optuna.samplers.nsgaii.BaseCrossover
- class optuna.samplers.nsgaii.BaseCrossover[source]
Base class for crossovers.
A crossover operation is used by
NSGAIISampler
to create new parameter combination from parameters ofn
parent individuals.Note
Concrete implementations of this class are expected to only accept parameters from numerical distributions. At the moment, only crossover operation for categorical parameters (uniform crossover) is built-in into
NSGAIISampler
.Methods
crossover
(parents_params, rng, study, ...)Perform crossover of selected parent individuals.
Attributes
Number of parent individuals required to perform crossover.
- abstract crossover(parents_params, rng, study, search_space_bounds)[source]
Perform crossover of selected parent individuals.
This method is called in
sample_relative()
.- Parameters:
parents_params (np.ndarray) – A
numpy.ndarray
with dimensionsnum_parents x num_parameters
. Represents a parameter space for each parent individual. This space is continuous for numerical parameters.rng (np.random.RandomState) – An instance of
numpy.random.RandomState
.study (Study) – Target study object.
search_space_bounds (np.ndarray) – A
numpy.ndarray
with dimensionslen_search_space x 2
representing numerical distribution bounds constructed from transformed search space.
- Returns:
A 1-dimensional
numpy.ndarray
containing new parameter combination.- Return type:
np.ndarray