optuna.trial.create_trial
- optuna.trial.create_trial(*, state=1, value=None, values=None, params=None, distributions=None, user_attrs=None, system_attrs=None, intermediate_values=None)[source]
Create a new
FrozenTrial
.Example
import optuna from optuna.distributions import CategoricalDistribution from optuna.distributions import FloatDistribution trial = optuna.trial.create_trial( params={"x": 1.0, "y": 0}, distributions={ "x": FloatDistribution(0, 10), "y": CategoricalDistribution([-1, 0, 1]), }, value=5.0, ) assert isinstance(trial, optuna.trial.FrozenTrial) assert trial.value == 5.0 assert trial.params == {"x": 1.0, "y": 0}
See also
See
add_trial()
for how this function can be used to create a study from existing trials.Note
Please note that this is a low-level API. In general, trials that are passed to objective functions are created inside
optimize()
.Note
When
state
isTrialState.COMPLETE
, the following parameters are required:params
distributions
value
orvalues
- Parameters:
state (TrialState) – Trial state.
value (float | None) – Trial objective value. Must be specified if
state
isTrialState.COMPLETE
.value
andvalues
must not be specified at the same time.values (Sequence[float] | None) – Sequence of the trial objective values. The length is greater than 1 if the problem is multi-objective optimization. Must be specified if
state
isTrialState.COMPLETE
.value
andvalues
must not be specified at the same time.params (dict[str, Any] | None) – Dictionary with suggested parameters of the trial.
distributions (dict[str, BaseDistribution] | None) – Dictionary with parameter distributions of the trial.
user_attrs (dict[str, Any] | None) – Dictionary with user attributes.
system_attrs (dict[str, Any] | None) – Dictionary with system attributes. Should not have to be used for most users.
intermediate_values (dict[int, float] | None) – Dictionary with intermediate objective values of the trial.
- Returns:
Created trial.
- Return type: