optuna.study.load_study
- optuna.study.load_study(*, study_name, storage, sampler=None, pruner=None)[source]
Load the existing
Study
that has the specified name.Example
import optuna def objective(trial): x = trial.suggest_float("x", 0, 10) return x**2 study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study") study.optimize(objective, n_trials=3) loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.db") assert len(loaded_study.trials) == len(study.trials)
- Parameters:
study_name (str | None) – Study’s name. Each study has a unique name as an identifier. If
None
, checks whether the storage contains a single study, and if so loads that study.study_name
is required if there are multiple studies in the storage.storage (str | storages.BaseStorage) – Database URL such as
sqlite:///example.db
. Please see also the documentation ofcreate_study()
for further details.sampler ('samplers.BaseSampler' | None) – A sampler object that implements background algorithm for value suggestion. If
None
is specified,TPESampler
is used as the default. See alsosamplers
.pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of unpromising trials. If
None
is specified,MedianPruner
is used as the default. See alsopruners
.
- Returns:
A
Study
object.- Return type:
See also
optuna.load_study()
is an alias ofoptuna.study.load_study()
.