from __future__ import annotations
from collections.abc import Callable
import warnings
import numpy as np
from optuna._experimental import experimental_class
from optuna.distributions import BaseDistribution
from optuna.importance._base import _get_distributions
from optuna.importance._base import _get_filtered_trials
from optuna.importance._base import _sort_dict_by_importance
from optuna.importance._base import BaseImportanceEvaluator
from optuna.importance._ped_anova.scott_parzen_estimator import _build_parzen_estimator
from optuna.logging import get_logger
from optuna.study import Study
from optuna.study import StudyDirection
from optuna.trial import FrozenTrial
_logger = get_logger(__name__)
class _QuantileFilter:
def __init__(
self,
quantile: float,
is_lower_better: bool,
min_n_top_trials: int,
target: Callable[[FrozenTrial], float] | None,
):
assert 0 <= quantile <= 1, "quantile must be in [0, 1]."
assert min_n_top_trials > 0, "min_n_top_trials must be positive."
self._quantile = quantile
self._is_lower_better = is_lower_better
self._min_n_top_trials = min_n_top_trials
self._target = target
def filter(self, trials: list[FrozenTrial]) -> list[FrozenTrial]:
target, min_n_top_trials = self._target, self._min_n_top_trials
sign = 1.0 if self._is_lower_better else -1.0
loss_values = sign * np.asarray([t.value if target is None else target(t) for t in trials])
err_msg = "len(trials) must be larger than or equal to min_n_top_trials"
assert min_n_top_trials <= loss_values.size, err_msg
def _quantile(v: np.ndarray, q: float) -> float:
cutoff_index = int(np.ceil(q * loss_values.size)) - 1
return float(np.partition(loss_values, cutoff_index)[cutoff_index])
cutoff_val = max(
np.partition(loss_values, min_n_top_trials - 1)[min_n_top_trials - 1],
# TODO(nabenabe0928): After dropping Python3.10, replace below with
# np.quantile(loss_values, self._quantile, method="inverted_cdf").
_quantile(loss_values, self._quantile),
)
should_keep_trials = loss_values <= cutoff_val
return [t for t, should_keep in zip(trials, should_keep_trials) if should_keep]
[docs]
@experimental_class("3.6.0")
class PedAnovaImportanceEvaluator(BaseImportanceEvaluator):
"""PED-ANOVA importance evaluator.
Implements the PED-ANOVA hyperparameter importance evaluation algorithm.
PED-ANOVA fits Parzen estimators of :class:`~optuna.trial.TrialState.COMPLETE` trials better
than a user-specified baseline. Users can specify the baseline by a quantile.
The importance can be interpreted as how important each hyperparameter is to get
the performance better than baseline.
For further information about PED-ANOVA algorithm, please refer to the following paper:
- `PED-ANOVA: Efficiently Quantifying Hyperparameter Importance in Arbitrary Subspaces
<https://arxiv.org/abs/2304.10255>`__
.. note::
The performance of PED-ANOVA depends on how many trials to consider above baseline.
To stabilize the analysis, it is preferable to include at least 5 trials above baseline.
.. note::
Please refer to `the original work <https://github.com/nabenabe0928/local-anova>`__.
Args:
baseline_quantile:
Compute the importance of achieving top-``baseline_quantile`` quantile objective value.
For example, ``baseline_quantile=0.1`` means that the importances give the information
of which parameters were important to achieve the top-10% performance during
optimization.
evaluate_on_local:
Whether we measure the importance in the local or global space.
If :obj:`True`, the importances imply how importance each parameter is during
optimization. Meanwhile, ``evaluate_on_local=False`` gives the importances in the
specified search_space. ``evaluate_on_local=True`` is especially useful when users
modify search space during optimization.
Example:
An example of using PED-ANOVA is as follows:
.. testcode::
import optuna
from optuna.importance import PedAnovaImportanceEvaluator
def objective(trial):
x1 = trial.suggest_float("x1", -10, 10)
x2 = trial.suggest_float("x2", -10, 10)
return x1 + x2 / 1000
study = optuna.create_study()
study.optimize(objective, n_trials=100)
evaluator = PedAnovaImportanceEvaluator()
importance = optuna.importance.get_param_importances(study, evaluator=evaluator)
"""
def __init__(
self,
*,
baseline_quantile: float = 0.1,
evaluate_on_local: bool = True,
):
assert 0.0 <= baseline_quantile <= 1.0, "baseline_quantile must be in [0, 1]."
self._baseline_quantile = baseline_quantile
self._evaluate_on_local = evaluate_on_local
# Advanced Setups.
# Discretize a domain [low, high] as `np.linspace(low, high, n_steps)`.
self._n_steps: int = 50
# Control the regularization effect by prior.
self._prior_weight = 1.0
# How many `trials` must be included in `top_trials`.
self._min_n_top_trials = 2
def _get_top_trials(
self,
study: Study,
trials: list[FrozenTrial],
params: list[str],
target: Callable[[FrozenTrial], float] | None,
) -> list[FrozenTrial]:
is_lower_better = study.directions[0] == StudyDirection.MINIMIZE
if target is not None:
warnings.warn(
f"{self.__class__.__name__} computes the importances of params to achieve "
"low `target` values. If this is not what you want, "
"please modify target, e.g., by multiplying the output by -1."
)
is_lower_better = True
top_trials = _QuantileFilter(
self._baseline_quantile, is_lower_better, self._min_n_top_trials, target
).filter(trials)
if len(trials) == len(top_trials):
_logger.warning("All trials are in top trials, which gives equal importances.")
return top_trials
def _compute_pearson_divergence(
self,
param_name: str,
dist: BaseDistribution,
top_trials: list[FrozenTrial],
all_trials: list[FrozenTrial],
) -> float:
# When pdf_all == pdf_top, i.e. all_trials == top_trials, this method will give 0.0.
prior_weight = self._prior_weight
pe_top = _build_parzen_estimator(param_name, dist, top_trials, self._n_steps, prior_weight)
# NOTE: pe_top.n_steps could be different from self._n_steps.
grids = np.arange(pe_top.n_steps)
pdf_top = pe_top.pdf(grids) + 1e-12
if self._evaluate_on_local: # The importance of param during the study.
pe_local = _build_parzen_estimator(
param_name, dist, all_trials, self._n_steps, prior_weight
)
pdf_local = pe_local.pdf(grids) + 1e-12
else: # The importance of param in the search space.
pdf_local = np.full(pe_top.n_steps, 1.0 / pe_top.n_steps)
return float(pdf_local @ ((pdf_top / pdf_local - 1) ** 2))
[docs]
def evaluate(
self,
study: Study,
params: list[str] | None = None,
*,
target: Callable[[FrozenTrial], float] | None = None,
) -> dict[str, float]:
dists = _get_distributions(study, params=params)
if params is None:
params = list(dists.keys())
assert params is not None
# PED-ANOVA does not support parameter distributions with a single value,
# because the importance of such params become zero.
non_single_dists = {name: dist for name, dist in dists.items() if not dist.single()}
single_dists = {name: dist for name, dist in dists.items() if dist.single()}
if len(non_single_dists) == 0:
return {}
trials = _get_filtered_trials(study, params=params, target=target)
n_params = len(non_single_dists)
# The following should be tested at _get_filtered_trials.
assert target is not None or max([len(t.values) for t in trials], default=1) == 1
if len(trials) <= self._min_n_top_trials:
param_importances = {k: 1.0 / n_params for k in non_single_dists}
param_importances.update({k: 0.0 for k in single_dists})
return {k: 0.0 for k in param_importances}
top_trials = self._get_top_trials(study, trials, params, target)
quantile = len(top_trials) / len(trials)
importance_sum = 0.0
param_importances = {}
for param_name, dist in non_single_dists.items():
param_importances[param_name] = quantile * self._compute_pearson_divergence(
param_name, dist, top_trials=top_trials, all_trials=trials
)
importance_sum += param_importances[param_name]
param_importances.update({k: 0.0 for k in single_dists})
return _sort_dict_by_importance(param_importances)