User-Defined Sampler¶
Thanks to user-defined samplers, you can:
- experiment your own sampling algorithms,
- implement task-specific algorithms to refine the optimization performance, or
- wrap other optimization libraries to integrate them into Optuna pipelines (e.g.,
SkoptSampler
).
This section describes the internal behavior of sampler classes and shows an example of implementing a user-defined sampler.
Overview of Sampler¶
A sampler has the responsibility to determine the parameter values to be evaluated in a trial.
When a suggest API (e.g., suggest_uniform()
) is called inside an objective function, the corresponding distribution object (e.g., UniformDistribution
) is created internally. A sampler samples a parameter value from the distribution. The sampled value is returned to the caller of the suggest API and evaluated in the objective function.
To create a new sampler, you need to define a class that inherits BaseSampler
.
The base class has three abstract methods;
infer_relative_search_space()
,
sample_relative()
, and
sample_independent()
.
As the method names imply, Optuna supports two types of sampling: one is relative sampling that can consider the correlation of the parameters in a trial, and the other is independent sampling that samples each parameter independently.
At the beginning of a trial, infer_relative_search_space()
is called to provide the relative search space for the trial. Then, sample_relative()
is invoked to sample relative parameters from the search space. During the execution of the objective function, sample_independent()
is used to sample parameters that don’t belong to the relative search space.
Note
Please refer to the document of BaseSampler
for further details.
An Example: Implementing SimulatedAnnealingSampler¶
For example, the following code defines a sampler based on Simulated Annealing (SA):
import numpy as np
import optuna
class SimulatedAnnealingSampler(optuna.samplers.BaseSampler):
def __init__(self, temperature=100):
self._rng = np.random.RandomState()
self._temperature = temperature # Current temperature.
self._current_trial = None # Current state.
def sample_relative(self, study, trial, search_space):
if search_space == {}:
return {}
#
# An implementation of SA algorithm.
#
# Calculate transition probability.
prev_trial = study.trials[-2]
if self._current_trial is None or prev_trial.value <= self._current_trial.value:
probability = 1.0
else:
probability = np.exp((self._current_trial.value - prev_trial.value) / self._temperature)
self._temperature *= 0.9 # Decrease temperature.
# Transit the current state if the previous result is accepted.
if self._rng.uniform(0, 1) < probability:
self._current_trial = prev_trial
# Sample parameters from the neighborhood of the current point.
#
# The sampled parameters will be used during the next execution of
# the objective function passed to the study.
params = {}
for param_name, param_distribution in search_space.items():
if not isinstance(param_distribution, optuna.distributions.UniformDistribution):
raise NotImplementedError('Only suggest_uniform() is supported')
current_value = self._current_trial.params[param_name]
width = (param_distribution.high - param_distribution.low) * 0.1
neighbor_low = max(current_value - width, param_distribution.low)
neighbor_high = min(current_value + width, param_distribution.high)
params[param_name] = self._rng.uniform(neighbor_low, neighbor_high)
return params
#
# The rest is boilerplate code and unrelated to SA algorithm.
#
def infer_relative_search_space(self, study, trial):
return optuna.samplers.intersection_search_space(study)
def sample_independent(self, study, trial, param_name, param_distribution):
independent_sampler = optuna.samplers.RandomSampler()
return independent_sampler.sample_independent(study, trial, param_name, param_distribution)
Note
In favor of code simplicity, the above implementation doesn’t support some features (e.g., maximization). If you’re interested in how to support those features, please see examples/samplers/simulated_annealing.py.
You can use SimulatedAnnealingSampler
in the same way as built-in samplers as follows:
def objective(trial):
x = trial.suggest_uniform('x', -10, 10)
y = trial.suggest_uniform('y', -5, 5)
return x**2 + y
sampler = SimulatedAnnealingSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)
In this optimization, the values of x
and y
parameters are sampled by using
SimulatedAnnealingSampler.sample_relative
method.
Note
Strictly speaking, in the first trial,
SimulatedAnnealingSampler.sample_independent
method is used to sample parameter values.
Because intersection_search_space()
used in
SimulatedAnnealingSampler.infer_relative_search_space
cannot infer the search space
if there are no complete trials.