Advanced Configurations

Defining Parameter Spaces

Optuna supports five kinds of parameters.

def objective(trial):
    # Categorical parameter
    optimizer = trial.suggest_categorical('optimizer', ['MomentumSGD', 'Adam'])

    # Int parameter
    num_layers = trial.suggest_int('num_layers', 1, 3)

    # Uniform parameter
    dropout_rate = trial.suggest_uniform('dropout_rate', 0.0, 1.0)

    # Loguniform parameter
    learning_rate = trial.suggest_loguniform('learning_rate', 1e-5, 1e-2)

    # Discrete-uniform parameter
    drop_path_rate = trial.suggest_discrete_uniform('drop_path_rate', 0.0, 1.0, 0.1)

    ...

Branches and Loops

You can use branches or loops depending on the parameter values.

def objective(trial):
    classifier_name = trial.suggest_categorical('classifier', ['SVC', 'RandomForest'])
    if classifier_name == 'SVC':
        svc_c = trial.suggest_loguniform('svc_c', 1e-10, 1e10)
        classifier_obj = sklearn.svm.SVC(C=svc_c)
    else:
        rf_max_depth = int(trial.suggest_loguniform('rf_max_depth', 2, 32))
        classifier_obj = sklearn.ensemble.RandomForestClassifier(max_depth=rf_max_depth)

    ...
def create_model(trial):
    n_layers = trial.suggest_int('n_layers', 1, 3)

    layers = []
    for i in range(n_layers):
        n_units = int(trial.suggest_loguniform('n_units_l{}'.format(i), 4, 128))
        layers.append(L.Linear(None, n_units))
        layers.append(F.relu)
    layers.append(L.Linear(None, 10))

    return chainer.Sequential(*layers)

Please also refer to examples.

Note on the Number of Parameters

The difficulty of optimization increases roughly exponentially with regard to the number of parameters. That is, the number of necessary trials increases exponentially when you increase the number of parameters, so it is recommended to not add unimportant parameters.

Arguments for Study.optimize

The method optimize() (and optuna study optimize CLI command as well) has several useful options such as timeout. For details, please refer to the API reference for optimize().

FYI: If you give neither n_trials nor timeout options, the optimization continues until it receives a termination signal such as Ctrl+C or SIGTERM. This is useful for use cases such as when it is hard to estimate the computational costs required to optimize your objective function.

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery