored if you are calling cv method instead of train method.
optuna.integration.lightgbm.train

optuna.integration.lightgbm.train(*args, **kwargs)
Wrapper of LightGBM Training API to tune hyperparameters.

It tunes important hyperparameters (e.g., \texttt{min_child_samples} and \texttt{feature_fraction}) in a stepwise manner. It is a drop-in replacement for \texttt{lightgbm.train()}. See a simple example of LightGBM Tuner which optimizes the validation log loss of cancer detection.

\texttt{train()} is a wrapper function of \texttt{LightGBMTuner}. To use feature in Optuna such as suspended/resumed optimization and/or parallelization, refer to \texttt{LightGBMTuner} instead of this function.

Arguments and keyword arguments for \texttt{lightgbm.train()} can be passed.

\textbf{Parameters}

- \texttt{args (Any)} –
- \texttt{kwargs (Any)} –

\textbf{Return type} Any

\textbf{optuna.integration.lightgbm.LightGBMTuner}

class optuna.integration.lightgbm.LightGBMTuner (params, train_set, num_boost_round=1000, valid_sets=None, valid_names=None, fobj=None, feval=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, keep_training_booster=False, callbacks=None, time_budget=None, sample_size=None, study=None, optuna_callbacks=None, model_dir=None, verbosity=None, show_progress_bar=True)

Hyperparameter tuner for LightGBM.

It optimizes the following hyperparameters in a stepwise manner: \texttt{lambda_l1}, \texttt{lambda_l2}, \texttt{num_leaves}, \texttt{feature_fraction}, \texttt{bagging_fraction}, \texttt{bagging_freq} and \texttt{min_child_samples}.

You can find the details of the algorithm and benchmark results in this blog article by Kohei Ozaki, a Kaggle Grandmaster.

Arguments and keyword arguments for \texttt{lightgbm.train()} can be passed. The arguments that only \texttt{LightGBMTuner} has are listed below:

\textbf{Parameters}

- \texttt{time_budget} – A time budget for parameter tuning in seconds.
- \texttt{study} – A \texttt{Study} instance to store optimization results. The \texttt{Trial} instances in it has the following user attributes: \texttt{elapsed_secs} is the elapsed time since the optimization starts. \texttt{average_iteration_time} is the average time of iteration to train the booster model.
in the trial. `lgbm_params` is a JSON-serialized dictionary of LightGBM parameters used in the trial.

- **optuna_callbacks** – List of Optuna callback functions that are invoked at the end of each trial. Each function must accept two parameters with the following types in this order: `Study` and `FrozenTrial`. Please note that this is not a `callbacks` argument of `lightgbm.train()`.

- **model_dir** – A directory to save boosters. By default, it is set to `None` and no boosters are saved. Please set shared directory (e.g., directories on NFS) if you want to access `get_best_booster()` in distributed environments. Otherwise, it may raise `ValueError`. If the directory does not exist, it will be created. The filenames of the boosters will be `{model_dir}/{trial_number}.pkl` (e.g., `./boosters/0.pkl`).

- **verbosity** – A verbosity level to change Optuna’s logging level. The level is aligned to LightGBM’s verbosity.

 Warning: Deprecated in v2.0.0. `verbosity` argument will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change.

 Please use `set_verbosity()` instead.

- **show_progress_bar** – Flag to show progress bars or not. To disable progress bar, set this `False`.

 Note: Progress bars will be fragmented by logging messages of LightGBM and Optuna. Please suppress such messages to show the progress bars properly.

Methods

- `compare_validation_metrics(val_score, best_score)`
- `get_best_booster()`
 Return the best booster.
- `higher_is_better()`
- `run()`
 Perform the hyperparameter-tuning with given parameters.
- `sample_train_set()`
 Make subset of `self.train_set` Dataset object.
- `tune_bagging([n_trials])`
- `tune_feature_fraction([n_trials])`
- `tune_feature_fraction_stage2([n_trials])`
- `tune_min_data_in_leaf()`
- `tune_num_leaves([n_trials])`
- `tune_regularization_factors([n_trials])`
Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>best_booster</code></td>
<td>Return the best booster.</td>
</tr>
<tr>
<td><code>best_params</code></td>
<td>Return parameters of the best booster.</td>
</tr>
<tr>
<td><code>best_score</code></td>
<td>Return the score of the best booster.</td>
</tr>
</tbody>
</table>

property best_booster

Return the best booster.

Warning: Deprecated in v1.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v3.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

Please get the best booster via `get_best_booster` instead.

property best_params

Return parameters of the best booster.

property best_score

Return the score of the best booster.

get_best_booster()

Return the best booster.

If the best booster cannot be found, `ValueError` will be raised. To prevent the errors, please save boosters by specifying the `model_dir` argument of `__init__()`, when you resume tuning or you run tuning in parallel.

Return type `lightgbm.basic.Booster`

run()

Perform the hyperparameter-tuning with given parameters.

Return type `None`

sample_train_set()

Make subset of `self.train_set` Dataset object.

Return type `None`
Hyperparameter tuner for LightGBM with cross-validation.

It employs the same stepwise approach as `LightGBMTuner`. `LightGBMTunerCV` invokes `lightgbm.cv()` to train and validate boosters while `LightGBMTuner` invokes `lightgbm.train()`. See a simple example which optimizes the validation log loss of cancer detection.

Arguments and keyword arguments for `lightgbm.cv()` can be passed except `metrics`, `init_model` and `eval_train_metric`. The arguments that only `LightGBMTunerCV` has are listed below:

Parameters

- **time_budget** – A time budget for parameter tuning in seconds.
- **study** – A `Study` instance to store optimization results. The `Trial` instances in it has the following user attributes: `elapsed_secs` is the elapsed time since the optimization starts. `average_iteration_time` is the average time of iteration to train the booster model in the trial. `lgbm_params` is a JSON-serialized dictionary of LightGBM parameters used in the trial.
- **optuna_callbacks** – List of Optuna callback functions that are invoked at the end of each trial. Each function must accept two parameters with the following types in this order: `Study` and `FrozenTrial`. Please note that this is not a `callbacks` argument of `lightgbm.train()`.
- **verbosity** – A verbosity level to change Optuna’s logging level. The level is aligned to LightGBM’s verbosity.

Warning: Deprecated in v2.0.0. `verbosity` argument will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change.

Please use `set_verbosity()` instead.

- **show_progress_bar** – Flag to show progress bars or not. To disable progress bar, set this `False`.

Note: Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.

Methods

compare_validation_metrics(val_score, best_score)
Return the best cvbooster.

get_best_booster()

higher_is_better()
Perform the hyperparameter-tuning with given parameters.

run()
Return the best cvbooster.

sample_train_set()
Make subset of `self.train_set` Dataset object.

tune_bagging([n_trials])

tune_feature_fraction([n_trials])

tune_feature_fraction_stage2([n_trials])

tune_min_data_in_leaf()

tune_num_leaves([n_trials])

tune_regularization_factors([n_trials])

Attributes

best_params
Return parameters of the best booster.

best_score
Return the score of the best booster.

property best_params
Return parameters of the best booster.

property best_score
Return the score of the best booster.

get_best_booster()
Return the best cvbooster.

If the best booster cannot be found, `ValueError` will be raised. To prevent the errors, please save boosters by specifying both of the `model_dir` and the `return_cvbooster` arguments of `Optuna.__init__()`, when you resume tuning or you run tuning in parallel.

Return type
`lightgbm.engine.CVBooster`

run()
Perform the hyperparameter-tuning with given parameters.

Return type
`None`

sample_train_set()
Make subset of `self.train_set` Dataset object.

Return type
`None`
MLflow

Callback to track Optuna trials with MLflow.

class optuna.integration.MLflowCallback

```
class optuna.integration.MLflowCallback(tracking_uri=None, metric_name='value',
nest_trials=False, tag_study_user_attrs=False)
```

Callback to track Optuna trials with MLflow.

This callback adds relevant information that is tracked by Optuna to MLflow. The MLflow experiment will be named after the Optuna study name.

Example

Add MLflow callback to Optuna optimization.

```python
import optuna
from optuna.integration.mlflow import MLflowCallback

def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    return (x - 2) ** 2

mlflc = MLflowCallback(
    tracking_uri=YOUR_TRACKING_URI,
    metric_name="my metric score",
)

study = optuna.create_study(study_name="my_study")
study.optimize(objective, n_trials=10, callbacks=[mlflc])
```

Parameters

- **tracking_uri** – The URI of the MLflow tracking server. Please refer to `mlflow.set_tracking_uri` for more details.

- **metric_name** – Name of the metric. Since the metric itself is just a number, `metric_name` can be used to give it a name. So you know later if it was roc-auc or accuracy.

- **nest_trials** – Flag indicating whether or not trials should be logged as nested runs. This is often helpful for aggregating trials to a particular study, under a given experiment.

- **tag_study_user_attrs** – Flag indicating whether or not to add the study’s user attrs to the mlflow trial as tags. Please note that when this flag is set, key value pairs in study.user_attrs will supersede existing tags.

Note: Added in v1.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.
MXNet

`optuna.integration.MXNetPruningCallback`

class `optuna.integration.MXNetPruningCallback**(trial, eval_metric)**

MXNet callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes accuracy.

Parameters

- **trial** – A `Trial` corresponding to the current evaluation of the objective function.
- **eval_metric** – An evaluation metric name for pruning, e.g., cross-entropy and accuracy. If using default metrics like `mxnet.metrics.Accuracy`, use its default metric name. For custom metrics, use the metric name provided to constructor. Please refer to `mxnet.metrics` reference for further details.

pycma

`optuna.integration.PyCmaSampler`

class `optuna.integration.PyCmaSampler**(x0=None, sigma0=None, cma_stds=None, seed=None, cma_opts=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True)**`

A Sampler using cma library as the backend.

Example

Optimize a simple quadratic function by using `PyCmaSampler`.

```python
import optuna

def objective(trial):
    x = trial.suggest_uniform("x", -1, 1)
    y = trial.suggest_int("y", -1, 1)
    return x ** 2 + y

sampler = optuna.integration.PyCmaSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=20)
```
Note that parallel execution of trials may affect the optimization performance of CMA-ES, especially if the number of trials running in parallel exceeds the population size.

Note: `CmaEsSampler` is deprecated and renamed to `PyCmaSampler` in v2.0.0. Please use `PyCmaSampler` instead of `CmaEsSampler`.

Parameters

- **x0** – A dictionary of an initial parameter values for CMA-ES. By default, the mean of `low` and `high` for each distribution is used. Please refer to `cma.CMAEvolutionStrategy` for further details of `x0`.

- **sigma0** – Initial standard deviation of CMA-ES. By default, `sigma0` is set to `min_range / 6`, where `min_range` denotes the minimum range of the distributions in the search space. If distribution is categorical, `min_range` is `len(choices) - 1`. Please refer to `cma.CMAEvolutionStrategy` for further details of `sigma0`.

- **cma_stds** – A dictionary of multipliers of `sigma0` for each parameters. The default value is 1.0. Please refer to `cma.CMAEvolutionStrategy` for further details of `cma_stds`.

- **seed** – A random seed for CMA-ES.

- **cma_opts** – Options passed to the constructor of `cma.CMAEvolutionStrategy` class. Note that `BoundaryHandler`, `bounds`, `CMA_stds` and `seed` arguments in `cma_opts` will be ignored because it is added by `PyCmaSampler` automatically.

- **n_startup_trials** – The independent sampling is used instead of the CMA-ES algorithm until the given number of trials finish in the same study.

- **independent_sampler** – A `BaseSampler` instance that is used for independent sampling. The parameters not contained in the relative search space are sampled by this sampler. The search space for `PyCmaSampler` is determined by `intersection_search_space()`.

If `None` is specified, `RandomSampler` is used as the default.

See also:

- `optuna.samplers` module provides built-in independent samplers such as `RandomSampler` and `TPESampler`.

- **warn_independent_sampling** – If this is `True`, a warning message is emitted when the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled via an independent sampler, so no warning messages are emitted in this case.

Methods

- **after_trial(study, trial, state, values)** – Trial post-processing.

- **infer_relative_search_space(study, trial)** – Infer the search space that will be used by relative sampling in the target trial.

- **reseed_rng()** – Rseed sampler’s random number generator.

- **sample_independent(study, trial, param_name, ...)** – Sample a parameter for a given distribution.

continues on next page
Table 36 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after_trial</td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td>infer_relative_search_space</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
</tbody>
</table>

Parameters

- **study** (`optuna.study.Study`) – Target study object.
- **trial** (`optuna.trial._frozen.FrozenTrial`) – Target trial object. Take a copy before modifying this object.
- **state** (`optuna.trial._state.TrialState`) – Resulting trial state.
- **values** (`Optional[Sequence[float]]`) – Resulting trial values. Guaranteed to not be `None` if trial succeeded.

Return type None

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** (`optuna.study.Study`) – Target study object.
- **trial** (`optuna.trial._frozen.FrozenTrial`) – Target trial object. Take a copy before modifying this object.
- **state** (`optuna.trial._state.TrialState`) – Resulting trial state.
- **values** (`Optional[Sequence[float]]`) – Resulting trial values. Guaranteed to not be `None` if trial succeeded.

Return type None

Parameters

- **study** (`optuna.study.Study`) – Target study object.
- **trial** (`optuna.trial._frozen.FrozenTrial`) – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[<str>, `optuna.distributions.BaseDistribution`]

See also:
Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

reseed_rng
Reseed sampler’s random number generator.

This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None
sample_independent *(study, trial, param_name, param_distribution)*

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **param_name** *(str)* – Name of the sampled parameter.
- **param_distribution** *(optuna.distributions.BaseDistribution)* – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type *float*

sample_relative *(study, trial, search_space)*

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **search_space** *(Dict[str, optuna.distributions.BaseDistribution])* – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type *Dict[str, float]*
optuna.integration.CmaEsSampler

class optuna.integration.CmaEsSampler(x0=None, sigma0=None, cma_stds=None,
 seed=None, cma_opts=None,
 n_startup_trials=1, independent_sampler=None,
 warn_independent_sampling=True)

Wrapper class of PyCmaSampler for backward compatibility.

Warning: Deprecated in v2.0.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

This class is renamed to PyCmaSampler.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after_trial(study, trial, state, values)</td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td>infer_relative_search_space(study, trial)</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td>reseed_rng()</td>
<td>Rseed sampler’s random number generator.</td>
</tr>
<tr>
<td>sample_independent(study, trial, param_name,...)</td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td>sample_relative(study, trial, search_space)</td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

after_trial *(study, trial, state, values)*

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **state** *(optuna.trial._state.TrialState)* – Resulting trial state.
- **values** *(Optional[Sequence[float]])* – Resulting trial values. Guaranteed to not be `None` if trial succeeded.

Return type `None`

infer_relative_search_space *(study, trial)*

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.
Parameters

• **study** *(optuna.study.Study)* – Target study object.

• **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to *intersection_search_space()* as an implementation of *infer_relative_search_space()*.

reseedrng()

Reseed sampler’s random number generator.

This method is called by the *Study* instance if trials are executed in parallel with the option *n_jobs>1*. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

sample_independent(study, trial, param_name, param_distribution)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by *sample_relative()* method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

• **study** *(optuna.study.Study)* – Target study object.

• **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

• **param_name** *(str)* – Name of the sampled parameter.

• **param_distribution** *(optuna.distributions.BaseDistribution)* – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type float

sample_relative(study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.
Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** (*optuna.study.Study*) – Target study object.
- **trial** (*optuna.trial._frozen.FrozenTrial*) – Target trial object. Take a copy before modifying this object.
- **search_space** (*Dict[str, optuna.distributions.BaseDistribution]*) – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, float]

PyTorch

<table>
<thead>
<tr>
<th>optuna.integration.</th>
<th>PyTorch Ignite handler to prune unpromising trials.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorchIgnitePruningHandler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>optuna.integration.</th>
<th>PyTorch Lightning callback to prune unpromising trials.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorchLightningPruningCallback</td>
<td></td>
</tr>
</tbody>
</table>

optuna.integration.PyTorchIgnitePruningHandler

class optuna.integration.PyTorchIgnitePruningHandler *(trial, metric, trainer)*

PyTorch Ignite handler to prune unpromising trials.

See the example if you want to add a pruning handler which observes validation accuracy.

Parameters

- **trial** – A *Trial* corresponding to the current evaluation of the objective function.
- **metric** – A name of metric for pruning, e.g., accuracy and loss.

optuna.integration.PyTorchLightningPruningCallback

class optuna.integration.PyTorchLightningPruningCallback *(trial, monitor)*

PyTorch Lightning callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes accuracy.

Parameters

- **trial** – A *Trial* corresponding to the current evaluation of the objective function.
- **monitor** – An evaluation metric for pruning, e.g., val_loss or val_acc. The metrics are obtained from the returned dictionaries from e.g. *pytorch_lightning.LightningModule.training_step* or *pytorch_lightning.*
LightningModule.validation_epoch_end and the names thus depend on how this dictionary is formatted.

Methods

```
on_validation_end(trainer, pl_module)
```

scikit-learn

`optuna.integration.OptunaSearchCV` Hyperparameter search with cross-validation.

`optuna.integration.OptunaSearchCV`

```
class optuna.integration.OptunaSearchCV(estimator, param_distributions, cv=5, enable_pruning=False, error_score=nan, max_iter=1000, n_jobs=1, n_trials=10, random_state=None, refit=True, return_train_score=False, scoring=None, study=None, subsample=1.0, timeout=None, verbose=0)
```

Hyperparameter search with cross-validation.

Parameters

- **estimator** – Object to use to fit the data. This is assumed to implement the scikit-learn estimator interface. Either this needs to provide `score`, or `scoring` must be passed.

- **param_distributions** – Dictionary where keys are parameters and values are distributions. Distributions are assumed to implement the optuna distribution interface.

- **cv** – Cross-validation strategy. Possible inputs for cv are:
 - integer to specify the number of folds in a CV splitter,
 - a CV splitter,
 - an iterable yielding (train, validation) splits as arrays of indices.

 For integer, if `estimator` is a classifier and `y` is either binary or multiclass, `sklearn.model_selection.StratifiedKFold` is used. otherwise, `sklearn.model_selection.KFold` is used.

- **enable_pruning** – If `True`, pruning is performed in the case where the underlying estimator supports `partial_fit`.

- **error_score** – Value to assign to the score if an error occurs in fitting. If 'raise', the error is raised. If numeric, `sklearn.exceptions.FitFailedWarning` is raised. This does not affect the refit step, which will always raise the error.

- **max_iter** – Maximum number of epochs. This is only used if the underlying estimator supports `partial_fit`.

- **n_jobs** – Number of parallel jobs. `-1` means using all processors.

- **n_trials** – Number of trials. If `None`, there is no limitation on the number of trials. If `timeout` is also set to `None`, the study continues to create trials until it receives a
termination signal such as Ctrl+C or SIGTERM. This trades off runtime vs quality of the solution.

- **random_state** – Seed of the pseudo random number generator. If int, this is the seed used by the random number generator. If `numpy.random.RandomState` object, this is the random number generator. If `None`, the global random state from `numpy.random` is used.

- **refit** – If `True`, refit the estimator with the best found hyperparameters. The refitted estimator is made available at the `best_estimator_` attribute and permits using `predict` directly.

- **return_train_score** – If `True`, training scores will be included. Computing training scores is used to get insights on how different hyperparameter settings impact the overfitting/underfitting trade-off. However computing training scores can be computationally expensive and is not strictly required to select the hyperparameters that yield the best generalization performance.

- **scoring** – String or callable to evaluate the predictions on the validation data. If `None`, score on the estimator is used.

- **study** – Study corresponds to the optimization task. If `None`, a new study is created.

- **subsample** – Proportion of samples that are used during hyperparameter search.
 - If int, then draw `subsample` samples.
 - If float, then draw `subsample * X.shape[0]` samples.

- **timeout** – Time limit in seconds for the search of appropriate models. If `None`, the study is executed without time limitation. If `n_trials` is also set to `None`, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM. This trades off runtime vs quality of the solution.

- **verbose** – Verbosity level. The higher, the more messages.

best_estimator_

Estimator that was chosen by the search. This is present only if `refit` is set to `True`.

n_splits_

Number of cross-validation splits.

refit_time_

Time for refitting the best estimator. This is present only if `refit` is set to `True`.

sample_indices_

Indices of samples that are used during hyperparameter search.

scorer_

Scorer function.

study_

Actual study.
import optuna
from sklearn.datasets import load_iris
from sklearn.svm import SVC

clf = SVC(gamma="auto")
param_distributions = {
 "C": optuna.distributions.LogUniformDistribution(1e-10, 1e10)
}

optuna_search = optuna.integration.OptunaSearchCV(clf, param_distributions)
X, y = load_iris(return_X_y=True)
optuna_search.fit(X, y)
y_pred = optuna_search.predict(X)

Note: Added in v0.17.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v0.17.0.

Methods

- **fit**(X[, y, groups]) Run fit with all sets of parameters.
- **get_params**(deep) Get parameters for this estimator.
- **score**(X[, y]) Return the score on the given data.
- **set_params**(**params) Set the parameters of this estimator.

Attributes

- **best_index_** Index which corresponds to the best candidate parameter setting.
- **best_params_** Parameters of the best trial in the Study.
- **best_score_** Mean cross-validated score of the best estimator.
- **best_trial_** Best trial in the Study.
- **classes_** Class labels.
- **decision_function** Call decision_function on the best estimator.
- **inverse_transform** Call inverse_transform on the best estimator.
- **n_trials_** Actual number of trials.
- **predict** Call predict on the best estimator.
- **predict_log_proba** Call predict_log_proba on the best estimator.
- **predict_proba** Call predict_proba on the best estimator.
- **score_samples** Call score_samples on the best estimator.
- **set_user_attr** Call set_user_attr on the Study.
- **transform** Call transform on the best estimator.
- **trials_** All trials in the Study.
- **trials_dataframe** Call trials_dataframe on the Study.
- **user_attrs_** User attributes in the Study.

property **best_index_** Index which corresponds to the best candidate parameter setting.

property **best_params_**
Parameters of the best trial in the `Study`.

property best_score_
Mean cross-validated score of the best estimator.

property best_trial_
Best trial in the `Study`.

property classes_
Class labels.

property decision_function
Call `decision_function` on the best estimator.

This is available only if the underlying estimator supports `decision_function` and `refit` is set to `True`.

fit *(X, y=None, groups=None, **fit_params)*
Run fit with all sets of parameters.

Parameters

- **groups** *(Optional[Union[List[float], numpy.ndarray, pandas.core.series.Series]) – Group labels for the samples used while splitting the dataset into train/validation set.*
- ****fit_params – Parameters passed to `fit` on the estimator.
- **fit_params (Any) –**

Returns Return self.

Return type self

get_params(deep=True)
Get parameters for this estimator.

Parameters deep *(bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.*

Returns params – Parameter names mapped to their values.

Return type dict

property inverse_transform
Call `inverse_transform` on the best estimator.

This is available only if the underlying estimator supports `inverse_transform` and `refit` is set to `True`.

property n_trials_
Actual number of trials.

property predict
Call `predict` on the best estimator.

This is available only if the underlying estimator supports `predict` and `refit` is set to `True`.

property predict_log_proba
Call predict_log_proba on the best estimator.

This is available only if the underlying estimator supports predict_log_proba and refit is set to True.

property predict_proba
Call predict_proba on the best estimator.

This is available only if the underlying estimator supports predict_proba and refit is set to True.

score (X, y=None)
Return the score on the given data.

Parameters
• X (Union[List[List[float]], numpy.ndarray, pandas.core.frame.DataFrame, scipy.sparse.base.csr_matrix]) – Data.
• y (Optional[Union[List[float], numpy.ndarray, pandas.core.series.Series, List[List[float]], pandas.core.frame.DataFrame, scipy.sparse.base.csr_matrix]]) – Target variable.

Returns Scaler score.

Return type score

property score_samples
Call score_samples on the best estimator.

This is available only if the underlying estimator supports score_samples and refit is set to True.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

property set_user_attr
Call set_user_attr on the Study.

property transform
Call transform on the best estimator.

This is available only if the underlying estimator supports transform and refit is set to True.

property trials_
All trials in the Study.

property trials_dataframe
Call trials_dataframe on the Study.

property user_attrs_
User attributes in the Study.
Scikit-Optimize is a library for optimizing machine learning hyperparameters. It is designed to be a convenient, flexible, and efficient tool for tuning hyperparameters of various machine learning models.

Optuna is a powerful and flexible framework for hyperparameter optimization. It offers a simple API and supports various optimization algorithms, including genetic algorithms, random search, and Bayesian optimization.

The `Optuna` documentation provides a detailed guide to its functionalities, including ways to integrate it with other Python libraries such as Scikit-Optimize.

Example

Optimize a simple quadratic function by using `SkoptSampler`.

```python
import optuna
def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    y = trial.suggest_int("y", 0, 10)
    return x ** 2 + y

sampler = optuna.integration.SkoptSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
```

Parameters

- **independent_sampler** – A `BaseSampler` instance that is used for independent sampling. The parameters not contained in the relative search space are sampled by this sampler. The search space for `SkoptSampler` is determined by `intersection_search_space()`.

 If `None` is specified, `RandomSampler` is used as the default.

- **warn_independent_sampling** – If this is `True`, a warning message is emitted when the value of a parameter is sampled by using an independent sampler.

 Note that the parameters of the first trial in a study are always sampled via an independent sampler, so no warning messages are emitted in this case.

- **skopt_kwargs** – Keyword arguments passed to the constructor of `skopt.Optimizer` class.

 Note that the `dimensions` argument in `skopt_kwargs` will be ignored because it is added by `SkoptSampler` automatically.

- **n_startup_trials** – The independent sampling is used until the given number of trials finish in the same study.
• **consider_pruned_trials** – If this is True, the PRUNED trials are considered for sampling.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Note: As the number of trials \(n\) increases, each sampling takes longer and longer on a scale of \(O(n^3)\). And, if this is True, the number of trials will increase. So, it is suggested to set this flag False when each evaluation of the objective function is relatively faster than each sampling. On the other hand, it is suggested to set this flag True when each evaluation of the objective function is relatively slower than each sampling.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>after_trial(study, trial, state, values)</code></td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td><code>infer_relative_search_space(study, trial)</code></td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td><code>reseed_rng()</code></td>
<td>Rseed sampler’s random number generator.</td>
</tr>
<tr>
<td><code>sample_independent(study, trial, param_name, ...)</code></td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td><code>sample_relative(study, trial, search_space)</code></td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

after_trial(study, trial, state, values)

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** ([optuna.study.Study]) – Target study object.
- **trial** ([optuna.trial._frozen.FrozenTrial]) – Target trial object. Take a copy before modifying this object.
- **state** ([optuna.trial._state.TrialState]) – Resulting trial state.
- **values** (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be None if trial succeeded.

Return type None

infer_relative_search_space(study, trial)

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.
Parameters

- **trial** ([optuna.trial._frozen.FrozenTrial](https://optuna.org/en/latest/api-reference.html#optuna.trial._frozen.FrozenTrial)) – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

sample_independent(*study*, *trial*, *param_name*, *param_distribution*)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **trial** ([optuna.trial._frozen.FrozenTrial](https://optuna.org/en/latest/api-reference.html#optuna.trial._frozen.FrozenTrial)) – Target trial object. Take a copy before modifying this object.
- **param_name** (str) – Name of the sampled parameter.

Returns A parameter value.

Return type Any

sample_relative(*study*, *trial*, *search_space*)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.
Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **search_space** (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by infer_relative_search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

skorch

optuna.integration.SkorchPruningCallback

class optuna.integration.SkorchPruningCallback(trial, monitor)

Skorch callback to prune unpromising trials.

New in version 2.1.0.

Parameters

- **trial** – A Trial corresponding to the current evaluation of the objective function.
- **monitor** – An evaluation metric for pruning, e.g. val_loss or val_acc. The metrics are obtained from the returned dictionaries, i.e., net.histroy. The names thus depend on how this dictionary is formatted.

Methods

- **on_epoch_end** (net, **kwargs)
TensorFlow

<table>
<thead>
<tr>
<th>optuna.integration.TensorBoardCallback</th>
<th>Callback to track Optuna trials with TensorBoard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>optuna.integration.TFKerasPruningCallback</td>
<td>tf.keras callback to prune unpromising trials.</td>
</tr>
</tbody>
</table>

optuna.integration.TensorBoardCallback

```python
class optuna.integration.TensorBoardCallback(dirname, metric_name)

Callback to track Optuna trials with TensorBoard.

This callback adds relevant information that is tracked by Optuna to TensorBoard.

See the example.

**Parameters**

- **dirname** – Directory to store TensorBoard logs.
- **metric_name** – Name of the metric. Since the metric itself is just a number, `metric_name` can be used to give it a name. So you know later if it was roc-auc or accuracy.

**Note:** Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.
```

optuna.integration.TensorFlowPruningHook

```python
class optuna.integration.TensorFlowPruningHook(trial, estimator, metric, run_every_steps)

TensorFlow SessionRunHook to prune unpromising trials.

See the example if you want to add a pruning hook to TensorFlow’s estimator.

**Parameters**

- **trial** – A Trial corresponding to the current evaluation of the objective function.
- **estimator** – An estimator which you will use.
- **metric** – An evaluation metric for pruning, e.g., accuracy and loss.
- **run_every_steps** – An interval to watch the summary file.
```
Methods

```python
after_run(run_context, run_values)
before_run(run_context)
begin()
```

```python
class optuna.integration.TFKerasPruningCallback(trial, monitor)
tf.keras callback to prune unpromising trials.
This callback is intend to be compatible for TensorFlow v1 and v2, but only tested with TensorFlow v1.
See the example if you want to add a pruning callback which observes the validation accuracy.

Parameters

- **trial** – A Trial corresponding to the current evaluation of the objective function.
- **monitor** – An evaluation metric for pruning, e.g., `val_loss` or `val_acc`.

Methods

```python
on_epoch_end(epoch[, logs])
```

XGBoost

```python
class optuna.integration.XGBoostPruningCallback(trial, observation_key)
Callback for XGBoost to prune unpromising trials.
See the example if you want to add a pruning callback which observes validation AUC of a XGBoost model.

Parameters

- **trial** – A Trial corresponding to the current evaluation of the objective function.
- **observation_key** – An evaluation metric for pruning, e.g., `validation-error` and `validation-merror`. When using the Scikit-Learn API, the index number of `eval_set` must be included in the `observation_key`, e.g., `validation_0-error` and `validation_0-merror`. Please refer to `eval_metric` in XGBoost reference for further details.
6.3.7 optuna.logging

The `logging` module implements logging using the Python `logging` package. Library users may be especially interested in setting verbosity levels using `set_verbosity()` to one of `optuna.logging.CRITICAL` (aka `optuna.logging.FATAL`), `optuna.logging.ERROR`, `optuna.logging.WARNING` (aka `optuna.logging.WARN`), `optuna.logging.INFO`, or `optuna.logging.DEBUG`.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.logging.get_verbosity()</code></td>
<td>Return the current level for the Optuna’s root logger.</td>
</tr>
<tr>
<td><code>optuna.logging.set_verbosity()</code></td>
<td>Set the level for the Optuna’s root logger.</td>
</tr>
<tr>
<td><code>optuna.logging.disable_default_handler()</code></td>
<td>Disable the default handler of the Optuna’s root logger.</td>
</tr>
<tr>
<td><code>optuna.logging.enable_default_handler()</code></td>
<td>Enable the default handler of the Optuna’s root logger.</td>
</tr>
<tr>
<td><code>optuna.logging.disable_propagation()</code></td>
<td>Disable propagation of the library log outputs.</td>
</tr>
<tr>
<td><code>optuna.logging.enable_propagation()</code></td>
<td>Enable propagation of the library log outputs.</td>
</tr>
</tbody>
</table>

optuna.logging.get_verbosity

```python
optuna.logging.get_verbosity()
```

Return the current level for the Optuna’s root logger.

Returns

Logging level, e.g., `optuna.logging.DEBUG` and `optuna.logging.INFO`.

Return type

`int`

Note:

Optuna has following logging levels:

- `optuna.logging.CRITICAL`, `optuna.logging.FATAL`
- `optuna.logging.ERROR`
- `optuna.logging.WARNING`, `optuna.logging.WARN`
- `optuna.logging.INFO`
- `optuna.logging.DEBUG`

optuna.logging.set_verbosity

```python
optuna.logging.set_verbosity(verbosity)
```

Set the level for the Optuna’s root logger.

Parameters

`verbosity (int) – Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.`

Return type

`None`

Note:

Optuna has following logging levels:

- `optuna.logging.CRITICAL`, `optuna.logging.FATAL`
- `optuna.logging.ERROR`
- `optuna.logging.WARNING`, `optuna.logging.WARN`
- `optuna.logging.INFO`
- `optuna.logging.DEBUG`
optuna.logging.disable_default_handler

Disables the default handler of the Optuna’s root logger.

Example

Stop and then resume logging to `sys.stderr`.

```python
import optuna

study = optuna.create_study()

# There are no logs in sys.stderr.
optuna.logging.disable_default_handler()
study.optimize(objective, n_trials=10)

# There are logs in sys.stderr.
optuna.logging.enable_default_handler()
study.optimize(objective, n_trials=10)

# [I 2020-02-23 17:00:54,314] Trial 10 finished with value: ...
# [I 2020-02-23 17:00:54,356] Trial 11 finished with value: ...
```

Return type None

optuna.logging.enable_default_handler

Enables the default handler of the Optuna’s root logger.

Please refer to the example shown in `disable_default_handler()`.

Return type None

optuna.logging.disable_propagation

Disables propagation of the library log outputs.

Note that log propagation is disabled by default.

Return type None

optuna.logging.enable_propagation

Enables propagation of the library log outputs.

Please disable the Optuna’s default handler to prevent double logging if the root logger has been configured.
Example

Propagate all log output to the root logger in order to save them to the file.

```python
import optuna
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)  # Setup the root logger.
logger.addHandler(logging.FileHandler("foo.log", mode="w"))

optuna.logging.enable_propagation()  # Propagate logs to the root logger.
optuna.logging.disable_default_handler()  # Stop showing logs in sys.stderr.

study = optuna.create_study()

logger.info("Start optimization.")
study.optimize(objective, n_trials=10)

with open("foo.log") as f:
    assert f.readline().startswith("A new study created")
    assert f.readline() == "Start optimization.\n"
```

Return type None

6.3.8 optuna.multi_objective

This module is deprecated, with former functionality moved to `optuna.samplers`, `optuna.study`, `optuna.trial` and `optuna.visualization`.

optuna.multi_objective.samplers

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.multi_objective.samplers.BaseMultiObjectiveSampler</code></td>
<td>Base class for multi-objective samplers.</td>
</tr>
<tr>
<td><code>optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler</code></td>
<td>Multi-objective sampler using the NSGA-II algorithm.</td>
</tr>
<tr>
<td><code>optuna.multi_objective.samplers.RandomMultiObjectiveSampler</code></td>
<td>Multi-objective sampler using random sampling.</td>
</tr>
<tr>
<td><code>optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler</code></td>
<td>Multi-objective sampler using the MOTPE algorithm.</td>
</tr>
</tbody>
</table>
optuna.multi_objective.samplers.BaseMultiObjectiveSampler

class optuna.multi_objective.samplers.BaseMultiObjectiveSampler(*args, **kwargs)

Base class for multi-objective samplers. The abstract methods of this class are the same as ones defined by BaseSampler except for taking multi-objective versions of study and trial instances as the arguments.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>infer_relative_search_space(study, trial)</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td>reseed_rng()</td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td>sample_independent(study, trial, ... param_name,...)</td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td>sample_relative(study, trial, search_space)</td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

abstract infer_relative_search_space(study, trial)

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this method is passed to it. The parameters not contained in the search space will be sampled by using sample_independent() method.

Parameters

- **study** (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
- **trial** (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also: Please refer to intersection_search_space() as an implementation of infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the MultiObjectiveStudy instance if trials are executed in parallel with the option n_jobs>1. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None
abstract sample_independent (study, trial, param_name, param_distribution)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by sample_relative() method. This method is suitable for sampling algorithms that do not use the relationship between parameters such as random sampling.

Parameters

- study (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
- trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.
- param_name (str) – Name of the sampled parameter.
- param_distribution (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

abstract sample_relative (study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use the relationship between parameters.

Parameters

- study (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
- trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.
- search_space (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by infer_relative_search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler

class optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler (population_size=50, mutation_prob=None, crossover_prob=0.9, swap_prob=0.5, seed=None)

Multi-objective sampler using the NSGA-II algorithm.

NSGA-II stands for “Nondominated Sorting Genetic Algorithm II”, which is a well known, fast and elitist multi-objective genetic algorithm.

For further information about NSGA-II, please refer to the following paper:

- A fast and elitist multiobjective genetic algorithm: NSGA-II
Parameters

- **population_size** – Number of individuals (trials) in a generation.
- **mutation_prob** – Probability of mutating each parameter when creating a new individual. If `None` is specified, the value `1.0 / len(parent_trial.params)` is used where `parent_trial` is the parent trial of the target individual.
- **crossover_prob** – Probability that a crossover (parameters swapping between parents) will occur when creating a new individual.
- **swapping_prob** – Probability of swapping each parameter of the parents during crossover.
- **seed** – Seed for random number generator.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

reseed_rng()
Reseed sampler’s random number generator.

sample_independent(study, trial, param_name, ...)
Sample a parameter for a given distribution.

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is passed to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.

Parameters

- **study** (`optuna.multi_objective.study.MultiObjectiveStudy`) – Target study object.
- **trial** (`optuna.multi_objective.trial.FrozenMultiObjectiveTrial`) – Target trial object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:
Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

reseed_rng()
Reseed sampler’s random number generator.

This method is called by the `MultiObjectiveStudy` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random
number generator, and they may suggest the same values. To prevent this issue, this method assigns a
different seed to each random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.
This method is called only for the parameters not contained in the search space returned by
sample_relative() method. This method is suitable for sampling algorithms that do not use the
relationship between parameters such as random sampling.

Parameters

- **study** (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
- **trial** (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.
- **param_name** (str) – Name of the sampled parameter.
- **param_distribution** (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

sample_relative (study, trial, search_space)
Sample parameters in a given search space.
This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use the relationship between parameters.

Parameters

- **study** (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
- **trial** (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.
- **search_space** (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by
 infer_relative_search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.multi_objective.samplers.RandomMultiObjectiveSampler

class optuna.multi_objective.samplers.RandomMultiObjectiveSampler (seed=None)
Multi-objective sampler using random sampling.
This sampler is based on independent sampling. See also BaseMultiObjectiveSampler for more details
of `independent sampling`.
Example

```python
import optuna
from optuna.multi_objective.samplers import RandomMultiObjectiveSampler

def objective(trial):
    x = trial.suggest_uniform("x", -5, 5)
    y = trial.suggest_uniform("y", -5, 5)
    return x ** 2, y + 10

study = optuna.multi_objective.create_study(
    ["minimize", "minimize"], sampler=RandomMultiObjectiveSampler()
)
study.optimize(objective, n_trials=10)
```

Args: seed: Seed for random number generator.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>infer_relative_search_space</code></td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td><code>reseed_rng()</code></td>
<td>Rseed sampler’s random number generator.</td>
</tr>
<tr>
<td><code>sample_independent</code></td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td><code>sample_relative</code></td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

`infer_relative_search_space` (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is passed to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.

Parameters

- **study** (`optuna.multi_objective.study.MultiObjectiveStudy`) – Target study object.
- **trial** (`optuna.multi_objective.trial.FrozenMultiObjectiveTrial`) – Target trial object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type `Dict[str, optuna.distributions.BaseDistribution]`

See also:
Please refer to `intersection_search_space()` as an implementation of
infer_relative_search_space()

reseed_rng()
Reseed sampler’s random number generator.
This method is called by the MultiObjectiveStudy instance if trials are executed in parallel with the option n_jobs>1. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.
This method is called only for the parameters not contained in the search space returned by sample_relative() method. This method is suitable for sampling algorithms that do not use the relationship between parameters such as random sampling.

Parameters

• study (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
• trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.
• param_name (str) – Name of the sampled parameter.
• param_distribution (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any

sample_relative (study, trial, search_space)
Sample parameters in a given search space.
This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use the relationship between parameters.

Parameters

• study (optuna.multi_objective.study.MultiObjectiveStudy) – Target study object.
• trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial) – Target trial object.
• search_space (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by infer_relative_search_space().

Returns A dictionary containing the parameter names and the values.
Return type Dict[str, Any]
Multi-objective sampler using the MOTPE algorithm.

This sampler is a multiobjective version of TPESampler.

For further information about MOTPE algorithm, please refer to the following paper:

- Multiobjective tree-structured parzen estimator for computationally expensive optimization problems

Parameters

- **consider_prior** – Enhance the stability of Parzen estimator by imposing a Gaussian prior when True. The prior is only effective if the sampling distribution is either UniformDistribution, DiscreteUniformDistribution, LogUniformDistribution, IntUniformDistribution, or IntLogUniformDistribution.

- **prior_weight** – The weight of the prior. This argument is used in UniformDistribution, DiscreteUniformDistribution, LogUniformDistribution, IntUniformDistribution, IntLogUniformDistribution, and CategoricalDistribution.

- **consider_magic_clip** – Enable a heuristic to limit the smallest variances of Gaussians used in the Parzen estimator.

- **consider_endpoints** – Take endpoints of domains into account when calculating variances of Gaussians in Parzen estimator. See the original paper for details on the heuristics to calculate the variances.

- **n_startup_trials** – The random sampling is used instead of the MOTPE algorithm until the given number of trials finish in the same study. 11 * number of variables - 1 is recommended in the original paper.

- **n_ehvi_candidates** – Number of candidate samples used to calculate the expected hypervolume improvement.

- **gamma** – A function that takes the number of finished trials and returns the number of trials to form a density function for samples with low grains. See the original paper for more details.

- **weights_above** – A function that takes the number of finished trials and returns a weight for them. As default, weights are automatically calculated by the MOTPE’s default strategy.

- **seed** – Seed for random number generator.
Note: Initialization with Latin hypercube sampling may improve optimization performance. However, the current implementation only supports initialization with random sampling.

Example

```python
import optuna

seed = 128
num_variables = 9
n_startup_trials = 11 * num_variables - 1

def objective(trial):
    x = []
    for i in range(1, num_variables + 1):
        x.append(trial.suggest_float(f"x{i}" , 0.0, 2.0 * i))
    return x

sampler = optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler(
    n_startup_trials=n_startup_trials, n_ehvi_candidates=24, seed=seed)

study = optuna.multi_objective.create_study(
    ['minimize'] * num_variables, sampler=sampler)

study.optimize(objective, n_trials=250)
```

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>after_trial(study, trial, state, values)</code></td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td><code>hyperopt_parameters()</code></td>
<td>Return the the default parameters of hyperopt (v0.1.2).</td>
</tr>
<tr>
<td><code>infer_relative_search_space(study, trial)</code></td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td><code>reseed_rng()</code></td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td><code>sample_independent(study, trial, param_name, ...)</code></td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td><code>sample_relative(study, trial, search_space)</code></td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

`after_trial (study, trial, state, values)`

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.
Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- `study` (optuna.study.Study) – Target study object.
- `trial` (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- `state` (optuna.trial._state.TrialState) – Resulting trial state.
- `values` (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be None if trial succeeded.

Return type: None

```
static hyperopt_parameters()
```

Return the the default parameters of hyperopt (v0.1.2). `TPESampler` can be instantiated with the parameters returned by this method.

Example

Create a `TPESampler` instance with the default parameters of hyperopt.

```
import optuna
from optuna.samplers import TPESampler

def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    return x ** 2

sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
```

Returns: A dictionary containing the default parameters of hyperopt.

Return type: Dict[str, Any]

```
infer_relative_search_space(study, trial)
```

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.

Parameters

- `study` (Union[optuna.study.Study, optuna.multi_objective.study.MultiObjectiveStudy]) – Target study object.
• `trial` (Union[optuna.trial._frozen.FrozenTrial, optuna.multi_objective.trial.FrozenMultiObjectiveTrial]) – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:
Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

`reseed_rng()`
Reseed sampler’s random number generator.
This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

`sample_independent` (`study`, `trial`, `param_name`, `param_distribution`)
Sample a parameter for a given distribution.
This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- `study` (Union[optuna.study.Study, optuna.multi_objective.study.MultiObjectiveStudy]) – Target study object.
- `trial` (Union[optuna.trial._frozen.FrozenTrial, optuna.multi_objective.trial.FrozenMultiObjectiveTrial]) – Target trial object. Take a copy before modifying this object.
- `param_name` (str) – Name of the sampled parameter.
- `param_distribution` (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

`sample_relative` (`study`, `trial`, `search_space`)
Sample parameters in a given search space.
This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.
Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** *(Union[optuna.study.Study, optuna.multi_objective.study.MultiObjectiveStudy])* – Target study object.
- **trial** *(Union[optuna.trial._frozen.FrozenTrial, optuna.multi_objective.trial.FrozenMultiObjectiveTrial])* – Target trial object. Take a copy before modifying this object.
- **search_space** *(Dict[str, optuna.distributions.BaseDistribution]*) – The search space returned by *infer_relative_search_space()*.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

```python
from optuna.multi_objective.study import MultiObjectiveStudy

MultiObjectiveStudy

MultiObjectiveStudy(study)  
A study corresponds to a multi-objective optimization task, i.e., a set of trials.

create_study

create_study(study)  
Create a new MultiObjectiveStudy.

load_study

load_study(study)  
Load the existing MultiObjectiveStudy that has the specified name.
```

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
Methods

enqueue_trial *(params)*
Enqueue a trial with given parameter values.

get_pareto_front_trials ()
Return trials located at the pareto front in the study.

get_trials *(deepcopy, states)*
Return all trials in the study.

optimize *(objective, timeout, n_trials, ...)*
Optimize an objective function.

set_system_attr *(key, value)*
Set a system attribute to the study.

set_user_attr *(key, value)*
Set a user attribute to the study.

Attributes

directions
Return the optimization direction list.

n_objectives
Return the number of objectives.

sampler
Return the sampler.

system_attrs
Return system attributes.

trials
Return all trials in the study.

user_attrs
Return user attributes.

property directions

Return the optimization direction list.

Returns
A list that contains the optimization direction for each objective value.

enqueue_trial *(params)*

Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your objective function.

Please refer to the documentation of `optuna.study.Study.enqueue_trial()` for further details.

Parameters
params *(Dict[str, Any])* – Parameter values to pass your objective function.

Return type None

get_pareto_front_trials ()

Return trials located at the pareto front in the study.

A trial is located at the pareto front if there are no trials that dominate the trial. It’s called that a trial \(t_0 \) dominates another trial \(t_1 \) if all \(v_0 \leq v_1 \) for \(v_0, v_1 \) in \(\text{zip}(t_0\text{.values}, t_1\text{.values}) \) and any \(v_0 < v_1 \) for \(v_0, v_1 \) in \(\text{zip}(t_0\text{.values}, t_1\text{.values}) \) are held.

Returns
A list of `FrozenMultiObjectiveTrial` objects.

Return type List[`optuna.multi_objective_trial.FrozenMultiObjectiveTrial`]

get_trials *(deepcopy=True, states=None)*

Return all trials in the study.

The returned trials are ordered by trial number.

Parameters

- **deepcopy** *(bool)* – Flag to control whether to apply `copy.deepcopy()` to the trials.

 Note that if you set the flag to False, you shouldn’t mutate any fields of the returned trial. Otherwise the internal state of the study may corrupt and unexpected behavior may happen.
• **states** *(Optional[Tuple[optuna.trial._state.TrialState, ..]])*—
 Trial states to filter on. If `None`, include all states.

Returns A list of `FrozenMultiObjectiveTrial` objects.

Return type *List[optuna.multi_objective.trial.FrozenMultiObjectiveTrial]*

property n_objectives
Return the number of objectives.

Returns Number of objectives.

optimize *(objective, timeout=None, n_trials=None, n_jobs=1, catch=(), callbacks=None, gc_after_trial=True, show_progress_bar=False)*
Optimize an objective function.

This method is the same as `optuna.study.Study.optimize()` except for taking an objective function that returns multi-objective values as the argument.

Please refer to the documentation of `optuna.study.Study.optimize()` for further details.

Example

```python
import optuna

def objective(trial):
    # Binh and Korn Function.
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1

study = optuna.multi_objective.create_study(["minimize", "minimize"])  
study.optimize(objective, n_trials=3)
```

Parameters

- **objective** *(Callable[[optuna.multi_objective.trial.MultiObjectiveTrial], Sequence[float]])*—

- **timeout** *(Optional[int])*—

- **n_trials** *(Optional[int])*—

- **n_jobs** *(int)*—

- **catch** *(Tuple[Type[Exception], ..])*—

- **callbacks** *(Optional[List[Callable[[optuna.multi_objective.study.MultiObjectiveStudy, optuna.multi_objective.trial.FrozenMultiObjectiveTrial], None]]])*—

- **gc_after_trial** *(bool)*—

- **show_progress_bar** *(bool)*—

Return type *None*
property sampler
Return the sampler.

Returns A BaseMultiObjectiveSampler object.

set_system_attr(key, value)
Set a system attribute to the study.
Note that Optuna internally uses this method to save system messages. Please use set_user_attr() to set users’ attributes.

Parameters
• key (str) – A key string of the attribute.
• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type None

set_user_attr(key, value)
Set a user attribute to the study.

Parameters
• key (str) – A key string of the attribute.
• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type None

property system_attrs
Return system attributes.

Returns A dictionary containing all system attributes.

property trials
Return all trials in the study.

The returned trials are ordered by trial number.

This is a short form of self.get_trials(deepcopy=True, states=None).

Returns A list of FrozenMultiObjectiveTrial objects.

property user_attrs
Return user attributes.

Returns A dictionary containing all user attributes.

optuna.multi_objective.study.create_study

optuna.multi_objective.study.create_study(directions, study_name=None, storage=None, sampler=None, load_if_exists=False)

Create a new MultiObjectiveStudy.
Example

```python
import optuna

def objective(trial):
    # Binh and Korn function.
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)
    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1

study = optuna.multi_objective.create_study(["minimize", "minimize"])
study.optimize(objective, n_trials=3)
```

Parameters

- **directions** *(List[str]*) – Optimization direction for each objective value. Set minimize for minimization and maximize for maximization.

- **study_name** *(Optional[str]*) – Study’s name. If this argument is set to None, a unique name is generated automatically.

- **storage** *(Optional[Union[str, optuna.storages._base.BaseStorage]*) – Database URL. If this argument is set to None, in-memory storage is used, and the Study will not be persistent.

Note:

When a database URL is passed, Optuna internally uses SQLAlchemy to handle the database. Please refer to SQLAlchemy’s document for further details. If you want to specify non-default options to SQLAlchemy Engine, you can instantiate `RDBStorage` with your desired options and pass it to the `storage` argument instead of a URL.

- **sampler** *(Optional[optuna.multi_objective.samplers._base.BaseMultiObjectiveSampler]*) – A sampler object that implements background algorithm for value suggestion. If None is specified, NSGAIIMultiObjectiveSampler is used as the default. See also `samplers`.

- **load_if_exists** *(bool*) – Flag to control the behavior to handle a conflict of study names. In the case where a study named `study_name` already exists in the storage, a `DuplicatedStudyError` is raised if `load_if_exists` is set to `False`. Otherwise, the creation of the study is skipped, and the existing one is returned.

Returns A `MultiObjectiveStudy` object.

Return type `optuna.multi_objective.study.MultiObjectiveStudy`

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
optuna.multi_objective.study.load_study

optuna.multi_objective.study.load_study *(study_name, storage, sampler=None)*

Load the existing *MultiObjectiveStudy* that has the specified name.

Example

```python
import optuna

def objective(trial):
    # Binh and Korn function.
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)
    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1

study = optuna.multi_objective.create_study(
    directions=["minimize", "minimize"],
    study_name="my_study",
    storage="sqlite:///example.db",
)
study.optimize(objective, n_trials=3)

loaded_study = optuna.multi_objective.study.load_study(
    study_name="my_study", storage="sqlite:///example.db"
)
assert len(loaded_study.trials) == len(study.trials)
```

Parameters

- **study_name** *(str)* – Study’s name. Each study has a unique name as an identifier.

- **storage** *(Union[str, optuna.storages._base.BaseStorage])* – Database URL such as sqlite:///example.db. Please see also the documentation of create_study() for further details.

- **sampler** *(Optional[optuna.multi_objective.samplers._base.BaseMultiObjectiveSampler]*) – A sampler object that implements background algorithm for value suggestion. If None is specified, RandomMultiObjectiveSampler is used as the default. See also samplers.

Returns

A *MultiObjectiveStudy* object.

Return type

optuna.multi_objective.study.MultiObjectiveStudy

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter suggestion, manage the trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended. This object is seamlessly instantiated and passed to the objective function behind the `optuna.multi_objective.study.MultiObjectiveStudy.optimize()` method; hence library users do not care about instantiation of this object.

Parameters

- **trial** – A `Trial` object.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

- **report**(values, step) Report intermediate objective function values for a given step.
- **set_system_attr**(key, value) Set system attributes to the trial.
- **set_user_attr**(key, value) Set user attributes to the trial.
- **suggest_categorical**(name, choices) Suggest a value for the categorical parameter.
- **suggest_discrete_uniform**(name, low, high, q) Suggest a value for the discrete parameter.
- **suggest_float**(name, low, high, *[step, log]*) Suggest a value for the floating point parameter.
- **suggest_int**(name, low, high, *[step, log]*) Suggest a value for the integer parameter.
- **suggest_loguniform**(name, low, high) Suggest a value for the continuous parameter.
- **suggest_uniform**(name, low, high) Suggest a value for the continuous parameter.

Attributes

- **datetime_start** Return start datetime.
- **distributions** Return distributions of parameters to be optimized.
- **number** Return trial’s number which is consecutive and unique in a study.
- **params** Return parameters to be optimized.
- **system_attrs** Return system attributes.
Table 62 – continued from previous page

<table>
<thead>
<tr>
<th>user_attrs</th>
<th>Return user attributes.</th>
</tr>
</thead>
</table>

property datetime_start
Return start datetime.

Returns Datetime where the Trial started.

property distributions
Return distributions of parameters to be optimized.

Returns A dictionary containing all distributions.

property number
Return trial’s number which is consecutive and unique in a study.

Returns A trial number.

property params
Return parameters to be optimized.

Returns A dictionary containing all parameters.

report (values, step)
Report intermediate objective function values for a given step.

The reported values are used by the pruners to determine whether this trial should be pruned.

See also:
Please refer to BasePruner.

Note: The reported values are converted to float type by applying float() function internally. Thus, it accepts all float-like types (e.g., numpy.float32). If the conversion fails, a TypeError is raised.

Parameters
- **values** (Sequence[float]) – Intermediate objective function values for a given step.
- **step** (int) – Step of the trial (e.g., Epoch of neural network training).

Return type None

set_system_attr (key, value)
Set system attributes to the trial.

Please refer to the documentation of optuna.trial.Trial.set_system_attr() for further details.

Parameters
- **key** (str)
- **value** (Any)

Return type None

set_user_attr (key, value)
Set user attributes to the trial.

Please refer to the documentation of optuna.trial.Trial.set_user_attr() for further details.
Parameters

- **key** *(str)*
- **value** *(Any)*

Return type None

suggest_categorical *(name, choices)*

Suggest a value for the categorical parameter.

Please refer to the documentation of *optuna.trial.Trial.suggest_categorical()* for further details.

Parameters

- **name** *(str)*
- **choices** *(Sequence[Optional[Union[str, float, int, bool]]])*

Return type *Union[None, bool, int, float, str]*

suggest_discrete_uniform *(name, low, high, q)*

Suggest a value for the discrete parameter.

Please refer to the documentation of *optuna.trial.Trial.suggest_discrete_uniform()* for further details.

Parameters

- **name** *(str)*
- **low** *(float)*
- **high** *(float)*
- **q** *(float)*

Return type *float*

suggest_float *(name, low, high, *, step=None, log=False)*

Suggest a value for the floating point parameter.

Please refer to the documentation of *optuna.trial.Trial.suggest_float()* for further details.

Parameters

- **name** *(str)*
- **low** *(float)*
- **high** *(float)*
- **step** *(Optional[float])* (Default None)
- **log** *(bool)* (Default False)

Return type *float*

suggest_int *(name, low, high, step=1, log=False)*

Suggest a value for the integer parameter.

Please refer to the documentation of *optuna.trial.Trial.suggest_int()* for further details.

Parameters

- **name** *(str)*
- **low** *(int)*
• high (int) –
• step (int) –
• log (bool) –

Return type int

suggest_loguniform (name, low, high)
Suggest a value for the continuous parameter.

Please refer to the documentation of `optuna.trial.Trial.suggest_loguniform()` for further details.

Parameters
• name (str) –
• low (float) –
• high (float) –

Return type float

suggest_uniform (name, low, high)
Suggest a value for the continuous parameter.

Please refer to the documentation of `optuna.trial.Trial.suggest_uniform()` for further details.

Parameters
• name (str) –
• low (float) –
• high (float) –

Return type float

property system_attrs
Return system attributes.

Returns A dictionary containing all system attributes.

property user_attrs
Return user attributes.

Returns A dictionary containing all user attributes.

optuna.multi_objective.trial.FrozenMultiObjectiveTrial

class optuna.multi_objective.trial.FrozenMultiObjectiveTrial (n_objectives, trial)
Status and results of a MultiObjectiveTrial.

number
Unique and consecutive number of MultiObjectiveTrial for each MultiObjectiveStudy.
Note that this field uses zero-based numbering.

state
`TrialState` of the MultiObjectiveTrial.

values
Objective values of the MultiObjectiveTrial.
datetime_start
Datetime where the `MultiObjectiveTrial` started.

datetime_complete
Datetime where the `MultiObjectiveTrial` finished.

params
Dictionary that contains suggested parameters.

distributions
Dictionary that contains the distributions of `params`.

user_attrs
Dictionary that contains the attributes of the `MultiObjectiveTrial` set with `optuna.multi_objective.trial.MultiObjectiveTrial.set_user_attr()`.

intermediate_values
Intermediate objective values set with `optuna.multi_objective.trial.MultiObjectiveTrial.report()`.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Attributes

- `datetime_complete`
- `datetime_start`
- `distributions`
- `last_step`
- `number`
- `params`
- `state`
- `system_attrs`
- `user_attrs`

optuna.multi_objective.visualization

Note: `optuna.multi_objective.visualization` module uses plotly to create figures, but JupyterLab cannot render them by default. Please follow this [installation guide](https://github.com/optuna/optuna/releases/tag/v2.4.0) to show figures in JupyterLab.

```python
optuna.multi_objective.visualization.plot_pareto_front
```

Plot the pareto front of a study.
optuna.multi_objective.visualization.plot_pareto_front

Plot the pareto front of a study.

Example

The following code snippet shows how to plot the pareto front of a study.

```python
import optuna

def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1

study = optuna.multi_objective.create_study(
    "minimize", "minimize")
study.optimize(objective, n_trials=50)

optuna.multi_objective.visualization.plot_pareto_front(study)
```

Parameters

- `study` ([`optuna.multi_objective.study.MultiObjectiveStudy`]) – A `MultiObjectiveStudy` object whose trials are plotted for their objective values.
- `names` ([`Optional[List[str]]`]) – Objective name list used as the axis titles. If `None` is specified, “Objective {objective_index}” is used instead.
- `include_dominated_trials` (`bool`) – A flag to include all dominated trial's objective values.
- `axis_order` ([`Optional[List[int]]`]) – A list of indices indicating the axis order. If `None` is specified, default order is used.

Returns

A `plotly.graph_objs.Figure` object.

Raises

`ValueError` – If the number of objectives of `study` isn’t 2 or 3.

Return type

`plotly.graph_objs._figure.Figure`

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
6.3.9 optuna.pruners

The pruners module defines a BasePruner class characterized by an abstract prune() method, which, for a given trial and its associated study, returns a boolean value representing whether the trial should be pruned. This determination is made based on stored intermediate values of the objective function, as previously reported for the trial using optuna.trial.Trial.report(). The remaining classes in this module represent child classes, inheriting from BasePruner, which implement different pruning strategies.

optuna.pruners.BasePruner

Base class for pruners.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prune</td>
<td>判 whether the trial should be pruned based on the reported values.</td>
</tr>
</tbody>
</table>

abstract prune

Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning mechanism in an objective function.

Parameters

- **study** (optuna.study.Study) – Study object of the target study.
- **trial** (optuna.trial._frozen.FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modifying this object.

Returns

A boolean value representing whether the trial should be pruned.

Return type

bool
optuna.pruners.MedianPruner

class optuna.pruners.MedianPruner(n_start_up_trials=5, n_warmup_steps=0, interval_steps=1)

Pruner using the median stopping rule.

Prune if the trial’s best intermediate result is worse than median of intermediate results of previous trials at the same step.

Example

We minimize an objective function with the median stopping rule.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
    alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)

study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.MedianPruner(
        n_start_up_trials=5, n_warmup_steps=30, interval_steps=10
    ),
)
study.optimize(objective, n_trials=20)
```

Parameters

- **n_start_up_trials** – Pruning is disabled until the given number of trials finish in the same study.
- **n_warmup_steps** – Pruning is disabled until the trial exceeds the given number of step. Note that this feature assumes that step starts at zero.
• **interval_steps** – Interval in number of steps between the pruning checks, offset by the warmup steps. If no value has been reported at the time of a pruning check, that particular check will be postponed until a value is reported.

Methods

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, `optuna.trial.Trial.report()` and `optuna.trial.Trial.should_prune()` provide user interfaces to implement pruning mechanism in an objective function.

Parameters

- **study** (`optuna.study.Study`) – Study object of the target study.
- **trial** (`optuna.trial._frozen.FrozenTrial`) – FrozenTrial object of the target trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

optuna.pruners.NopPruner

class **optuna.pruners.NopPruner**
Pruner which never prunes trials.

Example

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
    alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100
    
    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

    return (continues on next page)
```
intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
 assert False, "should_prune() should always return False with this_pruner."
 raise optuna.TrialPruned()
return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize", pruner=optuna.pruners.
 NopPruner())
study.optimize(objective, n_trials=20)

Methods

prune(study, trial) Judge whether the trial should be pruned based on
the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement
pruning mechanism in an objective function.

Parameters

- study (optuna.study.Study) – Study object of the target study.
- trial (optuna.trial._frozen.FrozenTrial) – FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

optuna.pruners.PercentilePruner

class optuna.pruners.PercentilePruner (percentile, n_startup_trials=5, n_warmup_steps=0, interval_steps=1)

Pruner to keep the specified percentile of the trials.
Prune if the best intermediate value is in the bottom percentile among trials at the same step.
Example

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna
X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
    alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100
    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)
        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)
        if trial.should_prune():
            raise optuna.TrialPruned()
    return clf.score(X_valid, y_valid)

study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.PercentilePruner(
        25.0, n_startup_trials=5, n_warmup_steps=30, interval_steps=10
    ),
)
study.optimize(objective, n_trials=20)
```

Parameters

- **percentile** – Percentile which must be between 0 and 100 inclusive (e.g., When given 25.0, top of 25th percentile trials are kept).
- **n_startup_trials** – Pruning is disabled until the given number of trials finish in the same study.
- **n_warmup_steps** – Pruning is disabled until the trial exceeds the given number of step. Note that this feature assumes that step starts at zero.
- **interval_steps** – Interval in number of steps between the pruning checks, offset by the warmup steps. If no value has been reported at the time of a pruning check, that particular check will be postponed until a value is reported. Value must be at least 1.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prune</td>
<td>Judge whether the trial should be pruned based on the reported values.</td>
</tr>
</tbody>
</table>

prune *(study, trial)*
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, `optuna.trial.Trial.report()` and `optuna.trial.Trial.should_prune()` provide user interfaces to implement pruning mechanism in an objective function.

Parameters

- **study** *(optuna.study.Study)* – Study object of the target study.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – FrozenTrial object of the target trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type `bool`

optuna.pruners.SuccessiveHalvingPruner

class `optuna.pruners.SuccessiveHalvingPruner` *(min_resource='auto', reduction_factor=4, min_early_stopping_rate=0, bootstrap_count=0)*
Pruner using Asynchronous Successive Halving Algorithm.

Successive Halving is a bandit-based algorithm to identify the best one among multiple configurations. This class implements an asynchronous version of Successive Halving. Please refer to the paper of Asynchronous Successive Halving for detailed descriptions.

Note that, this class does not take care of the parameter for the maximum resource, referred to as `R` in the paper. The maximum resource allocated to a trial is typically limited inside the objective function (e.g., step number in `simple.py`, EPOCH number in `chainer_integration.py`).

See also:
Please refer to `report()`.

Example

We minimize an objective function with `SuccessiveHalvingPruner`.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)
```

(continues on next page)
```python
def objective(trial):
    alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)
        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)
```

```python
study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.SuccessiveHalvingPruner()
)
study.optimize(objective, n_trials=20)
```

Parameters

- **min_resource** – A parameter for specifying the minimum resource allocated to a trial (in the paper this parameter is referred to as r). This parameter defaults to ‘auto’ where the value is determined based on a heuristic that looks at the number of required steps for the first trial to complete.

 A trial is never pruned until it executes $\text{min} \times \text{reduction} \times \text{min}_\text{early}_\text{stopping}_\text{rate}$ steps (i.e., the completion point of the first rung). When the trial completes the first rung, it will be promoted to the next rung only if the value of the trial is placed in the top $\frac{1}{\text{reduction}}$ fraction of the all trials that already have reached the point (otherwise it will be pruned there). If the trial won the competition, it runs until the next completion point (i.e., $\text{min}_\text{resource} \times \text{reduction} \times \text{min}_\text{early}_\text{stopping}_\text{rate} \times \text{rung}$ steps) and repeats the same procedure.

Note: If the step of the last intermediate value may change with each trial, please manually specify the minimum possible step to **min_resource**.

- **reduction_factor** – A parameter for specifying reduction factor of promotable trials (in the paper this parameter is referred to as η). At the completion point of each rung, about $\frac{1}{\text{reduction}}$ trials will be promoted.

- **min_early_stopping_rate** – A parameter for specifying the minimum early-stopping rate (in the paper this parameter is referred to as s).

- **bootstrap_count** – Minimum number of trials that need to complete a rung before any trial is considered for promotion into the next rung.
Methods

```
prune(study, trial) Judge whether the trial should be pruned based on the reported values.
```

prune *(study, trial)*
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, `optuna.trial.Trial.report()` and `optuna.trial.Trial.should_prune()` provide user interfaces to implement pruning mechanism in an objective function.

Parameters
- `study` *(optuna.study.Study)* – Study object of the target study.
- `trial` *(optuna.trial._frozen.FrozenTrial)* – FrozenTrial object of the target trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type `bool`

optuna.pruners.HyperbandPruner

```
class optuna.pruners.HyperbandPruner (min_resource=1, max_resource='auto', reduction_factor=3, bootstrap_count=0)
```

Pruner using Hyperband.

As SuccessiveHalving (SHA) requires the number of configurations n as its hyperparameter. For a given finite budget B, all the configurations have the resources of $\frac{B}{n}$ on average. As you can see, there will be a trade-off of B and $\frac{B}{n}$. Hyperband attacks this trade-off by trying different n values for a fixed budget.

Note:
- In the Hyperband paper, the counterpart of RandomSampler is used.
- Optuna uses TPESampler by default.
- The benchmark result shows that `optuna.pruners.HyperbandPruner` supports both samplers.

Note: If you use HyperbandPruner with TPESampler, it’s recommended to consider to set larger n_trials or timeout to make full use of the characteristics of TPESampler because TPESampler uses some (by default, 10) Trials for its startup.

As Hyperband runs multiple SuccessiveHalvingPruner and collect trials based on the current Trial’s bracket ID, each bracket needs to observe more than 10 Trials for TPESampler to adapt its search space.

Thus, for example, if HyperbandPruner has 4 pruners in it, at least 4×10 trials are consumed for startup.

Note: Hyperband has several SuccessiveHalvingPruner. Each SuccessiveHalvingPruner is referred as “bracket” in the original paper. The number of brackets is an important factor to control the early stopping behavior of Hyperband and is automatically determined by min_resource, max_resource and reduction_factor as

```markdown
The number of brackets = floor(log_{reduction_factor}(max_resource / min_resource))
```
Please set `reduction_factor` so that the number of brackets is not too large (about 4 ~ 6 in most use cases). Please see Section 3.6 of the original paper for the detail.

See also:
Please refer to `report()`.

Example

We minimize an objective function with Hyperband pruning algorithm.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)
n_train_iter = 100

def objective(trial):
    alpha = trial.suggest_uniform("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)

study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.HyperbandPruner(
        min_resource=1, max_resource=n_train_iter, reduction_factor=3
    ),
)
study.optimize(objective, n_trials=20)
```

Parameters

- **min_resource** – A parameter for specifying the minimum resource allocated to a trial noted as r in the paper. A smaller r will give a result faster, but a larger r will give a better guarantee of successful judging between configurations. See the details for `SuccessiveHalvingPruner`.

- **max_resource** – A parameter for specifying the maximum resource allocated to a trial. R in the paper corresponds to `max_resource / min_resource`. This value repre-
sents and should match the maximum iteration steps (e.g., the number of epochs for neural networks). When this argument is “auto”, the maximum resource is estimated according to the completed trials. The default value of this argument is “auto”.

Note: With “auto”, the maximum resource will be the largest step reported by `report()` in the first, or one of the first if trained in parallel, completed trial. No trials will be pruned until the maximum resource is determined.

Note: If the step of the last intermediate value may change with each trial, please manually specify the maximum possible step to `max_resource`.

• **reduction_factor** – A parameter for specifying reduction factor of promotable trials noted as η in the paper. See the details for `SuccessiveHalvingPruner`.

• **bootstrap_count** – Parameter specifying the number of trials required in a rung before any trial can be promoted. Incompatible with `max_resource` is "auto". See the details for `SuccessiveHalvingPruner`.

Methods

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, `optuna.trial.Trial.report()` and `optuna.trial.Trial.should_prune()` provide user interfaces to implement pruning mechanism in an objective function.

Parameters

• **study** (*optuna.study.Study*) – Study object of the target study.

• **trial** (*optuna.trial._frozen.FrozenTrial*) – FrozenTrial object of the target trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type `bool`

optuna.pruners.ThresholdPruner

```python
class optuna.pruners.ThresholdPruner(lower=None, upper=None, n_warmup_steps=0, interval_steps=1)
```

Pruner to detect outlying metrics of the trials.

Prune if a metric exceeds upper threshold, falls behind lower threshold or reaches `nan`.
Example

```python
from optuna import create_study
from optuna.pruners import ThresholdPruner
from optuna import TrialPruned

def objective_for_upper(trial):
    for step, y in enumerate(ys_for_upper):
        trial.report(y, step)

    if trial.should_prune():
        raise TrialPruned()

    return ys_for_upper[-1]

def objective_for_lower(trial):
    for step, y in enumerate(ys_for_lower):
        trial.report(y, step)

    if trial.should_prune():
        raise TrialPruned()

    return ys_for_lower[-1]

ys_for_upper = [0.0, 0.1, 0.2, 0.5, 1.2]
ys_for_lower = [100.0, 90.0, 0.1, 0.0, -1]

study = create_study(pruner=ThresholdPruner(upper=1.0))
study.optimize(objective_for_upper, n_trials=10)

study = create_study(pruner=ThresholdPruner(lower=0.0))
study.optimize(objective_for_lower, n_trials=10)
```

Args

- **lower**: A minimum value which determines whether pruner prunes or not. If an intermediate value is smaller than lower, it prunes.
- **upper**: A maximum value which determines whether pruner prunes or not. If an intermediate value is larger than upper, it prunes.
- **n_warmup_steps**: Pruning is disabled if the step is less than the given number of warmup steps.
- **interval_steps**: Interval in number of steps between the pruning checks, offset by the warmup steps. If no value has been reported at the time of a pruning check, that particular check will be postponed until a value is reported. Value must be at least 1.
Methods

prune(study, trial)

Judge whether the trial should be pruned based on the reported values.

prune *(study, trial)*

Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, `optuna.trial.Trial.report()` and `optuna.trial.Trial.should_prune()` provide user interfaces to implement pruning mechanism in an objective function.

Parameters

- **study** *(optuna.study.Study) – Study object of the target study.*
- **trial** *(optuna.trial._frozen.FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modifying this object.*

Returns

A boolean value representing whether the trial should be pruned.

Return type

`bool`

6.3.10 optuna.samplers

The `samplers` module defines a base class for parameter sampling as described extensively in `BaseSampler`. The remaining classes in this module represent child classes, deriving from `BaseSampler`, which implement different sampling strategies.

<table>
<thead>
<tr>
<th>optuna.samplers.BaseSampler</th>
<th>Base class for samplers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>optuna.samplers.RandomSampler</td>
<td>Sampler using random sampling.</td>
</tr>
<tr>
<td>optuna.samplers.TPESampler</td>
<td>Sampler using TPE (Tree-structured Parzen Estimator) algorithm.</td>
</tr>
<tr>
<td>optuna.samplers.CmaEsSampler</td>
<td>A Sampler using CMA-ES algorithm.</td>
</tr>
<tr>
<td>optuna.samplers.PartialFixedSampler</td>
<td>Sampler with partially fixed parameters.</td>
</tr>
<tr>
<td>optuna.samplers.NSGAIIISampler</td>
<td>Multi-objective sampler using the NSGA-II algorithm.</td>
</tr>
<tr>
<td>optuna.samplers.MOTPESampler</td>
<td>Multi-objective sampler using the MOTPE algorithm.</td>
</tr>
<tr>
<td>optuna.samplers.IntersectionSearchSpace</td>
<td>A class to calculate the intersection search space of a BaseStudy.</td>
</tr>
<tr>
<td>optuna.samplers.intersection_search_space</td>
<td>Return the intersection search space of the BaseStudy.</td>
</tr>
</tbody>
</table>

optuna.samplers.BaseSampler

class optuna.samplers.BaseSampler

Base class for samplers.

Optuna combines two types of sampling strategies, which are called **relative sampling** and **independent sampling**.

The **relative sampling** determines values of multiple parameters simultaneously so that sampling algorithms can use relationship between parameters (e.g., correlation). Target parameters of the relative sampling are described in a relative search space, which is determined by `infer_relative_search_space()`.
The independent sampling determines a value of a single parameter without considering any relationship between parameters. Target parameters of the independent sampling are the parameters not described in the relative search space.

More specifically, parameters are sampled by the following procedure. At the beginning of a trial, infer_relative_search_space() is called to determine the relative search space for the trial. Then, sample_relative() is invoked to sample parameters from the relative search space. During the execution of the objective function, sample_independent() is used to sample parameters that don’t belong to the relative search space.

The following figure depicts the lifetime of a trial and how the above three methods are called in the trial.
Methods

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after_trial</td>
<td>Trial post-processing. This method is called after the objective function returns and right before the trials is finished and its state is stored.</td>
</tr>
<tr>
<td>infer_relative_search_space</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td>reseed_rng</td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td>sample_independent</td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td>sample_relative</td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

after_trial *(study, trial, state, values)*

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **state** *(optuna.trial._state.TrialState)* – Resulting trial state.
- **values** *(Optional[Sequence[Union[float, object]]])* – Resulting trial values. Guaranteed to not be None if trial succeeded.

Return type None

abstract infer_relative_search_space *(study, trial)*

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using sample_independent() method.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also: Please refer to intersection_search_space() as an implementation of infer_relative_search_space().

reseed_rng *

Reseed sampler’s random number generator.
This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

abstract sample_independent(study, trial, param_name, param_distribution)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study**(optuna.study.Study) – Target study object.
- **trial**(optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **param_name**(str) – Name of the sampled parameter.
- **param_distribution**(optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

abstract sample_relative(study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study**(optuna.study.Study) – Target study object.
- **trial**(optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **search_space**(Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]
optuna.samplers.GridSampler

class optuna.samplers.GridSampler(search_space):
 Sampler using grid search.

 With GridSampler, the trials suggest all combinations of parameters in the given search space during the study.

Example

```python
import optuna

def objective(trial):
    x = trial.suggest_uniform("x", -100, 100)
    y = trial.suggest_int("y", -100, 100)
    return x ** 2 + y ** 2

search_space = {"x": [-50, 0, 50], "y": [-99, 0, 99]}
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space))
study.optimize(objective, n_trials=3 * 3)
```

Note: GridSampler automatically stops the optimization if all combinations in the passed search_space have already been evaluated, internally invoking the stop() method.

Note: GridSampler does not take care of a parameter’s quantization specified by discrete suggest methods but just samples one of values specified in the search space. E.g., in the following code snippet, either of -0.5 or 0.5 is sampled as x instead of an integer point.

```python
import optuna

def objective(trial):
    # The following suggest method specifies integer points between -5 and 5.
    # Non-int points are specified in the grid.
    x = trial.suggest_discrete_uniform("x", -5, 5, 1)
    return x ** 2

search_space = {"x": [-0.5, 0.5]}
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space))
study.optimize(objective, n_trials=2)
```

Note: A parameter configuration in the grid is not considered finished until its trial is finished. Therefore, during distributed optimization where trials run concurrently, different workers will occasionally suggest the same parameter configuration. The total number of actual trials may therefore exceed the size of the grid.

Note: The grid is randomly shuffled and the order in which parameter configurations are suggested may vary.
This is to reduce duplicate suggestions during distributed optimization.

Parameters

search_space – A dictionary whose key and value are a parameter name and the corresponding candidates of values, respectively.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after_trial(study, trial, state, values)</td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td>infer_relative_search_space(study, trial)</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td>reseed_rng()</td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td>sample_independent(study, trial, param_name,...)</td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td>sample_relative(study, trial, search_space)</td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

after_trial (study, trial, state, values)

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **state** (optuna.trial._state.TrialState) – Resulting trial state.
- **values** (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be None if trial succeeded.

Return type None

infer_relative_search_space (study, trial)

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using sample_independent() method.

Parameters

- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]
See also:
Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

`resseed_rng()`
Reseed sampler’s random number generator.

This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

```
Reseed sampler’s random number generator.
```

Parameters
- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **param_name** (str) – Name of the sampled parameter.
- **param_distribution** (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

```
Parameters
- study (optuna.study.Study) – Target study object.
- trial (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
```

Returns A parameter value.

```
Returns A parameter value.
```

`sample_independent(study, trial, param_name, param_distribution)`
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

```
Sample a parameter for a given distribution.
```

Parameters
- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **param_name** (str) – Name of the sampled parameter.
- **param_distribution** (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

```
Parameters
- study (optuna.study.Study) – Target study object.
- trial (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
```

Returns A parameter value.

```
Returns A parameter value.
```

`sample_relative(study, trial, search_space)`
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

```
Sample parameters in a given search space.
```

Parameters
- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

```
Parameters
- study (optuna.study.Study) – Target study object.
- trial (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
```

Returns A parameter value.

```
Returns A parameter value.
```
• **search_space** *(Dict[str, optuna.distributions.BaseDistribution])* – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

```python
class optuna.samplers.RandomSampler(seed=None)
    Sampler using random sampling.
    This sampler is based on independent sampling. See also BaseSampler for more details of ‘independent sampling’.

Example

```python
import optuna
from optuna.samplers import RandomSampler

def objective(trial):
 x = trial.suggest_uniform("x", -5, 5)
 return x ** 2

study = optuna.create_study(sampler=RandomSampler())
study.optimize(objective, n_trials=10)
```

**Parameters**

**seed** – Seed for random number generator.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>after_trial(study, trial, state, values)</code></td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td><code>infer_relative_search_space(study, trial)</code></td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td><code>reseed_rng()</code></td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td><code>sample_independent(study, trial, param_name, ...)</code></td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td><code>sample_relative(study, trial, search_space)</code></td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

**after_trial** *(study, trial, state, values)*

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

**Note:** Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
Parameters

- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **state** (optuna.trial._state.TrialState) – Resulting trial state.
- **values** (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be None if trial succeeded.

Return type None

**infer_relative_search_space**(study, trial)

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using sample_independent() method.

Parameters

- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to intersection_search_space() as an implementation of infer_relative_search_space().

**reseed_rng**()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

**sample_independent**(study, trial, param_name, param_distribution)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by sample_relative() method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** (optuna.study.Study) – Target study object.
• **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

• **param_name** (str) – Name of the sampled parameter.

• **param_distribution** (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

**Returns** A parameter value.

**Return type** Any

**sample_relative**(study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

**Note:** The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

**Parameters**

• **study** (optuna.study.Study) – Target study object.

• **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

• **search_space** (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by infer_relative_search_space().

**Returns** A dictionary containing the parameter names and the values.

**Return type** Dict[str, Any]

**optuna.samplers.TPESampler**

class optuna.samplers.TPESampler(consider_prior=True, prior_weight=1.0, consider_magic_clip=True, consider_endpoints=False, n_startup_trials=10, n_ei_candidates=24, gamma=<function default_gamma>, weights=<function default_weights>, seed=None, *, multivariate=False, warn_independent_sampling=True)

Sampler using TPE (Tree-structured Parzen Estimator) algorithm.

This sampler is based on independent sampling. See also BaseSampler for more details of ‘independent sampling’.

On each trial, for each parameter, TPE fits one Gaussian Mixture Model (GMM) \( l(x) \) to the set of parameter values associated with the best objective values, and another GMM \( g(x) \) to the remaining parameter values. It chooses the parameter value \( x \) that maximizes the ratio \( l(x)/g(x) \).

For further information about TPE algorithm, please refer to the following papers:

• Algorithms for Hyper-Parameter Optimization
• Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures

Example

```python
import optuna
from optuna.samplers import TPESampler

def objective(trial):
 x = trial.suggest_uniform("x", -10, 10)
 return x ** 2

study = optuna.create_study(sampler=TPESampler())
study.optimize(objective, n_trials=10)
```

Parameters

- **consider_prior** – Enhance the stability of Parzen estimator by imposing a Gaussian prior when `True`. The prior is only effective if the sampling distribution is either `UniformDistribution`, `DiscreteUniformDistribution`, `LogUniformDistribution`, `IntUniformDistribution`, or `IntLogUniformDistribution`.

- **prior_weight** – The weight of the prior. This argument is used in `UniformDistribution`, `DiscreteUniformDistribution`, `LogUniformDistribution`, `IntUniformDistribution`, `IntLogUniformDistribution`, and `CategoricalDistribution`.

- **consider_magic_clip** – Enable a heuristic to limit the smallest variances of Gaussians used in the Parzen estimator.

- **consider_endpoints** – Take endpoints of domains into account when calculating variances of Gaussians in Parzen estimator. See the original paper for details on the heuristics to calculate the variances.

- **n_startup_trials** – The random sampling is used instead of the TPE algorithm until the given number of trials finish in the same study.

- **n_ei_candidates** – Number of candidate samples used to calculate the expected improvement.

- **gamma** – A function that takes the number of finished trials and returns the number of trials to form a density function for samples with low grains. See the original paper for more details.

- **weights** – A function that takes the number of finished trials and returns a weight for them. See Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures for more details.

- **seed** – Seed for random number generator.

- **multivariate** – If this is `True`, the multivariate TPE is used when suggesting parameters. The multivariate TPE is reported to outperform the independent TPE. See BOHB: Robust and Efficient Hyperparameter Optimization at Scale for more details.
Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

- **warn_independent_sampling** – If this is True and multivariate=True, a warning message is emitted when the value of a parameter is sampled by using an independent sampler. If multivariate=False, this flag has no effect.

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>after_trial(study, trial, state, values)</code></td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td><code>hyperopt_parameters()</code></td>
<td>Return the the default parameters of hyperopt (v0.1.2).</td>
</tr>
<tr>
<td><code>infer_relative_search_space(study, trial)</code></td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td><code>reseed_rng()</code></td>
<td>Rseed sampler’s random number generator.</td>
</tr>
<tr>
<td><code>sample_independent(study, param_name, …)</code></td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td><code>sample_relative(study, trial, search_space)</code></td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

### Parameters

- **study** (optuna.study.Study) – Target study object.
- **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- **state** (optuna.trial._state.TrialState) – Resulting trial state.
- **values** (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be None if trial succeeded.

### Return type

None

### static hyperopt_parameters()

Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned by this method.
Example

Create a `TPESampler` instance with the default parameters of `hyperopt`.

```python
import optuna
from optuna.samplers import TPESampler

def objective(trial):
 x = trial.suggest_uniform("x", -10, 10)
 return x ** 2

sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
```

Returns A dictionary containing the default parameters of `hyperopt`.

Return type `Dict[str, Any]`

`infer_relative_search_space` *(study, trial)*

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.

Parameters

- **study** (*optuna.study.Study*) – Target study object.
- **trial** (*optuna.trial._frozen.FrozenTrial*) – Target trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type `Dict[str, optuna.distributions.BaseDistribution]`

See also:

Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.

`reseed_rng()`

Reseed sampler’s random number generator.

This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type `None`

`sample_independent` *(study, trial, param_name, param_distribution)*

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.
Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **param_name** *(str)* – Name of the sampled parameter.
- **param_distribution** *(optuna.distributions.BaseDistribution)* – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

**sample_relative**(study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **search_space** *(Dict[str, optuna.distributions.BaseDistribution])* – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

**optuna.samplers.CmaEsSampler**

A Sampler using CMA-ES algorithm.
Example

Optimize a simple quadratic function by using `CmaEsSampler`.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -1, 1)
 y = trial.suggest_int("y", -1, 1)
 return x ** 2 + y

sampler = optuna.samplers.CmaEsSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=20)
```

Please note that this sampler does not support `CategoricalDistribution`. If your search space contains categorical parameters, I recommend you to use `TPESampler` instead. Furthermore, there is room for performance improvements in parallel optimization settings. This sampler cannot use some trials for updating the parameters of multivariate normal distribution.

For further information about CMA-ES algorithm and its restarting strategy algorithm, please refer to the following papers:


See also:

You can also use `optuna.integration.PyCmaSampler` which is a sampler using cma library as the backend.

Parameters

- `x0` – A dictionary of an initial parameter values for CMA-ES. By default, the mean of `low` and `high` for each distribution is used. Note that `x0` is sampled uniformly within the search space domain for each restart if you specify `restart_strategy` argument.
- `sigma0` – Initial standard deviation of CMA-ES. By default, `sigma0` is set to `min_range / 6`, where `min_range` denotes the minimum range of the distributions in the search space.
- `seed` – A random seed for CMA-ES.
- `n_startup_trials` – The independent sampling is used instead of the CMA-ES algorithm until the given number of trials finish in the same study.
- `independent_sampler` – A `BaseSampler` instance that is used for independent sampling. The parameters not contained in the relative search space are sampled by this sampler. The search space for `CmaEsSampler` is determined by `intersection_search_space()`.

If `None` is specified, `RandomSampler` is used as the default.

See also:

`optuna.samplers` module provides built-in independent samplers such as `RandomSampler` and `TPESampler`. 
• **warn_independent_sampling** – If this is `True`, a warning message is emitted when the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled via an independent sampler, so no warning messages are emitted in this case.

• **restart_strategy** – Strategy for restarting CMA-ES optimization when converges to a local minimum. If given `None`, CMA-ES will not restart (default). If given ‘ipop’, CMA-ES will restart with increasing population size. Please see also `inc_popsize` parameter.

**Note:** Added in v2.1.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.1.0.

• **inc_popsize** – Multiplier for increasing population size before each restart. This argument will be used when setting `restart_strategy = 'ipop'`.

• **consider_pruned_trials** – If this is `True`, the PRUNED trials are considered for sampling.

**Note:** Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

**Note:** It is suggested to set this flag `False` when the `MedianPruner` is used. On the other hand, it is suggested to set this flag `True` when the `HyperbandPruner` is used. Please see the benchmark result for the details.

**Raises** `ValueError` – If `restart_strategy` is not ‘ipop’ or `None`.

**Methods**

```python
def after_trial(study, trial, state, values):
 Trial post-processing.

def infer_relative_search_space(study, trial):
 Infer the search space that will be used by relative sampling in the target trial.

def reseed_rng()
 Rseed sampler’s random number generator.

def sample_independent(study, trial, param_name, \ldots):
 Sample a parameter for a given distribution.

def sample_relative(study, trial, search_space):
 Sample parameters in a given search space.
```

**after_trial** (`study`, `trial`, `state`, `values`)

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

**Note:** Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
• **study** (optuna.study.Study) – Target study object.

• **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

• **state** (optuna.trial._state.TrialState) – Resulting trial state.

• **values** (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be None if trial succeeded.

**Return type** None

**infer_relative_search_space**(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using sample_independent() method.

**Parameters**

• **study** (optuna.study.Study) – Target study object.

• **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.

**Returns** A dictionary containing the parameter names and parameter’s distributions.

**Return type** Dict[str, optuna.distributions.BaseDistribution]

**See also:**
Please refer to intersection_search_space() as an implementation of infer_relative_search_space().

**reseed_rng()**
Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

**Return type** None

**sample_independent**(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by sample_relative() method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

**Note:** The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

**Parameters**

• **study** (optuna.study.Study) – Target study object.

• **trial** (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
• `param_name` (*str*) – Name of the sampled parameter.

• `param_distribution` ([`optuna.distributions.BaseDistribution`]) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

`sample_relative`(*study, trial, search_space*)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

**Note:** The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

• `study` ([`optuna.study.Study`]) – Target study object.

• `trial` ([`optuna.trial._frozen.FrozenTrial`]) – Target trial object. Take a copy before modifying this object.

• `search_space` (`Dict[str, optuna.distributions.BaseDistribution]`) – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type `Dict[str, Any]`

`optuna.samplers.PartialFixedSampler`

class `optuna.samplers.PartialFixedSampler`(*fixed_params, base_sampler*)
Sampler with partially fixed parameters.

New in version 2.4.0.

Example

After several steps of optimization, you can fix the value of `y` and re-optimize it.

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", -1, 1)
 y = trial.suggest_int("y", -1, 1)
 return x ** 2 + y

study = optuna.create_study()
study.optimize(objective, n_trials=10)
```

(continues on next page)
best_params = study.best_params
fixed_params = {"y": best_params["y"]}
partial_sampler = optuna.samplers.PartialFixedSampler(fixed_params, study.sampler)

study.sampler = partial_sampler
study.optimize(objective, n_trials=10)

Parameters

- **fixed_params** – A dictionary of parameters to be fixed.
- **base_sampler** – A sampler which samples unfixed parameters.

**Note:** Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

- **after_trial**(study, trial, state, values) Trial post-processing.
- **infer_relative_search_space**(study, trial) Infer the search space that will be used by relative sampling in the target trial.
- **reseed_rng**() Rseed sampler’s random number generator.
- **sample_independent**(study, trial, param_name, ...) Sample a parameter for a given distribution.
- **sample_relative**(study, trial, search_space) Sample parameters in a given search space.

**after_trial** *(study, trial, state, values)*

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

**Note:** Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **state** *(optuna.trial._state.TrialState)* – Resulting trial state.
- **values** *(Optional[Sequence[float]])* – Resulting trial values. Guaranteed to not be None if trial succeeded.

Return type None
**infer_relative_search_space** *(study, trial)*

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before *sample_relative()* method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using *sample_independent()* method.

**Parameters**

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

**Returns** A dictionary containing the parameter names and parameter’s distributions.

**Return type** *Dict[str, optuna.distributions.BaseDistribution]*

**See also:**
Please refer to *intersection_search_space()* as an implementation of *infer_relative_search_space()*.

**reseed_rng** *

Reseed sampler’s random number generator.

This method is called by the *Study* instance if trials are executed in parallel with the option *n_jobs>1*. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

**Return type** *None*

**sample_independent** *(study, trial, param_name, param_distribution)*

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by *sample_relative()* method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

**Note:** The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

**Parameters**

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **param_name** *(str)* – Name of the sampled parameter.
- **param_distribution** *(optuna.distributions.BaseDistribution)* – Distribution object that specifies a prior and/or scale of the sampling algorithm.

**Returns** A parameter value.

**Return type** *Any*

**sample_relative** *(study, trial, search_space)*

Sample parameters in a given search space.
This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- `study` (optuna.study.Study) – Target study object.
- `trial` (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- `search_space` (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.NSGAIISampler

class optuna.samplers.NSGAIISampler(*, population_size=50, mutation_prob=None, crossover_prob=0.9, swapping_prob=0.5, seed=None)

Multi-objective sampler using the NSGA-II algorithm.

NSGA-II stands for “Nondominated Sorting Genetic Algorithm II”, which is a well known, fast and elitist multi-objective genetic algorithm.

For further information about NSGA-II, please refer to the following paper:

- A fast and elitist multiobjective genetic algorithm: NSGA-II

Parameters

- `population_size` – Number of individuals (trials) in a generation.
- `mutation_prob` – Probability of mutating each parameter when creating a new individual. If `None` is specified, the value `1.0 / len(parent_trial.params)` is used where `parent_trial` is the parent trial of the target individual.
- `crossover_prob` – Probability that a crossover (parameters swapping between parents) will occur when creating a new individual.
- `swapping_prob` – Probability of swapping each parameter of the parents during crossover.
- `seed` – Seed for random number generator.
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>after_trial</strong> <em>(study, trial, state, values)</em></td>
<td>Trial post-processing. This method is called after the objective function returns and right before the trials is finished and its state is stored. &lt;br&gt;&lt;br&gt;Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See <a href="https://github.com/optuna/optuna/releases/tag/v2.4.0">https://github.com/optuna/optuna/releases/tag/v2.4.0</a>.</td>
</tr>
<tr>
<td><strong>infer_relative_search_space</strong> <em>(study, trial)</em></td>
<td>Infer the search space that will be used by relative sampling in the target trial. &lt;br&gt;&lt;br&gt;This method is called right before <strong>sample_relative()</strong> method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using <strong>sample_independent()</strong> method. &lt;br&gt;&lt;br&gt;See also: Please refer to <strong>intersection_search_space()</strong> as an implementation of <strong>infer_relative_search_space()</strong>.</td>
</tr>
<tr>
<td><strong>reseed_rng()</strong></td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td><strong>sample_independent</strong> <em>(study, trial, param_name, ...)</em></td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td><strong>sample_relative</strong> <em>(study, trial, search_space)</em></td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

### Parameters

- **study** *(optuna.study.Study)* – Target study object.
- **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.
- **state** *(optuna.trial._state.TrialState)* – Resulting trial state.
- **values** *(Optional[Sequence[float]])* – Resulting trial values. Guaranteed to not be None if trial succeeded.

**Return type** None
This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

Return type None

**sample_independent**(study, trial, param_name, param_distribution)

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- study (optuna.study.Study) – Target study object.
- trial (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- param_name (str) – Name of the sampled parameter.
- param_distribution (optuna.distributions.BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

**sample_relative**(study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

Parameters

- study (optuna.study.Study) – Target study object.
- trial (optuna.trial._frozen.FrozenTrial) – Target trial object. Take a copy before modifying this object.
- search_space (Dict[str, optuna.distributions.BaseDistribution]) – The search space returned by `infer_relative_search_space()`.

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]
class optuna.samplers.MOTPESampler(*, consider_prior=True, consider_magic_clip=True, consider_endpoints=True, n_startup_trials=10, n_ehvi_candidates=24, gamma=<function default_gamma>, weights_above=<function _default_weights_above>, seed=None)

Multi-objective sampler using the MOTPE algorithm.

This sampler is a multiobjective version of TPESampler.

For further information about MOTPE algorithm, please refer to the following paper:

- Multiobjective tree-structured parzen estimator for computationally expensive optimization problems

**Parameters**

- **consider_prior** – Enhance the stability of Parzen estimator by imposing a Gaussian prior when True. The prior is only effective if the sampling distribution is either UniformDistribution, DiscreteUniformDistribution, LogUniformDistribution, IntUniformDistribution, or IntLogUniformDistribution.

- **prior_weight** – The weight of the prior. This argument is used in UniformDistribution, DiscreteUniformDistribution, LogUniformDistribution, IntUniformDistribution, IntLogUniformDistribution, and CategoricalDistribution.

- **consider_magic_clip** – Enable a heuristic to limit the smallest variances of Gaussians used in the Parzen estimator.

- **consider_endpoints** – Take endpoints of domains into account when calculating variances of Gaussians in Parzen estimator. See the original paper for details on the heuristics to calculate the variances.

- **n_startup_trials** – The random sampling is used instead of the MOTPE algorithm until the given number of trials finish in the same study. 11 * number of variables - 1 is recommended in the original paper.

- **n_ehvi_candidates** – Number of candidate samples used to calculate the expected hypervolume improvement.

- **gamma** – A function that takes the number of finished trials and returns the number of trials to form a density function for samples with low grains. See the original paper for more details.

- **weights_above** – A function that takes the number of finished trials and returns a weight for them. As default, weights are automatically calculated by the MOTPE’s default strategy.

- **seed** – Seed for random number generator.

**Note:** Initialization with Latin hypercube sampling may improve optimization performance. However, the current implementation only supports initialization with random sampling.
Example

```python
import optuna

seed = 128
num_variables = 2
n_startup_trials = 11 * num_variables - 1

def objective(trial):
 x = []
 for i in range(1, num_variables + 1):
 x.append(trial.suggest_float(f"x{i}" , 0.0, 2.0 * i))
 return x

sampler = optuna.samplers.MOTPESampler(
 n_startup_trials=n_startup_trials, n_ehvi_candidates=24, seed=seed)

study = optuna.create_study(directions=["minimize"] * num_variables, sampler=sampler)
study.optimize(objective, n_trials=n_startup_trials + 10)
```

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after_trial(study, trial, state, values)</td>
<td>Trial post-processing.</td>
</tr>
<tr>
<td>hyperopt_parameters()</td>
<td>Return the the default parameters of hyperopt (v0.1.2).</td>
</tr>
<tr>
<td>infer_relative_search_space(study, trial)</td>
<td>Infer the search space that will be used by relative sampling in the target trial.</td>
</tr>
<tr>
<td>reseed_rng()</td>
<td>Reseed sampler’s random number generator.</td>
</tr>
<tr>
<td>sample_independent(study, trial, param_name, ...)</td>
<td>Sample a parameter for a given distribution.</td>
</tr>
<tr>
<td>sample_relative(study, trial, search_space)</td>
<td>Sample parameters in a given search space.</td>
</tr>
</tbody>
</table>

after_trial (study, trial, state, values)

Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

- `study` (optuna.study.Study) – Target study object.
• **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

• **state** *(optuna.trial._state.TrialState)* – Resulting trial state.

• **values** *(Optional[Sequence[float]])* – Resulting trial values. Guaranteed to not be `None` if trial succeeded.

**Return type** None

```python
static hyperopt_parameters()
```

Return the the default parameters of hyperopt (v0.1.2).

`TPESampler` can be instantiated with the parameters returned by this method.

**Example**

Create a `TPESampler` instance with the default parameters of `hyperopt`.

```python
import optuna
from optuna.samplers import TPESampler

def objective(trial):
 x = trial.suggest_uniform("x", -10, 10)
 return x ** 2

sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
```

**Returns** A dictionary containing the default parameters of hyperopt.

**Return type** Dict[str, Any]

```python
infer_relative_search_space(study, trial)
```

Infer the search space that will be used by relative sampling in the target trial.

This method is called right before `sample_relative()` method, and the search space returned by this method is pass to it. The parameters not contained in the search space will be sampled by using `sample_independent()` method.

**Parameters**

• **study** *(optuna.study.Study)* – Target study object.

• **trial** *(optuna.trial._frozen.FrozenTrial)* – Target trial object. Take a copy before modifying this object.

**Returns** A dictionary containing the parameter names and parameter’s distributions.

**Return type** Dict[str, optuna.distributions.BaseDistribution]

**See also:**

Please refer to `intersection_search_space()` as an implementation of `infer_relative_search_space()`.
**reseed_rng()**

Reseed sampler’s random number generator.

This method is called by the `Study` instance if trials are executed in parallel with the option `n_jobs>1`. In that case, the sampler instance will be replicated including the state of the random number generator, and they may suggest the same values. To prevent this issue, this method assigns a different seed to each random number generator.

**Return type** None

**sample_independent(study, trial, param_name, param_distribution)**

Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by `sample_relative()` method. This method is suitable for sampling algorithms that do not use relationship between parameters such as random sampling and TPE.

**Parameters**

- `study (optuna.study.Study)` – Target study object.
- `trial (optuna.trial._frozen.FrozenTrial)` – Target trial object. Take a copy before modifying this object.
- `param_name (str)` – Name of the sampled parameter.
- `param_distribution (optuna.distributions.BaseDistribution)` – Distribution object that specifies a prior and/or scale of the sampling algorithm.

**Returns** A parameter value.

**Return type** Any

**sample_relative(study, trial, search_space)**

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective function. This method is suitable for sampling algorithms that use relationship between parameters such as Gaussian Process and CMA-ES.

**Note:** The failed trials are ignored by any build-in samplers when they sample new parameters. Thus, failed trials are regarded as deleted in the samplers’ perspective.

**Parameters**

- `study (optuna.study.Study)` – Target study object.
- `trial (optuna.trial._frozen.FrozenTrial)` – Target trial object. Take a copy before modifying this object.
- `search_space (Dict[str, optuna.distributions.BaseDistribution])` – The search space returned by `infer_relative_search_space()`.

**Returns** A dictionary containing the parameter names and the values.
**Return type**  Dict[str, Any]

optuna.samplers.IntersectionSearchSpace

class optuna.samplers.IntersectionSearchSpace

A class to calculate the intersection search space of a BaseStudy.

Intersection search space contains the intersection of parameter distributions that have been suggested in the completed trials of the study so far. If there are multiple parameters that have the same name but different distributions, neither is included in the resulting search space (i.e., the parameters with dynamic value ranges are excluded).

Note that an instance of this class is supposed to be used for only one study. If different studies are passed to `calculate()`, a ValueError is raised.

Methods

calculate(study[, ordered_dict])

Returns the intersection search space of the BaseStudy.

Parameters

- **study** *(optuna.study.BaseStudy)* – A study with completed trials.
- **ordered_dict** *(bool)* – A boolean flag determining the return type. If False, the returned object will be a dict. If True, the returned object will be an collections.OrderedDict sorted by keys, i.e. parameter names.

Returns  A dictionary containing the parameter names and parameter’s distributions.

Raises ValueError – If different studies are passed into this method.

Return type  Dict[str, optuna.distributions.BaseDistribution]

optuna.samplers.intersection_search_space

optuna.samplers.intersection_search_space(study, ordered_dict=False)

Return the intersection search space of the BaseStudy.

Intersection search space contains the intersection of parameter distributions that have been suggested in the completed trials of the study so far. If there are multiple parameters that have the same name but different distributions, neither is included in the resulting search space (i.e., the parameters with dynamic value ranges are excluded).

**Note:** IntersectionSearchSpace provides the same functionality with a much faster way. Please consider using it if you want to reduce execution time as much as possible.

Parameters

- **study** *(optuna.study.BaseStudy)* – A study with completed trials.
• `ordered_dict` *(bool)* – A boolean flag determining the return type. If `False`, the returned object will be a `dict`. If `True`, the returned object will be an `collections.OrderedDict` sorted by keys, i.e. parameter names.

**Returns** A dictionary containing the parameter names and parameter’s distributions.

**Return type** Dict[str, optuna.distributions.BaseDistribution]

### 6.3.11 optuna.storages

The `storages` module defines a `BaseStorage` class which abstracts a backend database and provides library-internal interfaces to read/write histories of studies and trials. Library users who wish to use storage solutions other than the default in-memory storage should use one of the child classes of `BaseStorage` documented below.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.storages.RDBStorage</code></td>
<td>Storage class for RDB backend.</td>
</tr>
<tr>
<td><code>optuna.storages.RedisStorage</code></td>
<td>Storage class for Redis backend.</td>
</tr>
</tbody>
</table>

#### `optuna.storages.RDBStorage`

**class** `optuna.storages.RDBStorage` *(url, engine_kwargs=None, skip_compatibility_check=False)*

Storage class for RDB backend.

Note that library users can instantiate this class, but the attributes provided by this class are not supposed to be directly accessed by them.

**Example**

Create an `RDBStorage` instance with customized `pool_size` and `timeout` settings.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 return x ** 2

storage = optuna.storages.RDBStorage(
 url="sqlite:////:memory:",
 engine_kwargs={"pool_size": 20, "connect_args": {"timeout": 10}},
)

study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=10)
```

**Parameters**

- **url** – URL of the storage.
- **engine_kwargs** – A dictionary of keyword arguments that is passed to `sqlalchemy.engine.create_engine` function.
- **skip_compatibility_check** – Flag to skip schema compatibility check if set to `True`.  

---

156 Chapter 6. Reference
Note: If you use MySQL, pool_pre_ping will be set to True by default to prevent connection timeout. You can turn it off with engine_kwargs['pool_pre_ping']=False, but it is recommended to keep the setting if execution time of your objective function is longer than the wait_timeout of your MySQL configuration.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>check_trial_is_updatable(trial_id, trial_state)</code></td>
<td>Check whether a trial state is updatable.</td>
</tr>
<tr>
<td><code>create_new_study(study_name)</code></td>
<td>Create a new study from a name.</td>
</tr>
<tr>
<td><code>create_new_trial(study_id, template_trial)</code></td>
<td>Create and add a new trial to a study.</td>
</tr>
<tr>
<td><code>delete_study(study_id)</code></td>
<td>Delete a study.</td>
</tr>
<tr>
<td><code>get_all_study_summaries()</code></td>
<td>Read a list of StudySummary objects.</td>
</tr>
<tr>
<td><code>get_all_trials(study_id, deepcopy, states)</code></td>
<td>Read all trials in a study.</td>
</tr>
<tr>
<td><code>get_all_versions()</code></td>
<td>Return the schema version list.</td>
</tr>
<tr>
<td><code>get_best_trial(study_id)</code></td>
<td>Return the trial with the best value in a study.</td>
</tr>
<tr>
<td><code>get_current_version()</code></td>
<td>Return the schema version currently used by this storage.</td>
</tr>
<tr>
<td><code>get_head_version()</code></td>
<td>Return the latest schema version.</td>
</tr>
<tr>
<td><code>get_n_trials(study_id, state)</code></td>
<td>Count the number of trials in a study.</td>
</tr>
<tr>
<td><code>get_study_directions(study_id)</code></td>
<td>Read whether a study maximizes or minimizes an objective.</td>
</tr>
<tr>
<td><code>get_study_id_from_name(study_name)</code></td>
<td>Read the ID of a study.</td>
</tr>
<tr>
<td><code>get_study_id_from_trial_id(trial_id)</code></td>
<td>Read the ID of a study to which a trial belongs.</td>
</tr>
<tr>
<td><code>get_study_name_from_id(study_id)</code></td>
<td>Read the study name of a study.</td>
</tr>
<tr>
<td><code>get_study_system_attrs(study_id)</code></td>
<td>Read the optuna-internal attributes of a study.</td>
</tr>
<tr>
<td><code>get_study_user_attrs(study_id)</code></td>
<td>Read the user-defined attributes of a study.</td>
</tr>
<tr>
<td><code>get_trial(trial_id)</code></td>
<td>Read a trial.</td>
</tr>
<tr>
<td><code>get_trial_id_from_study_id_trial_number(study_id, trial_number)</code></td>
<td>Read the trial id of a trial.</td>
</tr>
<tr>
<td><code>get_trial_number_from_id(trial_id)</code></td>
<td>Read the trial number of a trial.</td>
</tr>
<tr>
<td><code>get_trial_param(trial_id, param_name)</code></td>
<td>Read the parameter of a trial.</td>
</tr>
<tr>
<td><code>get_trial_params(trial_id)</code></td>
<td>Read the parameter dictionary of a trial.</td>
</tr>
<tr>
<td><code>get_trial_system_attrs(trial_id)</code></td>
<td>Read the optuna-internal attributes of a trial.</td>
</tr>
<tr>
<td><code>get_trial_user_attrs(trial_id)</code></td>
<td>Read the user-defined attributes of a trial.</td>
</tr>
<tr>
<td><code>read_trials_from_remote_storage(study_id)</code></td>
<td>Make an internal cache of trials up-to-date.</td>
</tr>
<tr>
<td><code>remove_session()</code></td>
<td>Removes the current session.</td>
</tr>
<tr>
<td><code>set_study_directions(study_id, directions)</code></td>
<td>Register optimization problem directions to a study.</td>
</tr>
<tr>
<td><code>set_study_system_attr(study_id, key, value)</code></td>
<td>Register an optuna-internal attribute to a study.</td>
</tr>
<tr>
<td><code>set_study_user_attr(study_id, key, value)</code></td>
<td>Register a user-defined attribute to a study.</td>
</tr>
<tr>
<td><code>set_trial_intermediate_value(trial_id, step, ...)</code></td>
<td>Report an intermediate value of an objective function.</td>
</tr>
<tr>
<td><code>set_trial_param(trial_id, param_name, ...)</code></td>
<td>Set a parameter to a trial.</td>
</tr>
<tr>
<td><code>set_trial_state(trial_id, state)</code></td>
<td>Update the state of a trial.</td>
</tr>
<tr>
<td><code>set_trial_system_attr(trial_id, key, value)</code></td>
<td>Set an optuna-internal attribute to a trial.</td>
</tr>
<tr>
<td><code>set_trial_user_attr(trial_id, key, value)</code></td>
<td>Set a user-defined attribute to a trial.</td>
</tr>
<tr>
<td><code>set_trial_values(trial_id, values)</code></td>
<td>Set return values of an objective function.</td>
</tr>
<tr>
<td><code>upgrade()</code></td>
<td>Upgrade the storage schema.</td>
</tr>
</tbody>
</table>

6.3. API Reference 157
Check whether a trial state is updatable.

**Parameters**

- **trial_id** (*int*) – ID of the trial. Only used for an error message.
- **trial_state** (*optuna.trial._state.TrialState*) – Trial state to check.

**Raises** `RuntimeError` – If the trial is already finished.

**Return type** `None`

**create_new_study**(*study_name=None*)

Create a new study from a name.

If no name is specified, the storage class generates a name. The returned study ID is unique among all current and deleted studies.

**Parameters**

- **study_name** (*Optional[str]*) – Name of the new study to create.

**Returns** ID of the created study.

**Raises** `optuna.exceptions.DuplicatedStudyError` – If a study with the same study_name already exists.

**Return type** `int`

**create_new_trial**(*study_id*, **template_trial**=None)

Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.

**Parameters**

- **study_id** (*int*) – ID of the study.
- **template_trial** (*Optional[optuna.trial._frozen.FrozenTrial]*) – Template FrozenTrial with default user-attributes, system-attributes, intermediate-values, and a state.

**Returns** ID of the created trial.

**Raises** `KeyError` – If no study with the matching study_id exists.

**Return type** `int`

**delete_study**(*study_id*)

Delete a study.

**Parameters**

- **study_id** (*int*) – ID of the study.

**Raises** `KeyError` – If no study with the matching study_id exists.

**Return type** `None`

**get_all_study_summaries**()

Read a list of `StudySummary` objects.

**Returns** A list of `StudySummary` objects.

**Return type** `List[optuna._study_summary.StudySummary]`

**get_all_trials**(*study_id*, **deepcopy**=True, **states**=None)

Read all trials in a study.

**Parameters**

- **study_id** (*int*) – ID of the study.
• **deepcopy** *(bool)* – Whether to copy the list of trials before returning. Set to **True** if you intend to update the list or elements of the list.

• **states** *(Optional[Tuple[optuna.trial._state.TrialState, ..]*)* – Trial states to filter on. If **None**, include all states.

**Returns**  List of trials in the study.

**Raises**  **KeyError** – If no study with the matching **study_id** exists.

**Return type**  List[optuna.trial._frozen.FrozenTrial]

**get_all_versions** *(*)

Return the schema version list.

**Return type**  List[str]

**get_best_trial** *(study_id)*

Return the trial with the best value in a study.

This method is valid only during single-objective optimization.

**Parameters**  **study_id** *(int)* – ID of the study.

**Returns**  The trial with the best objective value among all finished trials in the study.

**Raises**

• **KeyError** – If no study with the matching **study_id** exists.

• **RuntimeError** – If the study has more than one direction.

• **ValueError** – If no trials have been completed.

**Return type**  optuna.trial._frozen.FrozenTrial

**get_current_version** *(*)

Return the schema version currently used by this storage.

**Return type**  str

**get_head_version** *(*)

Return the latest schema version.

**Return type**  str

**get_n_trials** *(study_id, state=None)*

Count the number of trials in a study.

**Parameters**

• **study_id** *(int)* – ID of the study.

• **state** *(Optional[Union[Tuple[optuna.trial._state.TrialState, ..], optuna.trial._state.TrialState]])* – Trial states to filter on. If **None**, include all states.

**Returns**  Number of trials in the study.

**Raises**  **KeyError** – If no study with the matching **study_id** exists.

**Return type**  int

**get_study_directions** *(study_id)*

Read whether a study maximizes or minimizes an objective.

**Parameters**  **study_id** *(int)* – ID of a study.
Returns Optimization directions list of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type List[optuna._study_direction.StudyDirection]

get_study_id_from_name (study_name)
Read the ID of a study.

Parameters study_name (str) – Name of the study.

Returns ID of the study.

Raises KeyError – If no study with the matching study_name exists.

Return type int

class get_study_id_from_trial_id (trial_id)
Read the ID of a study to which a trial belongs.

Parameters trial_id (int) – ID of the trial.

Returns ID of the study.

Raises KeyError – If no trial with the matching trial_id exists.

Return type int

get_study_name_from_id (study_id)
Read the study name of a study.

Parameters study_id (int) – ID of the study.

Returns Name of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type str

get_study_system_attrs (study_id)
Read the optuna-internal attributes of a study.

Parameters study_id (int) – ID of the study.

Returns Dictionary with the optuna-internal attributes of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type Dict[str, Any]

get_study_user_attrs (study_id)
Read the user-defined attributes of a study.

Parameters study_id (int) – ID of the study.

Returns Dictionary with the user attributes of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type Dict[str, Any]

get_trial (trial_id)
Read a trial.

Parameters trial_id (int) – ID of the trial.

Returns Trial with a matching trial ID.

Raises KeyError – If no trial with the matching trial_id exists.
Return type optuna.trial._frozen.FrozenTrial

get_trial_id_from_study_id_trial_number(study_id, trial_number)
Read the trial id of a trial.

Parameters
• study_id (int) – ID of the study.
• trial_number (int) – Number of the trial.

Returns ID of the trial.

Raises KeyError – If no trial with the matching study_id and trial_number exists.

Return type int

get_trial_number_from_id(trial_id)
Read the trial number of a trial.

Note: The trial number is only unique within a study, and is sequential.

Parameters trial_id (int) – ID of the trial.

Returns Number of the trial.

Raises KeyError – If no trial with the matching trial_id exists.

Return type int

get_trial_param(trial_id, param_name)
Read the parameter of a trial.

Parameters
• trial_id (int) – ID of the trial.
• param_name (str) – Name of the parameter.

Returns Internal representation of the parameter.

Raises KeyError – If no trial with the matching trial_id exists. If no such parameter exists.

Return type float

get_trial_params(trial_id)
Read the parameter dictionary of a trial.

Parameters trial_id (int) – ID of the trial.

Returns Dictionary of a parameters. Keys are parameter names and values are internal representations of the parameter values.

Raises KeyError – If no trial with the matching trial_id exists.

Return type Dict[str, Any]

get_trial_system_attrs(trial_id)
Read the optuna-internal attributes of a trial.

Parameters trial_id (int) – ID of the trial.

Returns Dictionary with the optuna-internal attributes of the trial.
 Raises **KeyError** – If no trial with the matching `trial_id` exists.

 Return type Dict[str, Any]

 **get_trial_user_attrs**(trial_id)

 Read the user-defined attributes of a trial.

 Parameters **trial_id**(int) – ID of the trial.

 Returns Dictionary with the user-defined attributes of the trial.

 Raises **KeyError** – If no trial with the matching `trial_id` exists.

 Return type Dict[str, Any]

 **read_trials_from_remote_storage**(study_id)

 Make an internal cache of trials up-to-date.

 Parameters **study_id**(int) – ID of the study.

 Raises **KeyError** – If no study with the matching `study_id` exists.

 Return type None

 **remove_session**()

 Removes the current session.

 A session is stored in SQLAlchemy’s Thread.LocalRegistry for each thread. This method closes and removes the session which is associated to the current thread. Particularly, under multi-thread use cases, it is important to call this method *from each thread*. Otherwise, all sessions and their associated DB connections are destructed by a thread that occasionally invoked the garbage collector. By default, it is not allowed to touch a SQLite connection from threads other than the thread that created the connection. Therefore, we need to explicitly close the connection from each thread.

 Return type None

 **set_study_directions**(study_id, directions)

 Register optimization problem directions to a study.

 Parameters

 - **study_id**(int) – ID of the study.

 - **directions**(Sequence[optuna._study_direction.StudyDirection]) – A sequence of direction whose element is either `MAXIMIZE` or `MINIMIZE`.

 Raises

 - **KeyError** – If no study with the matching `study_id` exists.

 - **ValueError** – If the directions are already set and the each coordinate of passed `directions` is the opposite direction or `NOT_SET`.

 Return type None

 **set_study_system_attr**(study_id, key, value)

 Register an optuna-internal attribute to a study.

 This method overwrites any existing attribute.

 Parameters

 - **study_id**(int) – ID of the study.

 - **key**(str) – Attribute key.

 - **value**(Any) – Attribute value. It should be JSON serializable.
set_study_user_attr(study_id, key, value)

Register a user-defined attribute to a study.

This method overwrites any existing attribute.

Parameters

- **study_id (int)** – ID of the study.
- **key (str)** – Attribute key.
- **value (Any)** – Attribute value. It should be JSON serializable.

Raises **KeyError** – If no study with the matching study_id exists.

Return type **None**

set_trial_intermediate_value(trial_id, step, intermediate_value)

Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.

Parameters

- **trial_id (int)** – ID of the trial.
- **step (int)** – Step of the trial (e.g., the epoch when training a neural network).
- **intermediate_value (float)** – Intermediate value corresponding to the step.

Raises

- **KeyError** – If no trial with the matching trial_id exists.
- **RuntimeError** – If the trial is already finished.

Return type **None**

set_trial_param(trial_id, param_name, param_value_internal, distribution)

Set a parameter to a trial.

Parameters

- **trial_id (int)** – ID of the trial.
- **param_name (str)** – Name of the parameter.
- **param_value_internal (float)** – Internal representation of the parameter value.

Raises

- **KeyError** – If no trial with the matching trial_id exists.
- **RuntimeError** – If the trial is already finished.

Return type **None**

set_trial_state(trial_id, state)

Update the state of a trial.

Parameters

- **trial_id (int)** – ID of the trial.
• **state** (*optuna.trial._state.TrialState*) – New state of the trial.

**Returns** `True` if the state is successfully updated. `False` if the state is kept the same. The latter happens when this method tries to update the state of *RUNNING* trial to *RUNNING*.

**Raises**

• **KeyError** – If no trial with the matching `trial_id` exists.

• **RuntimeError** – If the trial is already finished.

**Return type** `bool`

**set_trial_system_attr** (*trial_id*, *key*, *value*)
Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.

**Parameters**

• **trial_id** (*int*) – ID of the trial.

• **key** (*str*) – Attribute key.

• **value** (*Any*) – Attribute value. It should be JSON serializable.

**Raises**

• **KeyError** – If no trial with the matching `trial_id` exists.

• **RuntimeError** – If the trial is already finished.

**Return type** `None`

**set_trial_user_attr** (*trial_id*, *key*, *value*)
Set a user-defined attribute to a trial.

This method overwrites any existing attribute.

**Parameters**

• **trial_id** (*int*) – ID of the trial.

• **key** (*str*) – Attribute key.

• **value** (*Any*) – Attribute value. It should be JSON serializable.

**Raises**

• **KeyError** – If no trial with the matching `trial_id` exists.

• **RuntimeError** – If the trial is already finished.

**Return type** `None`

**set_trial_values** (*trial_id*, *values*)
Set return values of an objective function.

This method overwrites any existing trial values.

**Parameters**

• **trial_id** (*int*) – ID of the trial.

• **values** (*Sequence[float]*) – Values of the objective function.

**Raises**

• **KeyError** – If no trial with the matching `trial_id` exists.
• **RuntimeError** – If the trial is already finished.

    Return type None

`upgrade()`

    Upgrade the storage schema.

    Return type None

### optuna.storages.RedisStorage

#### class optuna.storages.RedisStorage(url)

Storage class for Redis backend.

Note that library users can instantiate this class, but the attributes provided by this class are not supposed to be directly accessed by them.

**Example**

We create an `RedisStorage` instance using the given redis database URL.

```python
import optuna

def objective(trial):
 ...

storage = optuna.storages.RedisStorage(
 url="redis://passwd@localhost:port/db",
)

study = optuna.create_study(storage=storage)
study.optimize(objective)
```

**Parameters**

`url` – URL of the redis storage, password and db are optional. (ie: redis://localhost:6379)

**Note:** If you use plan to use Redis as a storage mechanism for optuna, make sure Redis is installed and running. Please execute `$ pip install -U redis` to install redis python library.

**Note:** Added in v1.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See [https://github.com/optuna/optuna/releases/tag/v1.4.0](https://github.com/optuna/optuna/releases/tag/v1.4.0).
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>check_trial_is_updatable</code> (trial_id, trial_state)</td>
<td>Check whether a trial state is updatable.</td>
</tr>
<tr>
<td><code>create_new_study</code> (study_name)</td>
<td>Create a new study from a name.</td>
</tr>
<tr>
<td><code>create_new_trial</code> (study_id[, template_trial])</td>
<td>Create and add a new trial to a study.</td>
</tr>
<tr>
<td><code>delete_study</code> (study_id)</td>
<td>Delete a study.</td>
</tr>
<tr>
<td><code>get_all_study_summaries()</code></td>
<td>Read a list of <code>StudySummary</code> objects.</td>
</tr>
<tr>
<td><code>get_all_trials</code> (study_id[, deepcopy, states])</td>
<td>Read all trials in a study.</td>
</tr>
<tr>
<td><code>get_best_trial</code> (study_id)</td>
<td>Return the trial with the best value in a study.</td>
</tr>
<tr>
<td><code>get_n_trials</code> (study_id[, state])</td>
<td>Count the number of trials in a study.</td>
</tr>
<tr>
<td><code>get_study_directions</code> (study_id)</td>
<td>Read whether a study maximizes or minimizes an objective.</td>
</tr>
<tr>
<td><code>get_study_id_from_name</code> (study_name)</td>
<td>Read the ID of a study.</td>
</tr>
<tr>
<td><code>get_study_id_from_trial_id</code> (trial_id)</td>
<td>Read the ID of a study to which a trial belongs.</td>
</tr>
<tr>
<td><code>get_study_name_from_id</code> (study_id)</td>
<td>Read the study name of a study.</td>
</tr>
<tr>
<td><code>get_study_system_attrs</code> (study_id)</td>
<td>Read the optuna-internal attributes of a study.</td>
</tr>
<tr>
<td><code>get_study_user_attrs</code> (study_id)</td>
<td>Read the user-defined attributes of a study.</td>
</tr>
<tr>
<td><code>get_trial</code> (trial_id)</td>
<td>Read a trial.</td>
</tr>
<tr>
<td><code>get_trial_id_from_study_id_trial_number</code> (trial_id)</td>
<td>Read the trial id of a trial.</td>
</tr>
<tr>
<td><code>get_trial_number_from_id</code> (trial_id)</td>
<td>Read the trial number of a trial.</td>
</tr>
<tr>
<td><code>get_trial_param</code> (trial_id, param_name)</td>
<td>Read the parameter of a trial.</td>
</tr>
<tr>
<td><code>get_trial_params</code> (trial_id)</td>
<td>Read the parameter dictionary of a trial.</td>
</tr>
<tr>
<td><code>get_trial_system_attrs</code> (trial_id)</td>
<td>Read the optuna-internal attributes of a trial.</td>
</tr>
<tr>
<td><code>get_trial_user_attrs</code> (trial_id)</td>
<td>Read the user-defined attributes of a trial.</td>
</tr>
<tr>
<td><code>read_trials_from_remote_storage</code> (study_id)</td>
<td>Make an internal cache of trials up-to-date.</td>
</tr>
<tr>
<td><code>remove_session()</code></td>
<td>Clean up all connections to a database.</td>
</tr>
<tr>
<td><code>set_study_directions</code> (study_id, directions)</td>
<td>Register optimization problem directions to a study.</td>
</tr>
<tr>
<td><code>set_study_system_attr</code> (study_id, key, value)</td>
<td>Register an optuna-internal attribute to a study.</td>
</tr>
<tr>
<td><code>set_study_user_attr</code> (study_id, key, value)</td>
<td>Register a user-defined attribute to a study.</td>
</tr>
<tr>
<td><code>set_trial_intermediate_value</code> (trial_id, step,...)</td>
<td>Report an intermediate value of an objective function.</td>
</tr>
<tr>
<td><code>set_trial_param</code> (trial_id, param_name,...)</td>
<td>Set a parameter to a trial.</td>
</tr>
<tr>
<td><code>set_trial_state</code> (trial_id, state)</td>
<td>Update the state of a trial.</td>
</tr>
<tr>
<td><code>set_trial_system_attr</code> (trial_id, key, value)</td>
<td>Set an optuna-internal attribute to a trial.</td>
</tr>
<tr>
<td><code>set_trial_user_attr</code> (trial_id, key, value)</td>
<td>Set a user-defined attribute to a trial.</td>
</tr>
<tr>
<td><code>set_trial_values</code> (trial_id, values)</td>
<td>Set return values of an objective function.</td>
</tr>
</tbody>
</table>

### check_trial_is_updatable (trial_id, trial_state)
Check whether a trial state is updatable.

**Parameters**

- `trial_id` *(int)* – ID of the trial. Only used for an error message.
- `trial_state` *(optuna.trial._state.TrialState)* – Trial state to check.

**Raises** `RuntimeError` – If the trial is already finished.

**Return type** `None`

### create_new_study (study_name=None)
Create a new study from a name.
If no name is specified, the storage class generates a name. The returned study ID is unique among all current and deleted studies.

**Parameters**

- **study_name** *(Optional[str]*) – Name of the new study to create.

**Returns**

- ID of the created study.

**Raises**

- `optuna.exceptions.DuplicatedStudyError` – If a study with the same `study_name` already exists.

**Return type**

- `int`

### create_new_trial(study_id, template_trial=None)

Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.

**Parameters**

- **study_id** *(int)* – ID of the study.

- **template_trial** *(Optional[optuna.trial._frozen.FrozenTrial]*) – Template FrozenTrial with default user-attributes, system-attributes, intermediate-values, and a state.

**Returns**

- ID of the created trial.

**Raises**

- `KeyError` – If no study with the matching `study_id` exists.

**Return type**

- `int`

### delete_study(study_id)

Delete a study.

**Parameters**

- **study_id** *(int)* – ID of the study.

**Raises**

- `KeyError` – If no study with the matching `study_id` exists.

**Return type**

- `None`

### get_all_study_summaries()

Read a list of `StudySummary` objects.

**Returns**

- A list of `StudySummary` objects.

**Return type**

- `List[optuna._study_summary.StudySummary]`

### get_all_trials(study_id, deepcopy=True, states=None)

Read all trials in a study.

**Parameters**

- **study_id** *(int)* – ID of the study.

- **deepcopy** *(bool)* – Whether to copy the list of trials before returning. Set to `True` if you intend to update the list or elements of the list.

- **states** *(Optional[Tuple[optuna.trial._state.TrialState, ..]])* – Trial states to filter on. If `None`, include all states.

**Returns**

- List of trials in the study.

**Raises**

- `KeyError` – If no study with the matching `study_id` exists.

**Return type**

- `List[optuna.trial._frozen.FrozenTrial]`
get_best_trial (study_id)
Return the trial with the best value in a study.

This method is valid only during single-objective optimization.

Parameters study_id (int) – ID of the study.

Returns The trial with the best objective value among all finished trials in the study.

Raises
• KeyError – If no study with the matching study_id exists.
• RuntimeError – If the study has more than one direction.
• ValueError – If no trials have been completed.

Return type optuna.trial._frozen.FrozenTrial

get_n_trials (study_id, state=None)
Count the number of trials in a study.

Parameters
• study_id (int) – ID of the study.
• state (Optional[Union[Tuple[optuna.trial._state.TrialState, ...
    , optuna.trial._state.TrialState]]]) – Trial states to filter on. If None, include all states.

Returns Number of trials in the study.

Raises KeyError – If no study with the matching study_id exists.

Return type int

get_study_directions (study_id)
Read whether a study maximizes or minimizes an objective.

Parameters study_id (int) – ID of a study.

Returns Optimization directions list of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type List[optuna._study_direction.StudyDirection]

get_study_id_from_name (study_name)
Read the ID of a study.

Parameters study_name (str) – Name of the study.

Returns ID of the study.

Raises KeyError – If no study with the matching study_name exists.

Return type int

get_study_id_from_trial_id (trial_id)
Read the ID of a study to which a trial belongs.

Parameters trial_id (int) – ID of the trial.

Returns ID of the study.

Raises KeyError – If no trial with the matching trial_id exists.

Return type int
get_study_name_from_id(study_id)
Read the study name of a study.

Parameters study_id (int) – ID of the study.

Returns Name of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type str

get_study_system_attrs(study_id)
Read the optuna-internal attributes of a study.

Parameters study_id (int) – ID of the study.

Returns Dictionary with the optuna-internal attributes of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type Dict[str, Any]

get_study_user_attrs(study_id)
Read the user-defined attributes of a study.

Parameters study_id (int) – ID of the study.

Returns Dictionary with the user attributes of the study.

Raises KeyError – If no study with the matching study_id exists.

Return type Dict[str, Any]

get_trial(trial_id)
Read a trial.

Parameters trial_id (int) – ID of the trial.

Returns Trial with a matching trial ID.

Raises KeyError – If no trial with the matching trial_id exists.

Return type optuna.trial._frozen.FrozenTrial

get_trial_id_from_study_id_trial_number(study_id, trial_number)
Read the trial id of a trial.

Parameters

• study_id (int) – ID of the study.

• trial_number (int) – Number of the trial.

Returns ID of the trial.

Raises KeyError – If no trial with the matching study_id and trial_number exists.

Return type int

get_trial_number_from_id(trial_id)
Read the trial number of a trial.

Parameters trial_id (int) – ID of the trial.

Note: The trial number is only unique within a study, and is sequential.
Returns Number of the trial.

Raises **KeyError** – If no trial with the matching `trial_id` exists.

Return type int

get_trial_param(trial_id, param_name)
Read the parameter of a trial.

Parameters

- `trial_id (int)` – ID of the trial.
- `param_name (str)` – Name of the parameter.

Returns Internal representation of the parameter.

Raises **KeyError** – If no trial with the matching `trial_id` exists. If no such parameter exists.

Return type float

get_trial_params(trial_id)
Read the parameter dictionary of a trial.

Parameters `trial_id (int)` – ID of the trial.

Returns Dictionary of a parameters. Keys are parameter names and values are internal representations of the parameter values.

Raises **KeyError** – If no trial with the matching `trial_id` exists.

Return type `Dict[str, Any]`

get_trial_system_attrs(trial_id)
Read the optuna-internal attributes of a trial.

Parameters `trial_id (int)` – ID of the trial.

Returns Dictionary with the optuna-internal attributes of the trial.

Raises **KeyError** – If no trial with the matching `trial_id` exists.

Return type `Dict[str, Any]`

get_trial_user_attrs(trial_id)
Read the user-defined attributes of a trial.

Parameters `trial_id (int)` – ID of the trial.

Returns Dictionary with the user-defined attributes of the trial.

Raises **KeyError** – If no trial with the matching `trial_id` exists.

Return type `Dict[str, Any]`

read_trials_from_remote_storage(study_id)
Make an internal cache of trials up-to-date.

Parameters `study_id (int)` – ID of the study.

Raises **KeyError** – If no study with the matching `study_id` exists.

Return type None

remove_session()
Clean up all connections to a database.
Return type  None

**set_study_directions** *(study_id, directions)*
Register optimization problem directions to a study.

Parameters
- **study_id** *(int)* – ID of the study.
- **directions** *(Sequence[optuna._study_direction.StudyDirection]*)
  – A sequence of direction whose element is either `MAXIMIZE` or `MINIMIZE`.

Raises
- **KeyError** – If no study with the matching `study_id` exists.
- **ValueError** – If the directions are already set and the each coordinate of passed
  `directions` is the opposite direction or `NOT_SET`.

Return type  None

**set_study_system_attr** *(study_id, key, value)*
Register an optuna-internal attribute to a study.
This method overwrites any existing attribute.

Parameters
- **study_id** *(int)* – ID of the study.
- **key** *(str)* – Attribute key.
- **value** *(Any)* – Attribute value. It should be JSON serializable.

Raises **KeyError** – If no study with the matching `study_id` exists.

Return type  None

**set_study_user_attr** *(study_id, key, value)*
Register a user-defined attribute to a study.
This method overwrites any existing attribute.

Parameters
- **study_id** *(int)* – ID of the study.
- **key** *(str)* – Attribute key.
- **value** *(Any)* – Attribute value. It should be JSON serializable.

Raises **KeyError** – If no study with the matching `study_id` exists.

Return type  None

**set_trial_intermediate_value** *(trial_id, step, intermediate_value)*
Report an intermediate value of an objective function.
This method overwrites any existing intermediate value associated with the given step.

Parameters
- **trial_id** *(int)* – ID of the trial.
- **step** *(int)* – Step of the trial (e.g., the epoch when training a neural network).
- **intermediate_value** *(float)* – Intermediate value corresponding to the step.

Raises
• **KeyError** – If no trial with the matching `trial_id` exists.

• **RuntimeError** – If the trial is already finished.

Return type: `None`

### set_trial_param

Set a parameter to a trial.

**Parameters**

- `trial_id` (*int*) – ID of the trial.
- `param_name` (*str*) – Name of the parameter.
- `param_value_internal` (*float*) – Internal representation of the parameter value.

**Raises**

- **KeyError** – If no trial with the matching `trial_id` exists.

- **RuntimeError** – If the trial is already finished.

Return type: `None`

### set_trial_state

Update the state of a trial.

**Parameters**

- `trial_id` (*int*) – ID of the trial.
- `state` (*optuna.trial._state.TrialState*) – New state of the trial.

**Returns**

- `True` if the state is successfully updated.
- `False` if the state is kept the same. The latter happens when this method tries to update the state of `RUNNING` trial to `RUNNING`.

**Raises**

- **KeyError** – If no trial with the matching `trial_id` exists.

- **RuntimeError** – If the trial is already finished.

Return type: `bool`

### set_trial_system_attr

Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.

**Parameters**

- `trial_id` (*int*) – ID of the trial.
- `key` (*str*) – Attribute key.
- `value` (*Any*) – Attribute value. It should be JSON serializable.

**Raises**

- **KeyError** – If no trial with the matching `trial_id` exists.

- **RuntimeError** – If the trial is already finished.

Return type: `None`
set_trial_user_attr(trial_id, key, value)
Set a user-defined attribute to a trial.

This method overwrites any existing attribute.

Parameters

- trial_id (int) – ID of the trial.
- key (str) – Attribute key.
- value (Any) – Attribute value. It should be JSON serializable.

Raises

- KeyError – If no trial with the matching trial_id exists.
- RuntimeError – If the trial is already finished.

Return type None

set_trial_values(trial_id, values)
Set return values of an objective function.

This method overwrites any existing trial values.

Parameters

- trial_id (int) – ID of the trial.
- values (Sequence[float]) – Values of the objective function.

 Raises

- KeyError – If no trial with the matching trial_id exists.
- RuntimeError – If the trial is already finished.

Return type None

6.3.12 optuna.structs

This module is deprecated, with former functionality moved to optuna.trial and optuna.study.

class optuna.structs.TrialState(value)
State of a Trial.

RUNNING
The Trial is running.

COMPLETE
The Trial has been finished without any error.

PRUNED
The Trial has been pruned with TrialPruned.

FAIL
The Trial has failed due to an uncaught error.

Deprecated since version 1.4.0: This class is deprecated. Please use TrialState instead.

class optuna.structs.StudyDirection(value)
Direction of a Study.

NOT_SET
Direction has not been set.
**MINIMIZE**

*Study* minimizes the objective function.

**MAXIMIZE**

*Study* maximizes the objective function.

Deprecated since version 1.4.0: This class is deprecated. Please use *StudyDirection* instead.

class optuna.structs.FrozenTrial(
    number, state, value, datetime_start, datetime_complete, 
    params, distributions, user_attrs, system_attrs, intermediate_values, trial_id, *, values=None)

**Warning:** Deprecated in v1.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v3.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

This class was moved to *trial*. Please use *FrozenTrial* instead.

**property distributions**

Dictionary that contains the distributions of *params*.

**property duration**

Return the elapsed time taken to complete the trial.

    Returns  The duration.

**property last_step**

Return the maximum step of *intermediate_values* in the trial.

    Returns  The maximum step of intermediates.

**report** (value, step)

Interface of report function.

Since *FrozenTrial* is not pruned, this report function does nothing.

**See also:**

Please refer to *should_prune()*.

**Parameters**

- **value** *(float)* – A value returned from the objective function.
- **step** *(int)* – Step of the trial (e.g., Epoch of neural network training). Note that pruners assume that *step* starts at zero. For example, *MedianPruner* simply checks if *step* is less than *n_warmup_steps* as the warmup mechanism.

**Return type** None

**should_prune** ()

Suggest whether the trial should be pruned or not.

The suggestion is always *False* regardless of a pruning algorithm.

**Note:** *FrozenTrial* only samples one combination of parameters.

    Returns  *False*. 

Return type: bool

class optuna.structs.StudySummary (study_name, direction, best_trial, user_attrs, system_attrs, n_trials, datetime_start, study_id, *, directions=None)

**Warning:** Deprecated in v1.4.0. This feature will be removed in the future. The removal of this feature is currently scheduled for v3.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

This class was moved to study. Please use StudySummary instead.

### 6.3.13 optuna.study

The study module implements the Study object and related functions. A public constructor is available for the Study class, but direct use of this constructor is not recommended. Instead, library users should create and load a Study using create_study() and load_study() respectively.

**Methods**

- add_trial(trial): Add trial to study.
- enqueue_trial(params): Enqueue a trial with given parameter values.
- get_trials([deepcopy, states]): Return all trials in the study.
- optimize(func[, n_trials, timeout, n_jobs, ...]): Optimize an objective function.
- set_system_attr(key, value): Set a system attribute to the study.
- set_user_attr(key, value): Set a user attribute to the study.
- stop(): Exit from the current optimization loop after the running trials finish.
- trials_dataframe([attrs, multi_index]): Export trials as a pandas DataFrame.
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>best_params</td>
<td>Return parameters of the best trial in the study.</td>
</tr>
<tr>
<td>best_trial</td>
<td>Return the best trial in the study.</td>
</tr>
<tr>
<td>best_trials</td>
<td>Return trials located at the Pareto front in the study.</td>
</tr>
<tr>
<td>best_value</td>
<td>Return the best objective value in the study.</td>
</tr>
<tr>
<td>direction</td>
<td>Return the direction of the study.</td>
</tr>
<tr>
<td>directions</td>
<td>Return the directions of the study.</td>
</tr>
<tr>
<td>system_attrs</td>
<td>Return system attributes.</td>
</tr>
<tr>
<td>trials</td>
<td>Return all trials in the study.</td>
</tr>
<tr>
<td>user_attrs</td>
<td>Return user attributes.</td>
</tr>
</tbody>
</table>

add_trial(trial)

Add trial to study.

The trial is validated before being added.

Example

```python
import optuna
from optuna.distributions import UniformDistribution

def objective(trial):
 x = trial.suggest_uniform("x", 0, 10)
 return x ** 2

study = optuna.create_study()
assert len(study.trials) == 0

trial = optuna.trial.create_trial(
 params={"x": 2.0},
 distributions={"x": UniformDistribution(0, 10),
 value=4.0},
)

study.add_trial(trial)
assert len(study.trials) == 1

study.optimize(objective, n_trials=3)
assert len(study.trials) == 4

other_study = optuna.create_study()

for trial in study.trials:
 other_study.add_trial(trial)
assert len(other_study.trials) == len(study.trials)

other_study.optimize(objective, n_trials=2)
assert len(other_study.trials) == len(study.trials) + 2
```

See also:

This method should in general be used to add already evaluated trials (trial.state.
is_finished() == True). To queue trials for evaluation, please refer to `enqueue_trial()`.

See also:

See `create_trial()` for how to create trials.

Parameters

* trial (optuna.trial._frozen.FrozenTrial) – Trial to add.

Raises

* `ValueError` – If trial is an invalid state.

Return type

None

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

---

**property best_params**

Return parameters of the best trial in the study.

Returns

* A dictionary containing parameters of the best trial.

Raises

* `RuntimeError` – If the study has more than one direction.

**property best_trial**

Return the best trial in the study.

Returns

* A `FrozenTrial` object of the best trial.

Raises

* `RuntimeError` – If the study has more than one direction.

**property best_trials**

Return trials located at the Pareto front in the study.

A trial is located at the Pareto front if there are no trials that dominate the trial. It’s called that a trial \( t_0 \) dominates another trial \( t_1 \) if \( \forall v_0 \leq v_1 \) for \( v_0, v_1 \) in \( \text{zip}(t_0 \cdot \text{values}, t_1 \cdot \text{values}) \) and \( \exists v_0 < v_1 \) for \( v_0, v_1 \) in \( \text{zip}(t_0 \cdot \text{values}, t_1 \cdot \text{values}) \) are held.

Returns

* A list of `FrozenTrial` objects.

**property best_value**

Return the best objective value in the study.

Returns

* A float representing the best objective value.

Raises

* `RuntimeError` – If the study has more than one direction.

**property direction**

Return the direction of the study.

Returns

* A `StudyDirection` object.

Raises

* `RuntimeError` – If the study has more than one direction.

**property directions**

Return the directions of the study.

Returns

* A list of `StudyDirection` objects.

**enqueue_trial**(params)

Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your objective function.
Example

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", 0, 10)
 return x ** 2

study = optuna.create_study()
study.enqueue_trial({"x": 5})
study.enqueue_trial({"x": 0})
study.optimize(objective, n_trials=2)

assert study.trials[0].params == {"x": 5}
assert study.trials[1].params == {"x": 0}
```

Parameters

**params** (*Dict[str, Any]*) – Parameter values to pass your objective function.

Return type None

Note: Added in v1.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v1.2.0.

get_trials (*deepcopy=True, states=None*)

Return all trials in the study.

The returned trials are ordered by trial number.

Example

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -1, 1)
 return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)
trials = study.get_trials()
assert len(trials) == 3
```

Parameters

- **deepcopy** (*bool*) – Flag to control whether to apply `copy.deepcopy()` to the trials.
  
  Note that if you set the flag to `False`, you shouldn’t mutate any fields of the returned trial. Otherwise the internal state of the study may corrupt and unexpected behavior may happen.
• **states** *(Optional*[Tuple*[optuna.trial._state.TrialState, ..]*)* –
Trial states to filter on. If None, include all states.

**Returns** A list of FrozenTrial objects.

**Return type** List[optuna.trial._frozen.FrozenTrial]

**optimize** *(func, n_trials=None, timeout=None, n_jobs=1, catch=(), callbacks=None, gc_after_trial=False, show_progress_bar=False)*
Optimize an objective function.

Optimization is done by choosing a suitable set of hyperparameter values from a given range. Uses a
sampler which implements the task of value suggestion based on a specified distribution. The sampler is
specified in `create_study()` and the default choice for the sampler is TPE. See also `TPESampler`
for more details on ‘TPE’.

**Example**

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -1, 1)
 return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)
```

**Parameters**

• **func** *(Callable[[optuna.trial._trial.Trial], Union[float, Sequence[float]]])* – A callable that implements objective function.

• **n_trials** *(Optional*[int]*)* – The number of trials. If this argument is set to None, there is no limitation on the number of trials. If timeout is also set to None, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM.

• **timeout** *(Optional*[float]*)* – Stop study after the given number of second(s). If this argument is set to None, the study is executed without time limitation. If n_trials is also set to None, the study continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM.

• **n_jobs** *(int)* – The number of parallel jobs. If this argument is set to -1, the number is set to CPU count.

• **catch** *(Tuple*[Type*[Exception], ..]*)* – A study continues to run even when a trial raises one of the exceptions specified in this argument. Default is an empty tuple, i.e. the study will stop for any exception except for `TrialPruned`.

• **callbacks** *(Optional*[List*[Callable[[optuna.study.Study, optuna.trial._frozen.FrozenTrial], None]]]*)* – List of callback functions that are invoked at the end of each trial. Each function must accept two parameters with the following types in this order: Study and FrozenTrial.

• **gc_after_trial** *(bool)* – Flag to determine whether to automatically run garbage collection after each trial. Set to True to run the garbage collection, False otherwise.
When it runs, it runs a full collection by internally calling `gc.collect()`. If you see an increase in memory consumption over several trials, try setting this flag to `True`.

See also:

*How do I avoid running out of memory (OOM) when optimizing studies?*

- `show_progress_bar` *(bool)* – Flag to show progress bars or not. To disable progress bar, set this `False`. Currently, progress bar is experimental feature and disabled when `n_jobs ≠ 1`.

Raises `RuntimeError` – If nested invocation of this method occurs.

Return type: None

`set_system_attr` *(key, value)*

Set a system attribute to the study.

Note that Optuna internally uses this method to save system messages. Please use `set_user_attr()` to set users’ attributes.

Parameters

- `key` *(str)* – A key string of the attribute.
- `value` *(Any)* – A value of the attribute. The value should be JSON serializable.

Return type: None

`set_user_attr` *(key, value)*

Set a user attribute to the study.

See also:

See `user_attrs` for related attribute.

Example

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", 0, 1)
 y = trial.suggest_float("y", 0, 1)
 return x ** 2 + y ** 2

study = optuna.create_study()

study.set_user_attr("objective function", "quadratic function")
study.set_user_attr("dimensions", 2)
study.set_user_attr("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
 "objective function": "quadratic function",
 "dimensions": 2,
 "contributors": ["Akiba", "Sano"],
}
```

Parameters
• **key** *(str)* – A key string of the attribute.

• **value** *(Any)* – A value of the attribute. The value should be JSON serializable.

**Return type** None

**stop()**
Exit from the current optimization loop after the running trials finish.

This method lets the running `optimize()` method return immediately after all trials which the `optimize()` method spawned finishes. This method does not affect any behaviors of parallel or successive study processes.

**Example**

```python
import optuna

def objective(trial):
 if trial.number == 4:
 trial.study.stop()
 x = trial.suggest_uniform("x", 0, 10)
 return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=10)
assert len(study.trials) == 5
```

**Raises** *RuntimeError* – If this method is called outside an objective function or callback.

**Return type** None

**property system_attrs**
Return system attributes.

**Returns** A dictionary containing all system attributes.

**property trials**
Return all trials in the study.

The returned trials are ordered by trial number.

This is a short form of `self.get_trials(deepcopy=True, states=None)`.

**Returns** A list of `FrozenTrial` objects.

**trials_dataframe** *(attrs=('number', 'value', 'datetime_start', 'datetime_complete', 'duration', 'params', 'user_attrs', 'system_attrs', 'state'), multi_index=False)*
Export trials as a pandas `DataFrame`.

The `DataFrame` provides various features to analyze studies. It is also useful to draw a histogram of objective values and to export trials as a CSV file. If there are no trials, an empty `DataFrame` is returned.
Example

```python
import optuna
import pandas

def objective(trial):
 x = trial.suggest_uniform("x", -1, 1)
 return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

Create a dataframe from the study.
df = study.trials_dataframe()
assert isinstance(df, pandas.DataFrame)
assert df.shape[0] == 3 # n_trials.
```

Parameters

- `attrs (Tuple[str, ..])` – Specifies field names of FrozenTrial to include them to a DataFrame of trials.
- `multi_index (bool)` – Specifies whether the returned DataFrame employs MultiIndex or not. Columns that are hierarchical by nature such as (params, x) will be flattened to params_x when set to `False`.

Returns A pandas DataFrame of trials in the `Study`.

Return type `pandas.core.frame.DataFrame`

Note: If `value` is in `attrs` during multi-objective optimization, it is implicitly replaced with `values`.

**property user_attrs**

Return user attributes.

See also:
See `set_user_attr()` for related method.

Example

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", 0, 1)
 y = trial.suggest_float("y", 0, 1)
 return x ** 2 + y ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)
study.set_user_attr("objective function", "quadratic function")
```

(continues on next page)
study.set_user_attr("dimensions", 2)
study.set_user_attr("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
    "objective function": "quadratic function",
    "dimensions": 2,
    "contributors": ["Akiba", "Sano"]
}

Returns A dictionary containing all user attributes.

**optuna.study.create_study**

optuna.study.create_study (storage=None, sampler=None, pruner=None, study_name=None, direction=None, load_if_exists=False, *, directions=None)

Create a new Study.

**Example**

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", 0, 10)
 return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)
```

**Parameters**

- **storage** *(Optional[Union[str, optuna.storages._base.BaseStorage]])* – Database URL. If this argument is set to None, in-memory storage is used, and the Study will not be persistent.

**Note:**

When a database URL is passed, Optuna internally uses SQLAlchemy to handle the database. Please refer to SQLAlchemy’s document for further details. If you want to specify non-default options to SQLAlchemy Engine, you can instantiate RDBStorage with your desired options and pass it to the `storage` argument instead of a URL.

- **sampler** *(Optional[optuna.samplers._base.BaseSampler]*) – A sampler object that implements background algorithm for value suggestion. If None is specified, TPESampler is used during single-objective optimization and NSGAIISampler during multi-objective optimization. See also samplers.

- **pruner** *(Optional[optuna.pruners._base.BasePruner]*) – A pruner object that decides early stopping of unpromising trials. If None is specified, MedianPruner is used as the default. See also pruners.
• **study_name** (*Optional*[str]) – Study’s name. If this argument is set to None, a unique name is generated automatically.

• **direction** (*Optional*[str]) – Direction of optimization. Set *minimize* for minimization and *maximize* for maximization.

**Note:** If none of *direction* and *directions* are specified, the direction of the study is set to “minimize”.

• **directions** (*Optional*[Sequence[str]]) – A sequence of directions during multi-objective optimization.

• **load_if_exists** (*bool*) – Flag to control the behavior to handle a conflict of study names. In the case where a study named study_name already exists in the storage, a *DuplicatedStudyError* is raised if load_if_exists is set to *False*. Otherwise, the creation of the study is skipped, and the existing one is returned.

**Returns** A *Study* object.

**Raises** *ValueError* – If the length of *directions* is zero. Or, if *direction* is neither ‘minimize’ nor ‘maximize’ when it is a string. Or, if the element of *directions* is neither minimize nor maximize. Or, if both *direction* and *directions* are specified.

**Return type** *optuna.study.Study*

See also:

*optuna.create_study()* is an alias of *optuna.study.create_study()*.

**optuna.study.load_study**

*optuna.study.load_study*(study_name, storage, sampler=None, pruner=None)  
Load the existing *Study* that has the specified name.

**Example**

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", 0, 10)
 return x ** 2

study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study")
study.optimize(objective, n_trials=3)

loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.db")
assert len(loaded_study.trials) == len(study.trials)
```

**Parameters**

• **study_name** (str) – Study’s name. Each study has a unique name as an identifier.
• **storage** *(Union[str, optuna.storages._base.BaseStorage])* – Database URL such as sqlite:///example.db. Please see also the documentation of `create_study()` for further details.

• **sampler** *(Optional[optuna.samplers._base.BaseSampler]*) – A sampler object that implements background algorithm for value suggestion. If *None* is specified, `TPESampler` is used as the default. See also `samplers`.

• **pruner** *(Optional[optuna.pruners._base.BasePruner]*) – A pruner object that decides early stopping of unpromising trials. If *None* is specified, `MedianPruner` is used as the default. See also `pruners`.

**Return type** *optuna.study.Study*

**See also:**

* `optuna.load_study()` is an alias of `optuna.study.load_study()`.

**optuna.study.delete_study**

`optuna.study.delete_study` *(study_name, storage)*

Delete a *Study* object.

**Example**

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

optuna.delete_study(study_name="example-study", storage="sqlite:///example.db")
```

**Parameters**

- **study_name** *(str)* – Study’s name.

- **storage** *(Union[str, optuna.storages._base.BaseStorage])* – Database URL such as sqlite:///example.db. Please see also the documentation of `create_study()` for further details.

**Return type** *None*

**See also:**

* `optuna.delete_study()` is an alias of `optuna.study.delete_study()`.
**optuna.study.get_all_study_summaries**

**optuna.study.get_all_study_summaries**(storage)

Get all history of studies stored in a specified storage.

**Example**

```python
import optuna

def objective(trial):
 x = trial.suggest_float("x", -10, 10)
 return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries(storage="sqlite:///example.db")
assert len(study_summaries) == 1

study_summary = study_summaries[0]
assert study_summary.study_name == "example-study"
```

**Parameters**

- **storage** (Union[ str, optuna.storages._base.BaseStorage]) – Database URL such as sqlite:///example.db. Please see also the documentation of create_study() for further details.

**Returns**

- List of study history summarized as StudySummary objects.

**Return type**

List[ optuna._study_summary.StudySummary ]

**See also:**

optuna.get_all_study_summaries() is an alias of optuna.study.get_all_study_summaries().

**optuna.study.StudyDirection**

**class optuna.study.StudyDirection**(value)

Direction of a Study.

- **NOT_SET**
  Direction has not been set.

- **MINIMIZE**
  Study minimizes the objective function.

- **MAXIMIZE**
  Study maximizes the objective function.
Attributes

---

MAXIMIZE
MINIMIZE
NOT_SET

optuna.study.StudySummary

class optuna.study.StudySummary(study_name, direction, best_trial, user_attrs, system_attrs, n_trials, datetime_start, study_id, *, directions=None)

Basic attributes and aggregated results of a Study.

See also `optuna.study.get_all_study_summaries()`.

**study_name**
Name of the Study.

**direction**
*StudyDirection* of the Study.

**Note**: This attribute is only available during single-objective optimization.

**directions**
A sequence of *StudyDirection* objects.

**best_trial**
FrozenTrial with best objective value in the Study.

**user_attrs**
Dictionary that contains the attributes of the Study set with `optuna.study.Study.set_user_attr()`.

**system_attrs**
Dictionary that contains the attributes of the Study internally set by Optuna.

**n_trials**
The number of trials ran in the Study.

**datetime_start**
Datetime where the Study started.

Attributes

---

direction
directions
6.3.14 optuna.trial

The `trial` module contains `Trial` related classes and functions.

A `Trial` instance represents a process of evaluating an objective function. This instance is passed to an objective function and provides interfaces to get parameter suggestion, manage the trial’s state, and set/get user-defined attributes of the trial, so that Optuna users can define a custom objective function through the interfaces. Basically, Optuna users only use it in their custom objective functions.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optuna.trial.Trial</code></td>
<td>A trial is a process of evaluating an objective function.</td>
</tr>
<tr>
<td><code>optuna.trial.FixedTrial</code></td>
<td>A trial class which suggests a fixed value for each parameter.</td>
</tr>
<tr>
<td><code>optuna.trial.FrozenTrial</code></td>
<td>Status and results of a <code>Trial</code>.</td>
</tr>
<tr>
<td><code>optuna.trial.TrialState</code></td>
<td>State of a <code>Trial</code>.</td>
</tr>
<tr>
<td><code>optuna.trial.create_trial</code></td>
<td>Create a new <code>FrozenTrial</code>.</td>
</tr>
</tbody>
</table>

**optuna.trial.Trial**

**class** `optuna.trial.Trial` *(study, trial_id)*

A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter suggestion, manage the trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended. This object is seamlessly instantiated and passed to the objective function behind the `optuna.study.Study.optimize()` method; hence library users do not care about instantiation of this object.

**Parameters**
- **study** – A `Study` object.
- **trial_id** – A trial ID that is automatically generated.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>report(value, step)</code></td>
<td>Report an objective function value for a given step.</td>
</tr>
<tr>
<td><code>set_system_attr(key, value)</code></td>
<td>Set system attributes to the trial.</td>
</tr>
<tr>
<td><code>set_user_attr(key, value)</code></td>
<td>Set user attributes to the trial.</td>
</tr>
<tr>
<td><code>should_prune()</code></td>
<td>Suggest whether the trial should be pruned or not.</td>
</tr>
<tr>
<td><code>suggest_categorical(name, choices)</code></td>
<td>Suggest a value for the categorical parameter.</td>
</tr>
<tr>
<td><code>suggest_discrete_uniform(name, low, high, q)</code></td>
<td>Suggest a value for the discrete parameter.</td>
</tr>
<tr>
<td><code>suggest_float(name, low, high, *[step, log]*)</code></td>
<td>Suggest a value for the floating point parameter.</td>
</tr>
<tr>
<td><code>suggest_int(name, low, high[, step, log])</code></td>
<td>Suggest a value for the integer parameter.</td>
</tr>
<tr>
<td><code>suggest_loguniform(name, low, high)</code></td>
<td>Suggest a value for the continuous parameter.</td>
</tr>
<tr>
<td><code>suggest_uniform(name, low, high)</code></td>
<td>Suggest a value for the continuous parameter.</td>
</tr>
</tbody>
</table>
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>datetime_start</code></td>
<td>Return start datetime.</td>
</tr>
<tr>
<td><code>distributions</code></td>
<td>Return distributions of parameters to be optimized.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>Return trial’s number which is consecutive and unique in a study.</td>
</tr>
<tr>
<td><code>params</code></td>
<td>Return parameters to be optimized.</td>
</tr>
<tr>
<td><code>system_attrs</code></td>
<td>Return system attributes.</td>
</tr>
<tr>
<td><code>user_attrs</code></td>
<td>Return user attributes.</td>
</tr>
</tbody>
</table>

**property `datetime_start`**
Return start datetime.

**Returns** Datetime where the Trial started.

**property `distributions`**
Return distributions of parameters to be optimized.

**Returns** A dictionary containing all distributions.

**property `number`**
Return trial’s number which is consecutive and unique in a study.

**Returns** A trial number.

**property `params`**
Return parameters to be optimized.

**Returns** A dictionary containing all parameters.

**report** *(value, step)*
Report an objective function value for a given step.

The reported values are used by the pruners to determine whether this trial should be pruned.

**See also:**
Please refer to `BasePruner`.

**Note:** The reported value is converted to float type by applying `float()` function internally. Thus, it accepts all float-like types (e.g., `numpy.float32`). If the conversion fails, a `TypeError` is raised.

**Example**

Report intermediate scores of `SGDClassifier` training.

```python
import numpy as nprom sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
```

(continues on next page)
def objective(trial):
    clf = SGDClassifier(random_state=0)
    for step in range(100):
        clf.partial_fit(X_train, y_train, np.unique(y))
        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step=step)
        if trial.should_prune():
            raise optuna.TrialPruned()
    return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters

- **value** (float) – A value returned from the objective function.
- **step** (int) – Step of the trial (e.g., Epoch of neural network training). Note that pruners assume that step starts at zero. For example, MedianPruner simply checks if step is less than n_warmup_steps as the warmup mechanism.

Raises **NotImplementedError** – If trial is being used for multi-objective optimization.

Return type None

set_system_attr(key, value)

Set system attributes to the trial.

Note that Optuna internally uses this method to save system messages such as failure reason of trials. Please use set_user_attr() to set users’ attributes.

Parameters

- **key** (str) – A key string of the attribute.
- **value** (Any) – A value of the attribute. The value should be JSON serializable.

Return type None

set_user_attr(key, value)

Set user attributes to the trial.

The user attributes in the trial can be access via optuna.trial.Trial.user_attrs().

Example

Save fixed hyperparameters of neural network training.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import optuna
```
**X, y = load_iris(return_X_y=True)**

**X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)**

```python

def objective(trial):
 trial.set_user_attr("BATCHSIZE", 128)
 momentum = trial.suggest_uniform("momentum", 0, 1.0)
 clf = MLPClassifier(
 hidden_layer_sizes=(100, 50),
 batch_size=trial.user_attrs["BATCHSIZE"],
 momentum=momentum,
 solver="sgd",
 random_state=0,
)
 clf.fit(X_train, y_train)
 return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
assert "BATCHSIZE" in study.best_trial.user_attrs.keys()
assert study.best_trial.user_attrs["BATCHSIZE"] == 128
```

**Parameters**

- **key (str)** – A key string of the attribute.
- **value (Any)** – A value of the attribute. The value should be JSON serializable.

**Return type** None

**should_prune()**

Suggest whether the trial should be pruned or not.

The suggestion is made by a pruning algorithm associated with the trial and is based on previously reported values. The algorithm can be specified when constructing a *Study*.

**Note:** If no values have been reported, the algorithm cannot make meaningful suggestions. Similarly, if this method is called multiple times with the exact same set of reported values, the suggestions will be the same.

**See also:**

Please refer to the example code in *optuna.trial.Trial.report()*.

**Returns** A boolean value. If True, the trial should be pruned according to the configured pruning algorithm. Otherwise, the trial should continue.

**Raises** NotImplementedError – If trial is being used for multi-objective optimization.

**Return type** bool

**suggest_categorical (name, choices)**

Suggest a value for the categorical parameter.

The value is sampled from choices.
Example

Suggest a kernel function of SVC.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
 kernel = trial.suggest_categorical("kernel", ["linear", "poly", "rbf"])
 clf = SVC(kernel=kernel, gamma="scale", random_state=0)
 clf.fit(X_train, y_train)
 return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
```

Parameters

- **name** *(str)* - A parameter name.
- **choices** *(Sequence[Union[None, bool, int, float, str]])* - Parameter value candidates.

Return type *(Union[None, bool, int, float, str])*  

See also:  
*CategoricalDistribution.*

**suggest_discrete_uniform** *(name, low, high, q)*

Suggest a value for the discrete parameter.

The value is sampled from the range *[low, high]*, and the step of discretization is *q*. More specifically, this method returns one of the values in the sequence low, low + q, low + 2q, ..., low + kq ≤ high, where *k* denotes an integer. Note that *high* may be changed due to round-off errors if *q* is not an integer. Please check warning messages to find the changed values.
Example

Suggest a fraction of samples used for fitting the individual learners of `GradientBoostingClassifier`.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
 subsample = trial.suggest_discrete_uniform("subsample", 0.1, 1.0, 0.1)
 clf = GradientBoostingClassifier(subsample=subsample, random_state=0)
 clf.fit(X_train, y_train)
 return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
```

Parameters

- **name** (*str*) – A parameter name.
- **low** (*float*) – Lower endpoint of the range of suggested values. low is included in the range.
- **high** (*float*) – Upper endpoint of the range of suggested values. high is included in the range.
- **q** (*float*) – A step of discretization.

Returns

A suggested float value.

Return type

float

`suggest_float(name, low, high, *, step=None, log=False)`

Suggest a value for the floating point parameter.

Note that this is a wrapper method for `suggest_uniform()`, `suggest_loguniform()` and `suggest_discrete_uniform()`.

New in version 1.3.0.

See also:

Please see also `suggest_uniform()`, `suggest_loguniform()` and `suggest_discrete_uniform()`.
Example

Suggest a momentum, learning rate and scaling factor of learning rate for neural network training.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

def objective(trial):
 momentum = trial.suggest_float("momentum", 0.0, 1.0)
 learning_rate_init = trial.suggest_float("learning_rate_init", 1e-5, 1e-3, log=True)
 power_t = trial.suggest_float("power_t", 0.2, 0.8, step=0.1)
 clf = MLPClassifier(
 hidden_layer_sizes=(100, 50),
 momentum=momentum,
 learning_rate_init=learning_rate_init,
 solver="sgd",
 random_state=0,
 power_t=power_t,
)
 clf.fit(X_train, y_train)
 return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
```

Parameters

- **name (str)** – A parameter name.
- **low (float)** – Lower endpoint of the range of suggested values. low is included in the range.
- **high (float)** – Upper endpoint of the range of suggested values. high is excluded from the range.

**Note:** If step is specified, high is included as well as low because this method falls back to `suggest_discrete_uniform()`.

- **step (Optional[float])** – A step of discretization.

**Note:** The step and log arguments cannot be used at the same time. To set the step argument to a float number, set the log argument to False.
• **log** *(bool)* – A flag to sample the value from the log domain or not. If log is true, the value is sampled from the range in the log domain. Otherwise, the value is sampled from the range in the linear domain. See also `suggest_uniform()` and `suggest_loguniform()`.

**Note:** The step and log arguments cannot be used at the same time. To set the log argument to True, set the step argument to None.

**Raises** `ValueError` – If step is not None and log = True are specified.

**Returns** A suggested float value.

**Return type** `float`

### suggest_int

`suggest_int(name, low, high, step=1, log=False)`

Suggest a value for the integer parameter.

The value is sampled from the integers in `[low, high]`.

**Example**

Suggest the number of trees in `RandomForestClassifier`.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
 n_estimators = trial.suggest_int("n_estimators", 50, 400)
 clf = RandomForestClassifier(n_estimators=n_estimators, random_state=0)
 clf.fit(X_train, y_train)
 return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
```

**Parameters**

- **name** *(str)* – A parameter name.
- **low** *(int)* – Lower endpoint of the range of suggested values. low is included in the range.
- **high** *(int)* – Upper endpoint of the range of suggested values. high is included in the range.
- **step** *(int)* – A step of discretization.
Note: Note that high is modified if the range is not divisible by step. Please check the warning messages to find the changed values.

Note: The method returns one of the values in the sequence low, low + step, low + 2 * step, ..., low + k * step ≤ high, where k denotes an integer.

Note: The step != 1 and log arguments cannot be used at the same time. To set the step argument step ≥ 2, set the log argument to False.

- log (bool) – A flag to sample the value from the log domain or not.

Note: If log is true, at first, the range of suggested values is divided into grid points of width 1. The range of suggested values is then converted to a log domain, from which a value is sampled. The uniformly sampled value is re-converted to the original domain and rounded to the nearest grid point that we just split, and the suggested value is determined. For example, if low = 2 and high = 8, then the range of suggested values is [2, 3, 4, 5, 6, 7, 8] and lower values tend to be more sampled than higher values.

Note: The step != 1 and log arguments cannot be used at the same time. To set the log argument to True, set the step argument to 1.

Raises ValueError – If step != 1 and log = True are specified.

Return type int

suggest_loguniform (name, low, high)
Suggest a value for the continuous parameter.

The value is sampled from the range [low, high) in the log domain. When low = high, the value of low will be returned.

Example

Suggest penalty parameter C of SVC.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
c = trial.suggest_loguniform("c", 1e-5, 1e2)
```

(continues on next page)
clf = SVC(C=c, gamma="scale", random_state=0)
clf.fit(X_train, y_train)
return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters

- **name** (**str**) – A parameter name.
- **low** (**float**) – Lower endpoint of the range of suggested values. low is included in the range.
- **high** (**float**) – Upper endpoint of the range of suggested values. high is excluded from the range.

**Returns**
A suggested float value.

**Return type**
**float**

suggest_uniform(name, low, high)

Suggest a value for the continuous parameter.

The value is sampled from the range [low, high) in the linear domain. When low = high, the value of low will be returned.

**Example**

Suggest a momentum for neural network training.

```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
 momentum = trial.suggest_uniform("momentum", 0.0, 1.0)
 clf = MLPClassifier(
 hidden_layer_sizes=(100, 50),
 momentum=momentum,
 solver="sgd",
 random_state=0,
)
 clf.fit(X_train, y_train)
 return clf.score(X_valid, y_valid)
```

(continues on next page)
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters

- **name** *(str)* – A parameter name.
- **low** *(float)* – Lower endpoint of the range of suggested values. low is included in the range.
- **high** *(float)* – Upper endpoint of the range of suggested values. high is excluded from the range.

**Returns** A suggested float value.

**Return type** float

**property** system_attrs
Return system attributes.

**Returns** A dictionary containing all system attributes.

**property** user_attrs
Return user attributes.

**Returns** A dictionary containing all user attributes.

**optuna.trial.FixedTrial**

**class** optuna.trial.FixedTrial *(params, number=0)*
A trial class which suggests a fixed value for each parameter.

This object has the same methods as Trial, and it suggests pre-defined parameter values. The parameter values can be determined at the construction of the FixedTrial object. In contrast to Trial, FixedTrial does not depend on Study, and it is useful for deploying optimization results.

**Example**

Evaluate an objective function with parameter values given by a user.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

assert objective(optuna.trial.FixedTrial({"x": 1, "y": 0})) == 1
```

**Note:** Please refer to Trial for details of methods and properties.

**Parameters**
• **params** – A dictionary containing all parameters.
• **number** – A trial number. Defaults to 0.

**Methods**

```python
report(value, step)
set_system_attr(key, value)
set_user_attr(key, value)
should_prune()
suggest_categorical(name, choices)
suggest_discrete_uniform(name, low, high, q)
suggest_float(name, low, high, *[step, log])
suggest_int(name, low, high, *[step, log])
suggest_loguniform(name, low, high)
suggest_uniform(name, low, high)
```

**Attributes**

```python
datetime_start
distributions
number
params
system_attrs
user_attrs
```

### optuna.trial.FrozenTrial

**class optuna.trial.FrozenTrial**

```python
(number, state, value, datetime_start, datetime_complete,
params, distributions, user_attrs, system_attrs, intermediate_values, trial_id, *, values=None)
```

Status and results of a *Trial*.

This object has the same methods as *Trial*, and it suggests best parameter values among performed trials. In contrast to *Trial*, *FrozenTrial* does not depend on *Study*, and it is useful for deploying optimization results.

**Example**

Re-evaluate an objective function with parameter values optimized study.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -1, 1)
 return x ** 2
```
study = optuna.create_study()
study.optimize(objective, n_trials=3)

assert objective(study.best_trial) == study.best_value

Note: Attributes are set in optuna.Study.optimize(), but several attributes can be updated after the optimization. That means such attributes are overwritten by the re-evaluation if your objective updates attributes of Trial.

Example:

Overwritten attributes.

```python
import copy
import datetime
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -1, 1)

 # this user attribute always differs
 trial.set_user_attr("evaluation time", datetime.datetime.now())

 return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)
best_trial = study.best_trial
best_trial_copy = copy.deepcopy(best_trial)

 # re-evaluate
 objective(best_trial)

 # the user attribute is overwritten by re-evaluation
assert best_trial.user_attrs != best_trial_copy.user_attrs
```

Note: Please refer to Trial for details of methods and properties.

- **number**: Unique and consecutive number of Trial for each Study. Note that this field uses zero-based numbering.
- **state**: TrialState of the Trial.
- **value**: Objective value of the Trial.
- **values**: Sequence of objective values of the Trial. The length is greater than 1 if the problem is multi-objective.
Optuna Documentation, Release 2.4.0

datetime_start

Datetime where the Trial started.

datetime_complete

Datetime where the Trial finished.

params

Dictionary that contains suggested parameters.

user_attrs

Dictionary that contains the attributes of the Trial set with optuna.trial.Trial.set_user_attr().

intermediate_values

Intermediate objective values set with optuna.trial.Trial.report().

Raises ValueError – If both value and values are specified.

Methods

report(value, step)

Interface of report function.

set_system_attr(key, value)

set_user_attr(key, value)

should_prune()

Suggest whether the trial should be pruned or not.

suggest_categorical(name, choices)

suggest_discrete_uniform(name, low, high, q)

suggest_float(name, low, high, *[step, log])

suggest_int(name, low, high *[step, log])

suggest_loguniform(name, low, high)

suggest_uniform(name, low, high)

Attributes

datetime_start

distributions

Dictionary that contains the distributions of params.

duration

Return the elapsed time taken to complete the trial.

last_step

Return the maximum step of intermediate_values in the trial.

number

params

system_attrs

user_attrs

value

values

property distributions

Dictionary that contains the distributions of params.

property duration
Return the elapsed time taken to complete the trial.

Returns The duration.

property last_step
Return the maximum step of intermediate_values in the trial.

Returns The maximum step of intermediates.

report (value, step)
Interface of report function.

Since FrozenTrial is not pruned, this report function does nothing.

See also:
Please refer to should_prune().

Parameters

- value (float) – A value returned from the objective function.
- step (int) – Step of the trial (e.g., Epoch of neural network training). Note that pruners assume that step starts at zero. For example, MedianPruner simply checks if step is less than n_warmup_steps as the warmup mechanism.

Return type None

should_prune()
Suggest whether the trial should be pruned or not.

The suggestion is always False regardless of a pruning algorithm.

Note: FrozenTrial only samples one combination of parameters.

Returns False.

Return type bool

optuna.trial.TrialState

class optuna.trial.TrialState (value)
State of a Trial.

RUNNING
The Trial is running.

COMPLETE
The Trial has been finished without any error.

PRUNED
The Trial has been pruned with TrialPruned.

FAIL
The Trial has failed due to an uncaught error.
Attributes

<table>
<thead>
<tr>
<th>COMPLETE</th>
<th>FAIL</th>
<th>PRUNED</th>
<th>RUNNING</th>
<th>WAITING</th>
</tr>
</thead>
</table>

**optuna.trial.create_trial**

```python
optuna.trial.create_trial(*, state=None, value=None, params=None, distributions=None, user_attrs=None, system_attrs=None, intermediate_values=None)
```

Create a new *FrozenTrial*.

**Example**

```python
import optuna
from optuna.distributions import CategoricalDistribution
from optuna.distributions import UniformDistribution

trial = optuna.trial.create_trial(
 params={"x": 1.0, "y": 0},
 distributions={
 "x": UniformDistribution(0, 10),
 "y": CategoricalDistribution([-1, 0, 1]),
 },
 value=5.0,
)

assert isinstance(trial, optuna.trial.FrozenTrial)
assert trial.value == 5.0
assert trial.params == {"x": 1.0, "y": 0}
```

**See also:**

See *add_trial()* for how this function can be used to create a study from existing trials.

**Note:** Please note that this is a low-level API. In general, trials that are passed to objective functions are created inside *optimize()*.

**Parameters**

- **state** (*Optional*[*optuna.trial._state.TrialState]*) – Trial state.
- **value** (*Optional*[*float]*) – Trial objective value. Must be specified if *state* is *TrialState.COMPLETE*.
- **values** (*Optional*[*Sequence*[*float]*) – Sequence of the trial objective values. The length is greater than 1 if the problem is multi-objective optimization. Must be specified if *state* is *TrialState.COMPLETE*.
- **params** (*Optional*[*Dict*[*str*, *Any]*) – Dictionary with suggested parameters of the trial.
- **distributions** *(Optional[Dict[str, optuna.distributions.BaseDistribution]])* – Dictionary with parameter distributions of the trial.
- **user_attrs** *(Optional[Dict[str, Any]])* – Dictionary with user attributes.
- **system_attrs** *(Optional[Dict[str, Any]])* – Dictionary with system attributes. Should not have to be used for most users.
- **intermediate_values** *(Optional[Dict[int, float]])* – Dictionary with intermediate objective values of the trial.

**Returns** Created trial.

**Raises** `ValueError` – If both `value` and `values` are specified.

**Return type** `optuna.trial._frozen.FrozenTrial`

---

**Note:** Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

---

### 6.3.15 optuna.visualization

The `visualization` module provides utility functions for plotting the optimization process using plotly and matplotlib. Plotting functions take generally take a `Study` object and optional parameters passed as a list to a `params` argument.

**Note:** In the `optuna.visualization` module, the following functions use plotly to create figures, but JupyterLab cannot render them by default. Please follow this installation guide to show figures in JupyterLab.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot_contour</code></td>
<td>Plot the parameter relationship as contour plot in a study.</td>
</tr>
<tr>
<td><code>plot_edf</code></td>
<td>Plot the objective value EDF (empirical distribution function) of a study.</td>
</tr>
<tr>
<td><code>plot_intermediate_values</code></td>
<td>Plot intermediate values of all trials in a study.</td>
</tr>
<tr>
<td><code>plot_optimization_history</code></td>
<td>Plot optimization history of all trials in a study.</td>
</tr>
<tr>
<td><code>plot_parallel_coordinate</code></td>
<td>Plot the high-dimensional parameter relationships in a study.</td>
</tr>
<tr>
<td><code>plot_param_importances</code></td>
<td>Plot hyperparameter importances.</td>
</tr>
<tr>
<td><code>plot_pareto_front</code></td>
<td>Plot the Pareto front of a study.</td>
</tr>
<tr>
<td><code>plot_slice</code></td>
<td>Plot the parameter relationship as slice plot in a study.</td>
</tr>
<tr>
<td><code>is_available</code></td>
<td>Returns whether visualization with plotly is available or not.</td>
</tr>
</tbody>
</table>
**optuna.visualization.plot_contour**

```python
optuna.visualization.plot_contour(study, params=None, *, target=None, target_name='Objective Value')
```

Plot the parameter relationship as contour plot in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

**Example**

The following code snippet shows how to plot the parameter relationship as contour plot.

```python
import optuna
def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.plot_contour(study, params=['x', 'y'])
```

**Parameters**

- **study** (*optuna.study.Study*) – A Study object whose trials are plotted for their target values.
- **params** (*Optional[List[str]]*) – Parameter list to visualize. The default is all parameters.
- **target** (*Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]*) – A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted.

**Note:** Specify this argument if study is being used for multi-objective optimization.

- **target_name** (*str*) – Target’s name to display on the color bar.

**Returns**

A plotly.graph_objs.Figure object.

**Raises**

ValueError – If target is None and study is being used for multi-objective optimization.

**Return type**

plotly.graph_objs._figure.Figure
**optuna.visualization.plot_edf**

`optuna.visualization.plot_edf(study, *, target=None, target_name='Objective Value')`

Plot the objective value EDF (empirical distribution function) of a study.

Note that only the complete trials are considered when plotting the EDF.

**Note:** EDF is useful to analyze and improve search spaces. For instance, you can see a practical use case of EDF in the paper *Designing Network Design Spaces*.

**Note:** The plotted EDF assumes that the value of the objective function is in accordance with the uniform distribution over the objective space.

**Example**

The following code snippet shows how to plot EDF.

```python
import math
import optuna
def ackley(x, y):
 a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2)))
 b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
 return -a - b + math.e + 20
def objective(trial, low, high):
 x = trial.suggest_float("x", low, high)
 y = trial.suggest_float("y", low, high)
 return ackley(x, y)
sampler = optuna.samplers.RandomSampler(seed=10)

Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)

Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)

Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)

optuna.visualization.plot_edf([study0, study1, study2])
```

**Parameters**

- **study** (Union[optuna.study.Study, Sequence[optuna.study.Study]]) – A target Study object. You can pass multiple studies if you want to
compare those EDFs.

- **target** *(Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]])* – A function to specify the value to display. If it is `None` and *study* is being used for single-objective optimization, the objective values are plotted.

  **Note:** Specify this argument if *study* is being used for multi-objective optimization.

- **target_name** *(str)* – Target’s name to display on the axis label.

**Returns** A `plotly.graph_objs.Figure` object.

**Raises** `ValueError` – If *target* is `None` and *study* is being used for multi-objective optimization.

**Return type** `plotly.graph_objs._figure.Figure`

---

**optuna.visualization.plot_intermediate_values**

*optuna.visualization.plot_intermediate_values(study)*

Plot intermediate values of all trials in a study.

**Example**

The following code snippet shows how to plot intermediate values.

```python
import optuna

def f(x):
 return (x - 2) ** 2

def df(x):
 return 2 * x - 4

def objective(trial):
 lr = trial.suggest_loguniform("lr", 1e-5, 1e-1)

 x = 3
 for step in range(128):
 y = f(x)

 trial.report(y, step=step)
 if trial.should_prune():
 raise optuna.TrialPruned()

 gy = df(x)
 x -= gy * lr

 return y

sampler = optuna.samplers.TPESampler(seed=10)
```

... (continues on next page)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)
optuna.visualization.plot_intermediate_values(study)

Parameters

- **study** ([`optuna.study.Study`]) – A `Study` object whose trials are plotted for their intermediate values.
- **Returns** A `plotly.graph_objs.Figure` object.
- **Return type** `plotly.graph_objs._figure.Figure`

**optuna.visualization.plot_optimization_history**

optuna.visualization.plot_optimization_history(study, *, target=None, target_name='Objective Value')

Plot optimization history of all trials in a study.

**Example**

The following code snippet shows how to plot optimization history.

```python
import optuna
def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y
sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
optuna.visualization.plot_optimization_history(study)
```

Parameters

- **study** ([`optuna.study.Study`]) – A `Study` object whose trials are plotted for their target values.
- **target** ([`Callable[[optuna.trial._frozen.FrozenTrial], float]`]) – A function to specify the value to display. If it is `None` and `study` is being used for single-objective optimization, the objective values are plotted.
- **target_name** (`str`) – Target’s name to display on the axis label and the legend.

**Note:** Specify this argument if `study` is being used for multi-objective optimization.

- **Returns** A `plotly.graph_objs.Figure` object.
- **Raises** `ValueError` – If `target` is `None` and `study` is being used for multi-objective optimization.
Return type  plotly.graph_objs._figure.Figure

optuna.visualization.plot_parallel_coordinate

optuna.visualization.plot_parallel_coordinate(study, params=None, *, target=None, target_name='Objective Value')

Plot the high-dimentional parameter relationships in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the high-dimentional parameter relationships.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.plot_parallel_coordinate(study, params=["x", "y"])
```

Parameters

- **study** (optuna.study.Study) – A Study object whose trials are plotted for their target values.

- **params** (Optional[List[str]]) – Parameter list to visualize. The default is all parameters.

- **target** (Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]) – A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted.

  Note: Specify this argument if study is being used for multi-objective optimization.

- **target_name** (str) – Target’s name to display on the axis label and the legend.

Returns  A plotly.graph_objs.Figure object.

Raises  ValueError – If target is None and study is being used for multi-objective optimization.

Return type  plotly.graph_objs._figure.Figure
**optuna.visualization.plot_param_importances**

`optuna.visualization.plot_param_importances(study, evaluator=None, params=None, *, target=None, target_name='Objective Value')`  
Plot hyperparameter importances.

**Example**

The following code snippet shows how to plot hyperparameter importances.

```python
import optuna
def objective(trial):
x = trial.suggest_int("x", 0, 2)
y = trial.suggest_float("y", -1.0, 1.0)
z = trial.suggest_float("z", 0.0, 1.5)
return x ** 2 + y ** 3 - z ** 4

sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)
optuna.visualization.plot_param_importances(study)
```

**See also:**

This function visualizes the results of `optuna.importance.get_param_importances()`.

**Parameters**

- **study** (`optuna.study.Study`) – An optimized study.
- **evaluator** (`Optional[optuna.importance._base.BaseImportanceEvaluator]`) – An importance evaluator object that specifies which algorithm to base the importance assessment on. Defaults to `FanovaImportanceEvaluator`.
- **params** (`Optional[List[str]]`) – A list of names of parameters to assess. If `None`, all parameters that are present in all of the completed trials are assessed.
- **target** (`Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]`) – A function to specify the value to display. If it is `None` and `study` is being used for single-objective optimization, the objective values are plotted.

**Note:** Specify this argument if `study` is being used for multi-objective optimization.

- **target_name** (`str`) – Target’s name to display on the axis label.

**Returns** A `plotly.graph_objs.Figure` object.

**Raises** `ValueError` – If `target` is `None` and `study` is being used for multi-objective optimization.

**Return type** `plotly.graph_objs._figure.Figure`
optuna.visualization.plot_pareto_front

**Example**

The following code snippet shows how to plot the Pareto front of a study.

```python
import optuna
def objective(trial):
 x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)
v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1

study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

optuna.visualization.plot_pareto_front(study)
```

**Parameters**

- **study** (optuna.study.Study) – A `Study` object whose trials are plotted for their objective values.
- **target_names** (Optional[List[str]]) – Objective name list used as the axis titles. If `None` is specified, “Objective [objective_index]” is used instead.
- **include_dominated_trials** (bool) – A flag to include all dominated trial’s objective values.
- **axis_order** (Optional[List[int]]) – A list of indices indicating the axis order. If `None` is specified, default order is used.

**Returns**
`plotly.graph_objs.Figure` object.

**Raises**
`ValueError` – If the number of objectives of `study` isn’t 2 or 3.

**Return type**
`plotly.graph_objs.Figure`

**Note:** Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.
**optuna.visualization.plot_slice**

**optuna.visualization.plot_slice**(study, params=None, *, target=None, target_name='Objective Value')

Plot the parameter relationship as slice plot in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

**Example**

The following code snippet shows how to plot the parameter relationship as slice plot.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.plot_slice(study, params=["x", "y"])
```

**Parameters**

- **study** ([optuna.study.Study]) – A Study object whose trials are plotted for their target values.
- **params** (Optional[List[str]]) – Parameter list to visualize. The default is all parameters.
- **target** (Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]) – A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted.

**Note:** Specify this argument if study is being used for multi-objective optimization.

- **target_name** (str) – Target’s name to display on the axis label.

**Returns** plotly.graph_objs.Figure object.

**Raises** ValueError – If target is None and study is being used for multi-objective optimization.

**Return type** plotly.graph_objs._figure.Figure
optuna.visualization.is_available

optuna.visualization.is_available()
Returns whether visualization with plotly is available or not.

Note: visualization module depends on plotly version 4.0.0 or higher. If a supported version of plotly isn’t installed in your environment, this function will return False. In such case, please execute $ pip install -U plotly>=4.0.0 to install plotly.

Returns True if visualization with plotly is available, False otherwise.
Return type bool

Note: The following optuna.visualization.matplotlib module uses Matplotlib as a backend.

optuna.visualization.matplotlib

Note: The following functions use Matplotlib as a backend.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_contour</td>
<td>Plot the parameter relationship as contour plot in a study with Matplotlib.</td>
</tr>
<tr>
<td>plot_edf</td>
<td>Plot the objective value EDF (empirical distribution function) of a study with Matplotlib.</td>
</tr>
<tr>
<td>plot_intermediate_values</td>
<td>Plot intermediate values of all trials in a study with Matplotlib.</td>
</tr>
<tr>
<td>plot_optimization_history</td>
<td>Plot optimization history of all trials in a study with Matplotlib.</td>
</tr>
<tr>
<td>plot_parallel_coordinate</td>
<td>Plot the high-dimensional parameter relationships in a study with Matplotlib.</td>
</tr>
<tr>
<td>plot_param_importances</td>
<td>Plot hyperparameter importances with Matplotlib.</td>
</tr>
<tr>
<td>plot_slice</td>
<td>Plot the parameter relationship as slice plot in a study with Matplotlib.</td>
</tr>
<tr>
<td>is_available</td>
<td>Returns whether visualization with Matplotlib is available or not.</td>
</tr>
</tbody>
</table>

optuna.visualization.matplotlib.plot_contour

optuna.visualization.matplotlib.plot_contour(study, params=None, *, target=None, target_name='Objective Value')
Plot the parameter relationship as contour plot in a study with Matplotlib.
Note that, if a parameter contains missing values, a trial with missing values is not plotted.
See also:
Please refer to optuna.visualization.plot_contour() for an example.
Warning: Output figures of this Matplotlib-based `plot_contour()` function would be different from those of the Plotly-based `plot_contour()`.

Example

The following code snippet shows how to plot the parameter relationship as contour plot.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.matplotlib.plot_contour(study, params=["x", "y"])
```

Parameters
• **study** (:class:`optuna.study.Study`) – A :class:`Study` object whose trials are plotted for their target values.

• **params** (:class:`Optional[List[str]]`) – Parameter list to visualize. The default is all parameters.

• **target** (:class:`Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]`) – A function to specify the value to display. If it is :class:`None` and :class:`study` is being used for single-objective optimization, the objective values are plotted.

  **Note:** Specify this argument if :class:`study` is being used for multi-objective optimization.

• **target_name** (:class:`str`) – Target’s name to display on the color bar.


  **Raises** :class:`ValueError` – If :attr:`target` is :class:`None` and :class:`study` is being used for multi-objective optimization.

  **Return type** :class:`matplotlib.axes._axes.Axes`

  **Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

---

**optuna.visualization.matplotlib.plot_edf**

.. function:: optuna.visualization.matplotlib.plot_edf(study, *, target=None, target_name='Objective Value')

   Plot the objective value EDF (empirical distribution function) of a study with Matplotlib.

   **See also:**

   Please refer to :func:`optuna.visualization.plot_edf()` for an example, where this function can be replaced with it.

**Example**

The following code snippet shows how to plot EDF.

```python
import math
import optuna

def ackley(x, y):
 a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2)))
 b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
 return -a - b + math.e + 20

def objective(trial, low, high):
 x = trial.suggest_float("x", low, high)
 y = trial.suggest_float("y", low, high)
 return ackley(x, y)
```

(continues on next page)
sampler = optuna.samplers.RandomSampler(seed=10)

# Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5]", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)

# Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4]", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)

# Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3]", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)

optuna.visualization.matplotlib.plot_edf([study0, study1, study2])

**Parameters**

- **study**  
  (Union[optuna.study.Study, Sequence[optuna.study.Study]]) – A target Study object. You can pass multiple studies if you want to compare those EDFs.
• **target** (`Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]`) – A function to specify the value to display. If it is `None` and `study` is being used for single-objective optimization, the objective values are plotted.

**Note:** Specify this argument if `study` is being used for multi-objective optimization.

• **target_name** (`str`) – Target’s name to display on the axis label.

**Returns** A `matplotlib.axes.Axes` object.

**Raises** `ValueError` – If `target` is `None` and `study` is being used for multi-objective optimization.

**Return type** `matplotlib.axes._axes.Axes`

**Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

`optuna.visualization.matplotlib.plot_intermediate_values`

`optuna.visualization.matplotlib.plot_intermediate_values(study)`

Plot intermediate values of all trials in a study with Matplotlib.

**Example**

The following code snippet shows how to plot intermediate values.

```python
import optuna

def f(x):
 return (x - 2) ** 2

def df(x):
 return 2 * x - 4

def objective(trial):
 lr = trial.suggest_loguniform("lr", 1e-5, 1e-1)

 x = 3
 for step in range(128):
 y = f(x)
 trial.report(y, step=step)
 if trial.should_prune():
 raise optuna.TrialPruned()

 gy = df(x)
 x -= gy * lr
```

(continues on next page)
return y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)

optuna.visualization.matplotlib.plot_intermediate_values(study)

See also:
Please refer to `optuna.visualization.plot_intermediate_values()` for an example.

Parameters

study (optuna.study.Study) – A `Study` object whose trials are plotted for their intermediate values.

Returns

A `matplotlib.axes.Axes` object.

Return type

`matplotlib.axes.Axes`

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
optuna.visualization.matplotlib.plot_optimization_history

```
opumba.visualization.matplotlib.plot_optimization_history(study, *, target=None, target_name='Objective Value')
```

Plot optimization history of all trials in a study with Matplotlib.

**See also:**
Please refer to `optuna.visualization.plot_optimization_history()` for an example.

**Example**

The following code snippet shows how to plot optimization history.

```python
import optuna
def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_optimization_history(study)
```

**Parameters**

- **study** (`optuna.study.Study`) – A `Study` object whose trials are plotted for their target values.

- **target** (Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]) – A function to specify the value to display. If it is `None` and `study` is being used for single-objective optimization, the objective values are plotted.

**Note:** Specify this argument if `study` is being used for multi-objective optimization.

- **target_name** (`str`) – Target’s name to display on the axis label and the legend.

**Returns** `matplotlib.axes.Axes` object.

**Raises** `ValueError` – If `target` is `None` and `study` is being used for multi-objective optimization.

**Return type** `matplotlib.axes.Axes`.

**Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
**optuna.visualization.matplotlib.plot_parallel_coordinate**

Plot the high-dimensional parameter relationships in a study with Matplotlib.

**See also:**
Please refer to `optuna.visualization.plot_parallel_coordinate()` for an example.

**Example**

The following code snippet shows how to plot the high-dimensional parameter relationships.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_parallel_coordinate(study, params=["x", "y"])
```

**Parameters**

- **study** *(optuna.study.Study)* – A Study object whose trials are plotted for their target values.
- **params** *(Optional[List[str]])* – Parameter list to visualize. The default is all parameters.
- **target** *(Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]])* – A function to specify the value to display. If it is `None` and `study` is being used for single-objective optimization, the objective values are plotted. 

**Note:** Specify this argument if `study` is being used for multi-objective optimization.

- **target_name** *(str)* – Target's name to display on the axis label and the legend.

**Returns**
A matplotlib.axes.Axes object.

**Raises**
ValueError – If `target` is `None` and `study` is being used for multi-objective optimization.

**Return type**
matplotlib.axes._axes.Axes

**Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
`optuna.visualization.matplotlib.plot_param_importances`

```python
optuna.visualization.matplotlib.plot_param_importances(study, evaluator=None, params=None, *, target=None, target_name='Objective Value')
```

Plot hyperparameter importances with Matplotlib.

See also:

Please refer to `optuna.visualization.plot_param_importances()` for an example.

**Example**

The following code snippet shows how to plot hyperparameter importances.

```python
import optuna
def objective(trial):
x = trial.suggest_int("x", 0, 2)
y = trial.suggest_float("y", -1.0, 1.0)
z = trial.suggest_float("z", 0.0, 1.5)
return x ** 2 + y ** 3 - z ** 4
sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)
```

**Parameters**

- **study** (`optuna.study.Study`) – An optimized study.
- **evaluator** (`Optional[optuna.importance._base.BaseImportanceEvaluator]`) – An importance evaluator object that specifies which algorithm to base the importance assessment on. Defaults to `FanovaImportanceEvaluator`.
- **params** (`Optional[List[str]]`) – A list of names of parameters to assess. If `None`, all parameters that are present in all of the completed trials are assessed.
- **target** (`Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]`) – A function to specify the value to display. If it is `None` and `study` is being used for single-objective optimization, the objective values are plotted.

**Note:** Specify this argument if `study` is being used for multi-objective optimization.

- **target_name** (`str`) – Target’s name to display on the axis label.

**Returns**

A `matplotlib.axes.Axes` object.

**Raises**

`ValueError` – If `target` is `None` and `study` is being used for multi-objective optimization.
**Return type**  matplotlib.axes._axes.Axes

---

**Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

---

**optuna.visualization.matplotlib.plot_slice**

optuna.visualization.matplotlib.plot_slice(study, params=None, *, target=None, target_name='Objective Value')

Plot the parameter relationship as slice plot in a study with Matplotlib.

**See also:**

Please refer to optuna.visualization.plot_slice() for an example.

**Example**

The following code snippet shows how to plot the parameter relationship as slice plot.

```python
import optuna

def objective(trial):
 x = trial.suggest_uniform("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)
optuna.visualization.matplotlib.plot_slice(study, params=['x', 'y'])
```

**Parameters**

- **study** (optuna.study.Study) – A Study object whose trials are plotted for their target values.
- **params** (Optional[List[str]]) – Parameter list to visualize. The default is all parameters.
- **target** (Optional[Callable[[optuna.trial._frozen.FrozenTrial], float]]) – A function to specify the value to display. If it is None and study is being used for single-objective optimization, the objective values are plotted. Note: Specify this argument if study is being used for multi-objective optimization.
- **target_name** (str) – Target’s name to display on the axis label.

**Returns** A matplotlib.axes.Axes object.

**Raises** ValueError – If target is None and study is being used for multi-objective optimization.
**Return type** matplotlib.axes._axes.Axes

**Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

---

**optuna.visualization.matplotlib.is_available**

```python
optuna.visualization.matplotlib.is_available()
```

Returns whether visualization with Matplotlib is available or not.

**Note:** matplotlib module depends on Matplotlib version 3.0.0 or higher. If a supported version of Matplotlib isn’t installed in your environment, this function will return `False`. In such a case, please execute `$ pip install -U matplotlib>=3.0.0` to install Matplotlib.

**Returns** `True` if visualization with Matplotlib is available, `False` otherwise.

**Return type** bool

**Note:** Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

---

### 6.4 FAQ

- Can I use Optuna with X? (where X is your favorite ML library)
- How to define objective functions that have own arguments?
- Can I use Optuna without remote RDB servers?
- How can I save and resume studies?
- How to suppress log messages of Optuna?
- How to save machine learning models trained in objective functions?
- How can I obtain reproducible optimization results?
- How are exceptions from trials handled?
- How are NaNs returned by trials handled?
- What happens when I dynamically alter a search space?
- How can I use two GPUs for evaluating two trials simultaneously?
- How can I test my objective functions?
- How do I avoid running out of memory (OOM) when optimizing studies?
6.4.1 Can I use Optuna with X? (where X is your favorite ML library)

Optuna is compatible with most ML libraries, and it’s easy to use Optuna with those. Please refer to examples.

6.4.2 How to define objective functions that have own arguments?

There are two ways to realize it.

First, callable classes can be used for that purpose as follows:

```python
import optuna
class Objective(object):
 def __init__(self, min_x, max_x):
 # Hold this implementation specific arguments as the fields of the class.
 self.min_x = min_x
 self.max_x = max_x

 def __call__(self, trial):
 # Calculate an objective value by using the extra arguments.
 x = trial.suggest_uniform("x", self.min_x, self.max_x)
 return (x - 2) ** 2

Execute an optimization by using an 'Objective' instance.
study = optuna.create_study()
study.optimize(Objective(-100, 100), n_trials=100)
```

Second, you can use `lambda` or `functools.partial` for creating functions (closures) that hold extra arguments. Below is an example that uses `lambda`:

```python
import optuna

Objective function that takes three arguments.
def objective(trial, min_x, max_x):
 x = trial.suggest_uniform("x", min_x, max_x)
 return (x - 2) ** 2

Extra arguments.
min_x = -100
max_x = 100

Execute an optimization by using the above objective function wrapped by 'lambda'.
study = optuna.create_study()
study.optimize(lambda trial: objective(trial, min_x, max_x), n_trials=100)
```

Please also refer to `sklearn_addtitional_args.py` example, which reuses the dataset instead of loading it in each trial execution.
6.4.3 Can I use Optuna without remote RDB servers?

Yes, it’s possible.

In the simplest form, Optuna works with in-memory storage:

```python
study = optuna.create_study()
study.optimize(objective)
```

If you want to save and resume studies, it’s handy to use SQLite as the local storage:

```python
study = optuna.create_study(study_name="foo_study", storage="sqlite:///example.db")
study.optimize(objective) # The state of `study` will be persisted to the local SQLite file.
```

Please see Saving/Resuming Study with RDB Backend for more details.

6.4.4 How can I save and resume studies?

There are two ways of persisting studies, which depends if you are using in-memory storage (default) or remote databases (RDB). In-memory studies can be saved and loaded like usual Python objects using pickle or joblib. For example, using joblib:

```python
study = optuna.create_study()
joblib.dump(study, "study.pkl")
```

And to resume the study:

```python
study = joblib.load("study.pkl")
print("Best trial until now:")
print(" Value: ", study.best_trial.value)
print(" Params: ")
for key, value in study.best_trial.params.items():
 print(f" {key}: {value}")
```

If you are using RDBs, see Saving/Resuming Study with RDB Backend for more details.

6.4.5 How to suppress log messages of Optuna?

By default, Optuna shows log messages at the optuna.logging.INFO level. You can change logging levels by using optuna.logging.set_verbosity().

For instance, you can stop showing each trial result as follows:

```python
optuna.logging.set_verbosity(optuna.logging.WARNING)
study = optuna.create_study()
study.optimize(objective)
Logs like '[I 2020-07-21 13:41:45,627] Trial 0 finished with value...' are disabled.
```

Please refer to optuna.logging for further details.
6.4.6 How to save machine learning models trained in objective functions?

Optuna saves hyperparameter values with its corresponding objective value to storage, but it discards intermediate objects such as machine learning models and neural network weights. To save models or weights, please use features of the machine learning library you used.

We recommend saving `optuna.trial.Trial.number` with a model in order to identify its corresponding trial. For example, you can save SVM models trained in the objective function as follows:

```python
def objective(trial):
 svc_c = trial.suggest_loguniform("svc_c", 1e-10, 1e10)
 clf = sklearn.svm.SVC(C=svc_c)
 clf.fit(X_train, y_train)

 # Save a trained model to a file.
 with open("{}/.pickle".format(trial.number), "wb") as fout:
 pickle.dump(clf, fout)
 return 1.0 - accuracy_score(y_valid, clf.predict(X_valid))

study = optuna.create_study()
study.optimize(objective, n_trials=100)

Load the best model.
with open("{}/.pickle".format(study.best_trial.number), "rb") as fin:
 best_clf = pickle.load(fin)
print(accuracy_score(y_valid, best_clf.predict(X_valid)))
```

6.4.7 How can I obtain reproducible optimization results?

To make the parameters suggested by Optuna reproducible, you can specify a fixed random seed via `seed` argument of `RandomSampler` or `TPESampler` as follows:

```python
sampler = TPESampler(seed=10) # Make the sampler behave in a deterministic way.
study = optuna.create_study(sampler=sampler)
study.optimize(objective)
```

However, there are two caveats.

First, when optimizing a study in distributed or parallel mode, there is inherent non-determinism. Thus it is very difficult to reproduce the same results in such condition. We recommend executing optimization of a study sequentially if you would like to reproduce the result.

Second, if your objective function behaves in a non-deterministic way (i.e., it does not return the same value even if the same parameters were suggested), you cannot reproduce an optimization. To deal with this problem, please set an option (e.g., random seed) to make the behavior deterministic if your optimization target (e.g., an ML library) provides it.
6.4.8 How are exceptions from trials handled?

Trials that raise exceptions without catching them will be treated as failures, i.e. with the `FAIL` status.

By default, all exceptions except `TrialPruned` raised in objective functions are propagated to the caller of `optimize()`. In other words, studies are aborted when such exceptions are raised. It might be desirable to continue a study with the remaining trials. To do so, you can specify in `optimize()` which exception types to catch using the `catch` argument. Exceptions of these types are caught inside the study and will not propagate further.

You can find the failed trials in log messages.

```
[W 2018-12-07 16:38:36,889] Setting status of trial#0 as TrialState.FAIL because of the following error: ValueError('A sample error in objective.')
```

You can also find the failed trials by checking the trial states as follows:

```
study.trials_dataframe()
```

<table>
<thead>
<tr>
<th>number</th>
<th>state</th>
<th>value</th>
<th>...</th>
<th>params</th>
<th>system_attrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TrialState.FAIL</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>Setting status of trial#0 as TrialState.FAIL because of the following error: ValueError('A test error in objective.')</td>
</tr>
<tr>
<td>1</td>
<td>TrialState.COMPLETE</td>
<td>1269</td>
<td>...</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

See also:
The `catch` argument in `optimize()`.

6.4.9 How are NaNs returned by trials handled?

Trials that return `NaN` (`float('nan')`) are treated as failures, but they will not abort studies.

Trials which return `NaN` are shown as follows:

```
[W 2018-12-07 16:41:59,000] Setting status of trial#2 as TrialState.FAIL because the objective function returned nan.
```

6.4.10 What happens when I dynamically alter a search space?

Since parameters search spaces are specified in each call to the suggestion API, e.g. `suggest_uniform()` and `suggest_int()`, it is possible to, in a single study, alter the range by sampling parameters from different search spaces in different trials. The behavior when altered is defined by each sampler individually.

Note: Discussion about the TPE sampler. [https://github.com/optuna/optuna/issues/822](https://github.com/optuna/optuna/issues/822)
6.4.11 How can I use two GPUs for evaluating two trials simultaneously?

If your optimization target supports GPU (CUDA) acceleration and you want to specify which GPU is used, the easiest way is to set CUDA_VISIBLE_DEVICES environment variable:

```python
On a terminal.
#
Specify to use the first GPU, and run an optimization.
$ export CUDA_VISIBLE_DEVICES=0
$ optuna study optimize foo.py objective --study-name foo --storage sqlite:///example.db

On another terminal.
#
Specify to use the second GPU, and run another optimization.
$ export CUDA_VISIBLE_DEVICES=1
$ optuna study optimize bar.py objective --study-name bar --storage sqlite:///example.db
```

Please refer to CUDA C Programming Guide for further details.

6.4.12 How can I test my objective functions?

When you test objective functions, you may prefer fixed parameter values to sampled ones. In that case, you can use `FixedTrial`, which suggests fixed parameter values based on a given dictionary of parameters. For instance, you can input arbitrary values of $x$ and $y$ to the objective function $x + y$ as follows:

```python
def objective(trial):
 x = trial.suggest_uniform("x", -1.0, 1.0)
 y = trial.suggest_int("y", -5, 5)
 return x + y
```

```text
objective(FixedTrial({"x": 1.0, "y": -1})) # 0.0
objective(FixedTrial({"x": -1.0, "y": -4})) # -5.0
```

Using `FixedTrial`, you can write unit tests as follows:

```python
A test function of pytest
def test_objective():
 assert 1.0 == objective(FixedTrial({"x": 1.0, "y": 0}))
 assert -1.0 == objective(FixedTrial({"x": 0.0, "y": -1}))
 assert 0.0 == objective(FixedTrial({"x": -1.0, "y": 1}))
```

6.4.13 How do I avoid running out of memory (OOM) when optimizing studies?

If the memory footprint increases as you run more trials, try to periodically run the garbage collector. Specify `gc_after_trial` to `True` when calling `optimize()` or call `gc.collect()` inside a callback.

```python
def objective(trial):
 x = trial.suggest_uniform("x", -1.0, 1.0)
 y = trial.suggest_int("y", -5, 5)
 return x + y
```

(continues on next page)
```python
study = optuna.create_study()
study.optimize(objective, n_trials=10, gc_after_trial=True)

`gc_after_trial=True` is more or less identical to the following.
study.optimize(objective, n_trials=10, callbacks=[lambda study, trial: gc.collect()])
```

There is a performance trade-off for running the garbage collector, which could be non-negligible depending on how fast your objective function otherwise is. Therefore, `gc_after_trial` is `False` by default. Note that the above examples are similar to running the garbage collector inside the objective function, except for the fact that `gc.collect()` is called even when errors, including `TrialPruned` are raised.

**Note:** `ChainerMNStudy` does currently not provide `gc_after_trial` nor callbacks for `optimize()`. When using this class, you will have to call the garbage collector inside the objective function.
INDICES AND TABLES

- genindex
- modindex
- search
PYTHON MODULE INDEX

O

optuna, 33
optuna.cli, 37
optuna.distributions, 41
optuna.exceptions, 48
optuna.importance, 50
optuna.integration, 54
optuna.logging, 90
optuna.multi_objective, 93
optuna.multi_objective.samplers, 93
optuna.multi_objective.study, 104
optuna.multi_objective.trial, 109
optuna.multi_objective.visualization, 114
optuna.pruners, 115
optuna.samplers, 127
optuna.storages, 156
optuna.structs, 173
optuna.study, 175
optuna.trial, 187
optuna.visualization, 204
optuna.visualization.matplotlib, 213
Symbols

--allow-websocket-origin  
   <BOKEH_ALLOW_WEBSOCKET_ORIGINS>
   optuna-dashboard command line option, 38

--column COLUMN
   optuna-studies command line option, 39

--debug
   optuna command line option, 37

--direction <DIRECTION>
   optuna-create-study command line option, 38

--fit-width
   optuna-studies command line option, 39

--format <FORMATTER>
   optuna-studies command line option, 39

--key <KEY>
   optuna-study-set-user-attr command line option, 40

--log-file <LOG_FILE>
   optuna command line option, 37

--max-width <integer>
   optuna-studies command line option, 39

--n-jobs <N_JOBS>
   optuna-study-optimize command line option, 40

--n-trials <N_TRIALS>
   optuna-study-optimize command line option, 40

--noindent
   optuna-studies command line option, 39

--out <OUT>
   optuna-dashboard command line option, 38

--print-empty
   optuna-studies command line option, 39

--quiet
   optuna command line option, 37

--quote <QUOTE_MODE>
   optuna-studies command line option, 39

--skip-if-exists
   optuna-create-study command line option, 38

--sort-column SORT_COLUMN
   optuna-studies command line option, 39

--storage <STORAGE>
   optuna command line option, 38

--study <STUDY>
   optuna-dashboard command line option, 38

   optuna-study-optimize command line option, 40

   optuna-study-set-user-attr command line option, 40

--study-name <STUDY_NAME>
   optuna-create-study command line option, 38

   optuna-study-optimize command line option, 40

   optuna-study-set-user-attr command line option, 40

--timeout <TIMEOUT>
   optuna-study-optimize command line option, 40

--value <VALUE>
   optuna-study-set-user-attr command line option, 41

--verbose
   optuna command line option, 37

--version
   optuna command line option, 37

-c COLUMN
optuna-studies command line option, 39
-f <FORMATTER>
optuna-studies command line option, 39
-k <KEY>
optuna-study-set-user-attr command line option, 40
-o <OUT>
optuna-dashboard command line option, 38
-q
optuna command line option, 37
-v
optuna command line option, 37
-v <VALUE>
optuna-study-set-user-attr command line option, 41

A
add_trial() (optuna.study.Study method), 176
after_trial() (optuna.integration.BoTorchSampler method), 58
after_trial() (optuna.integration.CmaEsSampler method), 77
after_trial() (optuna.integration.PyCmaSampler method), 75
after_trial() (optuna.integration.SkoptSampler method), 86
after_trial() (optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler method), 101
after_trial() (optuna.samplers.BaseSampler method), 130
after_trial() (optuna.samplers.CmaEsSampler method), 143
after_trial() (optuna.samplers.GridSampler method), 133
after_trial() (optuna.samplers.MOTPSampler method), 152
after_trial() (optuna.samplers.NSGAIISampler method), 149
after_trial() (optuna.samplers.PartialFixedSampler method), 146
after_trial() (optuna.samplers.RandomSampler method), 135
after_trial() (optuna.samplers.TPESampler method), 139
AllenNLPExecutor (class in optuna.integration), 54
AllenNLPPruningCallback (class in optuna.integration), 56

B
BaseMultiObjectiveSampler (class in optuna.multi_objective.samplers), 94
BasePruner (class in optuna.pruners), 116
BaseSampler (class in optuna.samplers), 127
best_booster() (optuna.integration.lightgbm.LightGBMTuner property), 69
best_estimator_ (optuna.integration.OptunaSearchCV attribute), 81
best_index_() (optuna.integration.OptunaSearchCV property), 82
best_params() (optuna.integration.lightgbm.LightGBMTuner property), 69
best_params() (optuna.integration.lightgbm.LightGBMTunerCV property), 71
best_params() (optuna.integration.OptunaSearchCV property), 82
best_score() (optuna.integration.lightgbm.LightGBMTuner property), 69
best_score() (optuna.integration.lightgbm.LightGBMTunerCV property), 71
best_score_() (optuna.integration.OptunaSearchCV property), 83
best_trial (optuna.study.StudySummary attribute), 187
best_trial() (optuna.study.Study property), 177
best_trial_() (optuna.integration.OptunaSearchCV property), 83
best_trials() (optuna.study.Study property), 177
best_value() (optuna.study.Study property), 177
BoTorchSampler (class in optuna.integration), 57

C
calculate() (optuna.samplers.IntersectionSearchSpace method), 155
CatalystPruningCallback (class in optuna.integration), 62
CategoricalDistribution (class in optuna.distributions), 46
ChainerMNStudy (class in optuna.integration), 63
ChainerPruningExtension (class in optuna.integration), 62
check_distribution_compatibility() (in module optuna.distributions), 48
check_trial_is_updatable() (optuna.storages.RDBStorage method), 157
check_trial_is_updatable() (optuna.storages.RedisStorage method), 166
choices (optuna.distributions.CategoricalDistribution attribute), 46
classes_() (optuna.integration.OptunaSearchCV property), 83
CLIUsageError, 50
CmaEsSampler (class in optuna.integration), 77
CmaEsSampler (class in optuna.samplers), 141
COMPLETED (optuna.structs.TrialState attribute), 173
COMPLETED (optuna.trial.TrialState attribute), 202
create_new_study() (optuna.storages.RDBStorage method), 158
create_new_study() (optuna.storages.RedisStorage method), 166
create_new_trial() (optuna.storages.RDBStorage method), 158
create_new_trial() (optuna.storages.RedisStorage method), 167
create_study() (in module optuna), 33
create_study() (in module optuna.multi_objective.study), 107
create_study() (in module optuna.study), 183
create_trial() (in module optuna), 203
datetime_complete (optuna.multi_objective.trial.FrozenMultiObjectiveTrial attribute), 114
datetime_complete (optuna.trial.FrozenTrial attribute), 201
datetime_start (optuna.multi_objective.trial.FrozenMultiObjectiveTrial attribute), 113
datetime_start (optuna.study.StudySummary attribute), 187
datetime_start (optuna.trial.FrozenTrial attribute), 201
datetime_start() (optuna.multi_objective.trial.MultiObjectiveTrial property), 111
datetime_start() (optuna.trial.Trial property), 189
direction (optuna.study.Study property), 177
direction() (optuna.study.StudySummary attribute), 187
directions (optuna.multi_objective.study.MultiObjectiveStudy property), 105
directions() (optuna.study.Study property), 177
disable_default_handler() (in module optuna.logging), 92
disable_propagation() (in module optuna.logging), 92
DiscreteUniformDistribution (class in optuna.distributions), 43
distribution_to_json() (in module optuna.distributions), 47
distributions (optuna.multi_objective.trial.FrozenMultiObjectiveTrial attribute), 114
distributions() (optuna.multi_objective.trial.MultiObjectiveTrial property), 111
distributions() (optuna structs.FrozenTrial property), 174
distributions() (optuna.trial.FrozenTrial property), 201
distributions() (optuna.trial.Trial property), 189
dump_best_config() (in module optuna.integration.allennlp), 55
DuplicatedStudyError, 50
duration() (optuna.structs.FrozenTrial property), 174
duration() (optuna.trial.FrozenTrial property), 201
enable_default_handler() (in module optuna.logging), 92
enable_propagation() (in module optuna.logging), 92
enqueue_trial() (optuna.multi_objective.study.MultiObjectiveStudy method), 105
enqueue_trial() (optuna.study.Study method), 177
evaluate() (optuna.importance.FanovaImportanceEvaluator method), 52
evaluate() (optuna.importance.MeanDecreaseImpurityImportanceEvaluator method), 53
FAIL (optuna.structs.TrialState attribute), 173
FAIL (optuna.trial.TrialState attribute), 202
FanovaImportanceEvaluator (class in optuna.importance), 51
FastAIPruningCallback (in module optuna.integration), 65
FastAV1PruningCallback (class in optuna.integration), 64
FastAV2PruningCallback (class in optuna.integration), 64
file
    optuna-study-optimize command line option, 40
fit() (optuna.integration.OptunaSearchCV method), 83
FixedTrial (class in optuna.trial), 198
FrozenMultiObjectiveTrial (class in optuna.multi_objective.trial), 113
FrozenTrial (class in optuna.trial), 199
get_all_study_summaries() (in module optuna), 36
get_all_study_summaries() (in module optuna.study), 186
get_all_study_summaries() (optuna.storages.RDBStorage method), 158
get_all_study_summaries() (optuna.storages.RedisStorage method), 167
get_all_trials() (optuna.storages.RDBStorage method), 158
get_all_trials() (optuna.storages.RedisStorage method), 167
get_all_versions() (optuna.storages.RDBStorage method), 159
get_best_booster() (optuna.integration.lightgbm.LightGBMTuner method), 69
get_best_booster() (optuna.integration.lightgbm.LightGBMTunerCV method), 71
get_best_trial() (optuna.storages.RDBStorage method), 159
get_best_trial() (optuna.storages.RedisStorage method), 167
get_current_version() (optuna.storages.RDBStorage method), 159
get_head_version() (optuna.storages.RDBStorage method), 159
get_n_trials() (optuna.storages.RDBStorage method), 159
get_n_trials() (optuna.storages.RedisStorage method), 168
get_param_importances() (in module optuna.importance), 50
get_params() (optuna.integration.OptunaSearchCV method), 83
get_pareto_front_trials() (optuna.multi_objective.study.MultiObjectiveStudy method), 105
get_study_directions() (optuna.storages.RDBStorage method), 159
get_study_directions() (optuna.storages.RedisStorage method), 168
get_study_id_from_name() (optuna.storages.RDBStorage method), 160
get_study_id_from_name() (optuna.storages.RedisStorage method), 168
get_study_id_from_trial_id() (optuna.storages.RDBStorage method), 160
get_study_id_from_trial_id() (optuna.storages.RedisStorage method), 168
get_study_name_from_id() (optuna.storages.RDBStorage method), 160
get_study_name_from_id() (optuna.storages.RedisStorage method), 168
get_study_system_attrs() (optuna.storages.RDBStorage method), 159
get_study_system_attrs() (optuna.storages.RedisStorage method), 168
get_study_user_attrs() (optuna.storages.RDBStorage method), 160
get_trial() (optuna.storages.RDBStorage method), 160
get_trial() (optuna.storages.RedisStorage method), 169
get_trial_id_from_study_id_trial_number() (optuna.storages.RDBStorage method), 161
get_trial_id_from_study_id_trial_number() (optuna.storages.RedisStorage method), 169
get_trial_number_from_id() (optuna.storages.RDBStorage method), 161
get_trial_number_from_id() (optuna.storages.RedisStorage method), 169
get_trial_param() (optuna.storages.RDBStorage method), 169
get_trial_param() (optuna.storages.RedisStorage method), 170
get_trial_params() (optuna.storages.RDBStorage method), 161
get_trial_params() (optuna.storages.RedisStorage method), 170
get_trial_system_attrs() (optuna.storages.RDBStorage method), 161
get_trial_system_attrs() (optuna.storages.RedisStorage method), 170
get_trial_user_attrs() (optuna.storages.RDBStorage method), 162
get_trial_user_attrs() (optuna.storages.RedisStorage method), 170

LightGBMPruningCallback (class in optuna.integration), 66
LightGBMPruner (class in optuna.integration.lightgbm), 67
LightGBMPrunerCV (class in optuna.integration.lightgbm), 70
load_study() (in module optuna), 34
load_study() (in module optuna.multi_objective.study), 109
LogUniformDistribution (class in optuna.distributions), 42
low (optuna.distributions.DiscreteUniformDistribution attribute), 43
low (optuna.distributions.IntLogUniformDistribution attribute), 45
low (optuna.distributions.IntUniformDistribution attribute), 44
low (optuna.distributions.LogUniformDistribution attribute), 42
low (optuna.distributions.UniformDistribution attribute), 41
MAXIMIZE (optuna.structs.StudyDirection attribute), 174
MAXIMIZE (optuna.study.StudyDirection attribute), 186
MeanDecreaseImpurityImportanceEvaluator (class in optuna.importance), 53
MedianPruner (class in optuna.pruners), 117
method
  optuna-study-optimize command line option, 40
MINIMIZE (optuna.structs.StudyDirection attribute), 173
MINIMIZE (optuna.study.StudyDirection attribute), 186
MLFlowCallback (class in optuna.integration), 72
module
  optuna, 33
  optuna.cli, 37
  optuna.distributions, 41
  optuna.exceptions, 48
  optuna.importance, 50
  optuna.integration, 54
  optuna.logging, 90
  optuna.multi_objective, 93
  optuna.multi_objective.samplers, 93
  optuna.multi_objective.study, 104
  optuna.multi_objective.trial, 109
  optuna.multi_objective.visualization, 114
  optuna.pruners, 115
  optuna.samplers, 127
  optuna.storages, 156
  optuna.structs, 173
  optuna.study, 175
  optuna.trial, 187
  optuna.visualization, 204
  optuna.visualization.matplotlib, 213
  MOTPMultiObjectiveSampler (class in optuna.multi_objective.samplers), 100
  MOTPSampler (class in optuna.samplers), 151
  MultiObjectiveStudy (class in optuna.multi_objective.study), 104
  MultiObjectiveTrial (class in optuna.multi_objective.trial), 110
  MXNetPruningCallback (class in optuna.integration), 73

N
n_objectives() (optuna.multi_objective.study.MultiObjectiveStudy property), 106
n_splits_ (optuna.integration.OptunaSearchCV attribute), 81
n_trials (optuna.study.StudySummary attribute), 187
n_trials_() (optuna.integration.OptunaSearchCV property), 83
NopPruner (class in optuna.pruners), 118
NOT_SET (optuna.structs.StudyDirection attribute), 173
NOT_SET (optuna.study.StudyDirection attribute), 186
NSGAIIMultiObjectiveSampler (class in optuna.multi_objective.samplers), 95
NSGAIISampler (class in optuna.samplers), 148
number (optuna.multi_objective.trial.FrozenMultiObjectiveTrial attribute), 113
number (optuna.trial.FrozenTrial attribute), 200
number() (optuna.multi_objective.trial.MultiObjectiveTrial property), 111
number() (optuna.trial.Trial property), 189

O
optimize() (optuna.integration.ChainerMNStudy method), 63
optimize() (optuna.multi_objective.study.MultiObjectiveStudy method), 106
optimize() (optuna.study.Study method), 179
optuna module, 33
optuna command line option
  --debug, 37
  --log-file <LOG_FILE>, 37
  --quiet, 37
  --storage <STORAGE>, 38
  --version, 37
  -q, 37
  -v, 37
plot_optimization_history() (in module optuna.visualization.matplotlib), 219
plot_parallel_coordinate() (in module optuna.visualization), 209
plot_parallel_coordinate() (in module optuna.visualization.matplotlib), 221
plot_param_importances() (in module optuna.visualization), 210
plot_param_importances() (in module optuna.visualization.matplotlib), 223
plot_pareto_front() (in module optuna.multi_objective.visualization), 115
plot_pareto_front() (in module optuna.visualization), 211
plot_slice() (in module optuna.visualization), 212
plot_slice() (in module optuna.visualization.matplotlib), 225
predict() (optuna.integration.OptunaSearchCV property), 83
predict_log_proba() (optuna.integration.OptunaSearchCV property), 83
predict_proba() (optuna.integration.OptunaSearchCV property), 84
prune() (optuna.pruners.BasePruner method), 116
prune() (optuna.pruners.HyperbandPruner method), 125
prune() (optuna.pruners.MedianPruner method), 118
prune() (optuna.pruners.NopPruner method), 119
prune() (optuna.pruners.PercentilePruner method), 121
prune() (optuna.pruners.SuccessiveHalvingPruner method), 123
prune() (optuna.pruners.ThresholdPruner method), 127
PRUNED (optuna structs.TrialState attribute), 173
PRUNED (optuna trial.TrialState attribute), 202
PyCmaSampler (class in optuna.integration), 73
PyTorchIgnitePruningHandler (class in optuna.integration), 79
PyTorchLightningPruningCallback (class in optuna.integration), 79
Q
q (optuna distributions.ToListDistribution attribute), 43
qehvi_candidates_func() (in module optuna.integration.botorch), 61
qei_candidates_func() (in module optuna.integration.botorch), 60
qparego_candidates_func() (in module optuna.integration.botorch), 61
R
RandomMultiObjectiveSampler (class in optuna multi objective samplers), 97
RandomSampler (class in optuna samplers), 135
RDBStorage (class in optuna storages), 156
read_trials_from_remote_storage() (optuna storages.RDBStorage method), 162
read_trials_from_remote_storage() (optuna storages.RedisStorage method), 170
RedisStorage (class in optuna storages), 165
refit_time_ (optuna integration.OptunaSearchCV attribute), 81
register() (optuna integration.AllenNLPPruningCallback class method), 56
remove_session() (optuna storages.RDBStorage method), 162
remove_session() (optuna storages.RedisStorage method), 170
report() (optuna multi objective trial.MultiObjectiveTrial method), 111
report() (optuna structs.FrozenTrial method), 174
report() (optuna trial.FrozenTrial method), 202
report() (optuna trial.Trial method), 189
reseed_rng() (optuna integration.BoTorchSampler method), 59
reseed_rng() (optuna integration.CmaEsSampler method), 78
reseed_rng() (optuna.integration.PyCmaSampler method), 75
reseed_rng() (optuna integration.SkoptSampler method), 87
reseed_rng() (optuna multi objective samplers.BaseMultiObjectiveSampler method), 94
reseed_rng() (optuna multi objective samplers.MOTPEMultiObjective method), 103
reseed_rng() (optuna multi objective samplers.NSGAIIMultiObjective method), 96
reseed_rng() (optuna multi objective samplers.RandomMultiObjective method), 99
reseed_rng() (optuna samplers.BaseSampler method), 130
reseed_rng() (optuna samplers.CmaEsSampler method), 144
reseed_rng() (optuna samplers.GridSampler method), 134
reseed_rng() (optuna samplers.MOTPESampler method), 153
reseed_rng() (optuna samplers.NSGAIISampler method), 149
reseed_rng() (optuna samplers.PartialFixedSampler method), 147
reseed_rng() (optuna samplers.RandomSampler method), 136
reseed_rng() (optuna samplers.TPESampler method), 137
Q
Optuna Documentation, Release 2.4.0

run() (optuna.integration.AllenNLPExecutor method), 140

run() (optuna.integration.lightgbm.LightGBMTuner method), 69

run() (optuna.integration.lightgbm.LightGBMTunerCV method), 71

RUNNING (optuna.structs.TrialState attribute), 173

RUNNING (optuna.trial.TrialState attribute), 202

S

sample_independent() (optuna.integration.BoTorchSampler method), 59

sample_independent() (optuna.integration.CmaEsSampler method), 78

sample_independent() (optuna.integration.PyCmaSampler method), 75

sample_independent() (optuna.integration.SkoptSampler method), 87

sample_independent() (optuna.multi_objective.samplers.BaseMultiObjectiveSampler method), 95

sample_independent() (optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler method), 103

sample_independent() (optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler method), 97

sample_independent() (optuna.multi_objective.samplers.RandomMultiObjectiveSampler method), 99

sample_independent() (optuna.samplers.BaseSampler method), 131

sample_independent() (optuna.samplers.CmaEsSampler method), 145

sample_independent() (optuna.samplers.GridSampler method), 134

sample_independent() (optuna.samplers.MOTPESampler method), 154

sample_independent() (optuna.samplers.NSGAIISSampler method), 150

sample_independent() (optuna.samplers.PartialFixedSampler method), 147

sample_independent() (optuna.samplers.RandomSampler method), 136

sample_indices_ (optuna.integration.OptunaSearchCV attribute), 81

sample_relative() (optuna.integration.BoTorchSampler method), 59

sample_relative() (optuna.integration.CmaEsSampler method), 78

sample_relative() (optuna.integration.PyCmaSampler method), 76

sample_relative() (optuna.integration.SkoptSampler method), 87

sample_relative() (optuna.multi_objective.samplers.BaseMultiObjectiveSampler method), 95

sample_relative() (optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler method), 103

sample_relative() (optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler method), 97

sample_relative() (optuna.multi_objective.samplers.RandomMultiObjectiveSampler method), 99

sample_relative() (optuna.samplers.BaseSampler method), 131

sample_relative() (optuna.samplers.CmaEsSampler method), 145

sample_relative() (optuna.samplers.GridSampler method), 134

sample_relative() (optuna.samplers.MOTPESampler method), 154

sample_relative() (optuna.samplers.NSGAIISSampler method), 150

sample_relative() (optuna.samplers.PartialFixedSampler method), 147

sample_relative() (optuna.samplers.RandomSampler method), 136

sample_train_set() (optuna.integration.lightgbm.LightGBMTuner method), 69

sample_train_set() (optuna.integration.lightgbm.LightGBMTunerCV method), 71

sample_train_set() (optuna.integration.OptunaSearchCV method), 81

Index 247
StudySummary (class in optuna.study), 187
SuccessiveHalvingPruner (class in optuna.pruners), 121
suggest_categorical() (optuna.multi_objective.trial.MultiObjectiveTrial method), 112
suggest_categorical() (optuna.trial.Trial method), 191
suggest_discrete_uniform() (optuna.multi_objective.trial.MultiObjectiveTrial method), 112
suggest_discrete_uniform() (optuna.trial.Trial method), 192
suggest_float() (optuna.multi_objective.trial.MultiObjectiveTrial method), 112
suggest_float() (optuna.trial.Trial method), 193
suggest_int() (optuna.multi_objective.trial.MultiObjectiveTrial method), 112
suggest_int() (optuna.trial.Trial method), 195
suggest_loguniform() (optuna.multi_objective.trial.MultiObjectiveTrial method), 113
suggest_loguniform() (optuna.trial.Trial method), 196
suggest_uniform() (optuna.multi_objective.trial.MultiObjectiveTrial method), 113
suggest_uniform() (optuna.trial.Trial method), 197
system_attrs (optuna.study.StudySummary attribute), 187
system_attrs() (optuna.multi_objective.study.MultiObjectiveStudy property), 107
system_attrs() (optuna.multi_objective.trial.MultiObjectiveTrial method), 113
system_attrs() (optuna.study.Study property), 181
system_attrs() (optuna.trial.Trial property), 198

to_external_repr() (optuna.distributions.DiscreteUniformDistribution method), 44
to_external_repr() (optuna.distributions.IntLogUniformDistribution method), 46
to_external_repr() (optuna.distributions.IntUniformDistribution method), 45
to_external_repr() (optuna.distributions.LogUniformDistribution method), 43
to_external_repr() (optuna.distributions.UniformDistribution method), 42
to_internal_repr() (optuna.distributions.CategoricalDistribution method), 47
to_internal_repr() (optuna.distributions.DiscreteUniformDistribution method), 44
to_internal_repr() (optuna.distributions.IntLogUniformDistribution method), 46
to_internal_repr() (optuna.distributions.IntUniformDistribution method), 45
to_internal_repr() (optuna.distributions.LogUniformDistribution method), 43
to_internal_repr() (optuna.distributions.UniformDistribution method), 42
TPESampler (class in optuna.samplers), 137
train() (in module optuna.integration.lightgbm), 67
transform() (optuna.integration.OptunaSearchCV property), 84
Trial (class in optuna.trial), 188
TrialPruned, 36, 49
trials() (optuna.multi_objective.study.MultiObjectiveStudy property), 107
trials() (optuna.study.Study property), 181
trials() (optuna.integration.OptunaSearchCV property), 84
trials_dataframe() (optuna.integration.OptunaSearchCV property), 84
TrialState (class in optuna.structs), 173
TrialState (class in optuna.trial), 202

U
UniformDistribution (class in optuna.distributions.CategoricalDistribution method), 47
tuna.distributions), 41
upgrade() (optuna.storages.RDBStorage method), 165
user attrs (optuna.multi_objective.trial.FrozenMultiObjectiveTrial attribute), 114
user attrs (optuna.study.StudySummary attribute), 187
user attrs (optuna.trial.FrozenTrial attribute), 201
user attrs() (optuna.multi_objective.study.MultiObjectiveStudy property), 107
user attrs() (optuna.multi_objective.trial.MultiObjectiveTrial property), 113
user attrs() (optuna.study.Study property), 182
user attrs() (optuna.trial.Trial property), 198
user attrs_() (optuna.integration.OptunaSearchCV property), 84

V
value (optuna.trial.FrozenTrial attribute), 200
values (optuna.multi_objective.trial.FrozenMultiObjectiveTrial attribute), 113
values (optuna.trial.FrozenTrial attribute), 200

X
XGBoostPruningCallback (class in optuna.integration), 90