Source code for optuna.visualization.matplotlib._contour

from typing import Callable
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import numpy as np
import scipy

from optuna._experimental import experimental_func
from optuna.logging import get_logger
from import Study
from optuna.trial import FrozenTrial
from optuna.visualization._contour import _AxisInfo
from optuna.visualization._contour import _ContourInfo
from optuna.visualization._contour import _get_contour_info
from optuna.visualization._contour import _SubContourInfo
from optuna.visualization.matplotlib._matplotlib_imports import _imports

if _imports.is_successful():
    from optuna.visualization.matplotlib._matplotlib_imports import Axes
    from optuna.visualization.matplotlib._matplotlib_imports import Colormap
    from optuna.visualization.matplotlib._matplotlib_imports import ContourSet
    from optuna.visualization.matplotlib._matplotlib_imports import plt

_logger = get_logger(__name__)


[docs]@experimental_func("2.2.0") def plot_contour( study: Study, params: Optional[List[str]] = None, *, target: Optional[Callable[[FrozenTrial], float]] = None, target_name: str = "Objective Value", ) -> "Axes": """Plot the parameter relationship as contour plot in a study with Matplotlib. Note that, if a parameter contains missing values, a trial with missing values is not plotted. .. seealso:: Please refer to :func:`optuna.visualization.plot_contour` for an example. Warnings: Output figures of this Matplotlib-based :func:`~optuna.visualization.matplotlib.plot_contour` function would be different from those of the Plotly-based :func:`~optuna.visualization.plot_contour`. Example: The following code snippet shows how to plot the parameter relationship as contour plot. .. plot:: import optuna def objective(trial): x = trial.suggest_float("x", -100, 100) y = trial.suggest_categorical("y", [-1, 0, 1]) return x ** 2 + y sampler = optuna.samplers.TPESampler(seed=10) study = optuna.create_study(sampler=sampler) study.optimize(objective, n_trials=30) optuna.visualization.matplotlib.plot_contour(study, params=["x", "y"]) Args: study: A :class:`` object whose trials are plotted for their target values. params: Parameter list to visualize. The default is all parameters. target: A function to specify the value to display. If it is :obj:`None` and ``study`` is being used for single-objective optimization, the objective values are plotted. .. note:: Specify this argument if ``study`` is being used for multi-objective optimization. target_name: Target's name to display on the color bar. Returns: A :class:`matplotlib.axes.Axes` object. .. note:: The colormap is reversed when the ``target`` argument isn't :obj:`None` or ``direction`` of :class:`` is ``minimize``. """ _imports.check() _logger.warning( "Output figures of this Matplotlib-based `plot_contour` function would be different from " "those of the Plotly-based `plot_contour`." ) info = _get_contour_info(study, params, target, target_name) return _get_contour_plot(info)
def _get_contour_plot(info: _ContourInfo) -> "Axes": sorted_params = info.sorted_params sub_plot_infos = info.sub_plot_infos reverse_scale = info.reverse_scale target_name = info.target_name if len(sorted_params) <= 1: _, ax = plt.subplots() return ax n_params = len(sorted_params)"ggplot") # Use ggplot style sheet for similar outputs to plotly. if n_params == 2: # Set up the graph style. fig, axs = plt.subplots() axs.set_title("Contour Plot") cmap = _set_cmap(reverse_scale) cs = _generate_contour_subplot(sub_plot_infos[0][0], axs, cmap) if isinstance(cs, ContourSet): axcb = fig.colorbar(cs) axcb.set_label(target_name) else: # Set up the graph style. fig, axs = plt.subplots(n_params, n_params) fig.suptitle("Contour Plot") cmap = _set_cmap(reverse_scale) # Prepare data and draw contour plots. cs_list = [] for x_i in range(len(sorted_params)): for y_i in range(len(sorted_params)): ax = axs[y_i, x_i] cs = _generate_contour_subplot(sub_plot_infos[y_i][x_i], ax, cmap) if isinstance(cs, ContourSet): cs_list.append(cs) if cs_list: axcb = fig.colorbar(cs_list[0], ax=axs) axcb.set_label(target_name) return axs def _set_cmap(reverse_scale: bool) -> "Colormap": cmap = "Blues_r" if not reverse_scale else "Blues" return plt.get_cmap(cmap) class _LabelEncoder: def __init__(self) -> None: self.labels: List[str] = [] def fit(self, labels: List[str]) -> "_LabelEncoder": self.labels = sorted(set(labels)) return self def transform(self, labels: List[str]) -> List[int]: return [self.labels.index(label) for label in labels] def fit_transform(self, labels: List[str]) -> List[int]: return def get_labels(self) -> List[str]: return self.labels def get_indices(self) -> List[int]: return list(range(len(self.labels))) def _calculate_griddata( xaxis: _AxisInfo, yaxis: _AxisInfo, z_values_dict: Dict[Tuple[int, int], float], ) -> Tuple[ np.ndarray, np.ndarray, np.ndarray, List[int], List[str], List[int], List[str], List[Union[int, float]], List[Union[int, float]], ]: x_values = [] y_values = [] z_values = [] for x_value, y_value in zip(xaxis.values, yaxis.values): if x_value is not None and y_value is not None: x_values.append(x_value) y_values.append(y_value) x_i = xaxis.indices.index(x_value) y_i = yaxis.indices.index(y_value) z_values.append(z_values_dict[(x_i, y_i)]) # Return empty values when x or y has no value. if len(x_values) == 0 or len(y_values) == 0: return np.array([]), np.array([]), np.array([]), [], [], [], [], [], [] def _calculate_axis_data( axis: _AxisInfo, values: Sequence[Union[str, float]], ) -> Tuple[np.ndarray, List[str], List[int], List[Union[int, float]]]: # Convert categorical values to int. cat_param_labels = [] # type: List[str] cat_param_pos = [] # type: List[int] returned_values: Sequence[Union[int, float]] if axis.is_cat: enc = _LabelEncoder() returned_values = enc.fit_transform(list(map(str, values))) cat_param_labels = enc.get_labels() cat_param_pos = enc.get_indices() else: returned_values = list(map(lambda x: float(x), values)) # For x and y, create 1-D array of evenly spaced coordinates on linear or log scale. if axis.is_log: ci = np.logspace(np.log10(axis.range[0]), np.log10(axis.range[1]), CONTOUR_POINT_NUM) else: ci = np.linspace(axis.range[0], axis.range[1], CONTOUR_POINT_NUM) return ci, cat_param_labels, cat_param_pos, list(returned_values) xi, cat_param_labels_x, cat_param_pos_x, transformed_x_values = _calculate_axis_data( xaxis, x_values, ) yi, cat_param_labels_y, cat_param_pos_y, transformed_y_values = _calculate_axis_data( yaxis, y_values, ) # Calculate grid data points. zi: np.ndarray = np.array([]) # Create irregularly spaced map of trial values # and interpolate it with Plotly's interpolation formulation. if != zmap = _create_zmap(transformed_x_values, transformed_y_values, z_values, xi, yi) zi = _interpolate_zmap(zmap, CONTOUR_POINT_NUM) return ( xi, yi, zi, cat_param_pos_x, cat_param_labels_x, cat_param_pos_y, cat_param_labels_y, transformed_x_values, transformed_y_values, ) def _generate_contour_subplot(info: _SubContourInfo, ax: "Axes", cmap: "Colormap") -> "ContourSet": if len(info.xaxis.indices) < 2 or len(info.yaxis.indices) < 2: ax.label_outer() return ax ax.set(, ax.set_xlim(info.xaxis.range[0], info.xaxis.range[1]) ax.set_ylim(info.yaxis.range[0], info.yaxis.range[1]) if == ax.label_outer() return ax ( xi, yi, zi, x_cat_param_pos, x_cat_param_label, y_cat_param_pos, y_cat_param_label, x_values, y_values, ) = _calculate_griddata(info.xaxis, info.yaxis, info.z_values) cs = None if len(zi) > 0: if info.xaxis.is_log: ax.set_xscale("log") if info.yaxis.is_log: ax.set_yscale("log") if != # Contour the gridded data. ax.contour(xi, yi, zi, 15, linewidths=0.5, colors="k") cs = ax.contourf(xi, yi, zi, 15, cmap=cmap.reversed()) # Plot data points. ax.scatter( x_values, y_values, marker="o", c="black", s=20, edgecolors="grey", linewidth=2.0, ) if info.xaxis.is_cat: ax.set_xticks(x_cat_param_pos) ax.set_xticklabels(x_cat_param_label) if info.yaxis.is_cat: ax.set_yticks(y_cat_param_pos) ax.set_yticklabels(y_cat_param_label) ax.label_outer() return cs def _create_zmap( x_values: List[Union[int, float]], y_values: List[Union[int, float]], z_values: List[float], xi: np.ndarray, yi: np.ndarray, ) -> Dict[Tuple[int, int], float]: # Creates z-map from trial values and params. # z-map is represented by hashmap of coordinate and trial value pairs. # # Coordinates are represented by tuple of integers, where the first item # indicates x-axis index and the second item indicates y-axis index # and refer to a position of trial value on irregular param grid. # # Since params were resampled either with linspace or logspace # original params might not be on the x and y axes anymore # so we are going with close approximations of trial value positions. zmap = dict() for x, y, z in zip(x_values, y_values, z_values): xindex = int(np.argmin(np.abs(xi - x))) yindex = int(np.argmin(np.abs(yi - y))) zmap[(xindex, yindex)] = z return zmap def _interpolate_zmap(zmap: Dict[Tuple[int, int], float], contour_plot_num: int) -> np.ndarray: # Implements interpolation formulation used in Plotly # to interpolate heatmaps and contour plots # # citing their doc: # # > Fill in missing data from a 2D array using an iterative # > poisson equation solver with zero-derivative BC at edges. # > Amazingly, this just amounts to repeatedly averaging all the existing # > nearest neighbors # # Plotly's algorithm is equivalent to solve the following linear simultaneous equation. # It is discretization form of the Poisson equation. # # z[x, y] = zmap[(x, y)] (if zmap[(x, y)] is given) # 4 * z[x, y] = z[x-1, y] + z[x+1, y] + z[x, y-1] + z[x, y+1] (if zmap[(x, y)] is not given) a_data = [] a_row = [] a_col = [] b = np.zeros(contour_plot_num**2) for x in range(contour_plot_num): for y in range(contour_plot_num): grid_index = y * contour_plot_num + x if (x, y) in zmap: a_data.append(1) a_row.append(grid_index) a_col.append(grid_index) b[grid_index] = zmap[(x, y)] else: for dx, dy in ((-1, 0), (1, 0), (0, -1), (0, 1)): if 0 <= x + dx < contour_plot_num and 0 <= y + dy < contour_plot_num: a_data.append(1) a_row.append(grid_index) a_col.append(grid_index) a_data.append(-1) a_row.append(grid_index) a_col.append(grid_index + dy * contour_plot_num + dx) z = scipy.sparse.linalg.spsolve(scipy.sparse.csc_matrix((a_data, (a_row, a_col))), b) return z.reshape((contour_plot_num, contour_plot_num))