Saving/Resuming Study with RDB Backend

An RDB backend enables persistent experiments (i.e., to save and resume a study) as well as access to history of studies. In addition, we can run multi-node optimization tasks with this feature, which is described in Easy Parallelization.

In this section, let’s try simple examples running on a local environment with SQLite DB.

Note

You can also utilize other RDB backends, e.g., PostgreSQL or MySQL, by setting the storage argument to the DB’s URL. Please refer to SQLAlchemy’s document for how to set up the URL.

New Study

We can create a persistent study by calling create_study() function as follows. An SQLite file example.db is automatically initialized with a new study record.

import logging
import sys

import optuna

# Add stream handler of stdout to show the messages
optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))
study_name = "example-study"  # Unique identifier of the study.
storage_name = "sqlite:///{}.db".format(study_name)
study = optuna.create_study(study_name=study_name, storage=storage_name)

Out:

A new study created in RDB with name: example-study

To run a study, call optimize() method passing an objective function.

def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study.optimize(objective, n_trials=3)

Out:

Trial 0 finished with value: 31.099696461328666 and parameters: {'x': 7.576710182655063}. Best is trial 0 with value: 31.099696461328666.
Trial 1 finished with value: 13.067469674109633 and parameters: {'x': -1.6148955274128785}. Best is trial 1 with value: 13.067469674109633.
Trial 2 finished with value: 19.288645785540485 and parameters: {'x': 6.39188408152361}. Best is trial 1 with value: 13.067469674109633.

Resume Study

To resume a study, instantiate a Study object passing the study name example-study and the DB URL sqlite:///example-study.db.

study = optuna.create_study(study_name=study_name, storage=storage_name, load_if_exists=True)
study.optimize(objective, n_trials=3)

Out:

Using an existing study with name 'example-study' instead of creating a new one.
Trial 3 finished with value: 136.4043503984694 and parameters: {'x': -9.679227303142508}. Best is trial 1 with value: 13.067469674109633.
Trial 4 finished with value: 0.026392941745074023 and parameters: {'x': 1.837540953637312}. Best is trial 4 with value: 0.026392941745074023.
Trial 5 finished with value: 53.71561033097739 and parameters: {'x': -5.329093418082307}. Best is trial 4 with value: 0.026392941745074023.

Experimental History

We can access histories of studies and trials via the Study class. For example, we can get all trials of example-study as:

study = optuna.create_study(study_name=study_name, storage=storage_name, load_if_exists=True)
df = study.trials_dataframe(attrs=("number", "value", "params", "state"))

Out:

Using an existing study with name 'example-study' instead of creating a new one.

The method trials_dataframe() returns a pandas dataframe like:

print(df)

Out:

   number       value  params_x     state
0       0   31.099696  7.576710  COMPLETE
1       1   13.067470 -1.614896  COMPLETE
2       2   19.288646  6.391884  COMPLETE
3       3  136.404350 -9.679227  COMPLETE
4       4    0.026393  1.837541  COMPLETE
5       5   53.715610 -5.329093  COMPLETE

A Study object also provides properties such as trials, best_value, best_params (see also Lightweight, versatile, and platform agnostic architecture).

print("Best params: ", study.best_params)
print("Best value: ", study.best_value)
print("Best Trial: ", study.best_trial)
print("Trials: ", study.trials)

Out:

Best params:  {'x': 1.837540953637312}
Best value:  0.026392941745074023
Best Trial:  FrozenTrial(number=4, values=[0.026392941745074023], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 275250), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 289042), params={'x': 1.837540953637312}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=5, state=TrialState.COMPLETE, value=None)
Trials:  [FrozenTrial(number=0, values=[31.099696461328666], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 99552), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 115271), params={'x': 7.576710182655063}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=1, state=TrialState.COMPLETE, value=None), FrozenTrial(number=1, values=[13.067469674109633], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 140195), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 154420), params={'x': -1.6148955274128785}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=2, state=TrialState.COMPLETE, value=None), FrozenTrial(number=2, values=[19.288645785540485], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 174545), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 187935), params={'x': 6.39188408152361}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=3, state=TrialState.COMPLETE, value=None), FrozenTrial(number=3, values=[136.4043503984694], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 239936), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 253775), params={'x': -9.679227303142508}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=4, state=TrialState.COMPLETE, value=None), FrozenTrial(number=4, values=[0.026392941745074023], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 275250), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 289042), params={'x': 1.837540953637312}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=5, state=TrialState.COMPLETE, value=None), FrozenTrial(number=5, values=[53.71561033097739], datetime_start=datetime.datetime(2021, 3, 8, 6, 46, 33, 308691), datetime_complete=datetime.datetime(2021, 3, 8, 6, 46, 33, 321979), params={'x': -5.329093418082307}, distributions={'x': UniformDistribution(high=10.0, low=-10.0)}, user_attrs={}, system_attrs={}, intermediate_values={}, trial_id=6, state=TrialState.COMPLETE, value=None)]

Total running time of the script: ( 0 minutes 0.638 seconds)

Gallery generated by Sphinx-Gallery