Exceptions

class optuna.exceptions.OptunaError[source]

Base class for Optuna specific errors.

class optuna.exceptions.TrialPruned[source]

Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is supposed to be raised after optuna.trial.Trial.should_prune() as shown in the following example.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
    alpha = trial.suggest_uniform('alpha', 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)

study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=20)
class optuna.exceptions.CLIUsageError[source]

Exception for CLI.

CLI raises this exception when it receives invalid configuration.

class optuna.exceptions.StorageInternalError[source]

Exception for storage operation.

This error is raised when an operation failed in backend DB of storage.

class optuna.exceptions.DuplicatedStudyError[source]

Exception for a duplicated study name.

This error is raised when a specified study name already exists in the storage.