Source code for optuna.visualization.matplotlib._edf

import itertools
from typing import Callable
from typing import cast
from typing import List
from typing import Optional
from typing import Sequence
from typing import Union

import numpy as np

from optuna._experimental import experimental
from optuna.logging import get_logger
from import Study
from optuna.trial import FrozenTrial
from optuna.trial import TrialState
from optuna.visualization._utils import _check_plot_args
from optuna.visualization.matplotlib._matplotlib_imports import _imports

if _imports.is_successful():
    from optuna.visualization.matplotlib._matplotlib_imports import Axes
    from optuna.visualization.matplotlib._matplotlib_imports import plt

_logger = get_logger(__name__)

[docs]@experimental("2.2.0") def plot_edf( study: Union[Study, Sequence[Study]], *, target: Optional[Callable[[FrozenTrial], float]] = None, target_name: str = "Objective Value", ) -> "Axes": """Plot the objective value EDF (empirical distribution function) of a study with Matplotlib. .. seealso:: Please refer to :func:`optuna.visualization.plot_edf` for an example, where this function can be replaced with it. .. note:: Please refer to `matplotlib.pyplot.legend <>`_ to adjust the style of the generated legend. Example: The following code snippet shows how to plot EDF. .. plot:: import math import optuna def ackley(x, y): a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2))) b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y))) return -a - b + math.e + 20 def objective(trial, low, high): x = trial.suggest_float("x", low, high) y = trial.suggest_float("y", low, high) return ackley(x, y) sampler = optuna.samplers.RandomSampler(seed=10) # Widest search space. study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler) study0.optimize(lambda t: objective(t, 0, 5), n_trials=500) # Narrower search space. study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler) study1.optimize(lambda t: objective(t, 0, 4), n_trials=500) # Narrowest search space but it doesn't include the global optimum point. study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler) study2.optimize(lambda t: objective(t, 1, 3), n_trials=500) optuna.visualization.matplotlib.plot_edf([study0, study1, study2]) Args: study: A target :class:`` object. You can pass multiple studies if you want to compare those EDFs. target: A function to specify the value to display. If it is :obj:`None` and ``study`` is being used for single-objective optimization, the objective values are plotted. .. note:: Specify this argument if ``study`` is being used for multi-objective optimization. target_name: Target's name to display on the axis label. Returns: A :class:`matplotlib.axes.Axes` object. Raises: :exc:`ValueError`: If ``target`` is :obj:`None` and ``study`` is being used for multi-objective optimization. """ _imports.check() if isinstance(study, Study): studies = [study] else: studies = list(study) _check_plot_args(studies, target, target_name) return _get_edf_plot(studies, target, target_name)
def _get_edf_plot( studies: List[Study], target: Optional[Callable[[FrozenTrial], float]] = None, target_name: str = "Objective Value", ) -> "Axes": # Set up the graph style."ggplot") # Use ggplot style sheet for similar outputs to plotly. _, ax = plt.subplots() ax.set_title("Empirical Distribution Function Plot") ax.set_xlabel(target_name) ax.set_ylabel("Cumulative Probability") ax.set_ylim(0, 1) cmap = plt.get_cmap("tab20") # Use tab20 colormap for multiple line plots. # Prepare data for plotting. if len(studies) == 0: _logger.warning("There are no studies.") return ax all_trials = list( itertools.chain.from_iterable( ( trial for trial in study.get_trials(deepcopy=False) if trial.state == TrialState.COMPLETE ) for study in studies ) ) if len(all_trials) == 0: _logger.warning("There are no complete trials.") return ax if target is None: def _target(t: FrozenTrial) -> float: return cast(float, t.value) target = _target min_x_value = min(target(trial) for trial in all_trials) max_x_value = max(target(trial) for trial in all_trials) x_values = np.linspace(min_x_value, max_x_value, 100) # Draw multiple line plots. for i, study in enumerate(studies): values = np.asarray( [ target(trial) for trial in study.get_trials(deepcopy=False) if trial.state == TrialState.COMPLETE ] ) y_values = np.sum(values[:, np.newaxis] <= x_values, axis=0) / values.size ax.plot(x_values, y_values, color=cmap(i), alpha=0.7, label=study.study_name) if len(studies) >= 2: ax.legend() return ax