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Installation

Optuna supports Python 3.5 or newer.

We recommend to install Optuna via pip:

$ pip install optuna





You can also install the development version of Optuna from master branch of Git repository:

$ pip install git+https://github.com/optuna/optuna.git





You can also install Optuna via conda:

$ conda install -c conda-forge optuna
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First Optimization


Quadratic Function Example

Usually, Optuna is used to optimize hyper-parameters, but as an example, let us directly optimize a quadratic function in an IPython shell.

In [1]: import optuna





The objective function is what will be optimized.

In [2]: def objective(trial):
   ...:     x = trial.suggest_uniform('x', -10, 10)
   ...:     return (x - 2) ** 2
   ...:





This function returns the value of \((x - 2)^2\). Our goal is to find the value of x that minimizes the output of the objective function. This is the “optimization.” During the optimization, Optuna repeatedly calls and evaluates the objective function with different values of x.

A Trial object corresponds to a single execution of the objective function and is internally instantiated upon each invocation of the function.

The suggest APIs (for example, suggest_uniform()) are called inside the objective function to obtain parameters for a trial. suggest_uniform() selects parameters uniformly within the range provided. In our example, from -10 to 10.

To start the optimization, we create a study object and pass the objective function to method optimize() as follows.

In [3]: study = optuna.create_study()
In [4]: study.optimize(objective, n_trials=100)
[I 2018-05-09 10:03:22,469] Finished trial#0 resulted in value: 52.9345515866657. Current best value is 52.9345515866657 with parameters: {'x': -5.275613485244093}.
[I 2018-05-09 10:03:22,474] Finished trial#1 resulted in value: 32.82718929591965. Current best value is 32.82718929591965 with parameters: {'x': -3.7295016620924066}.
[I 2018-05-09 10:03:22,475] Finished trial#2 resulted in value: 46.89428737068025. Current best value is 32.82718929591965 with parameters: {'x': -3.7295016620924066}.
[I 2018-05-09 10:03:22,476] Finished trial#3 resulted in value: 100.99613064563654. Current best value is 32.82718929591965 with parameters: {'x': -3.7295016620924066}.
[I 2018-05-09 10:03:22,477] Finished trial#4 resulted in value: 110.56391159932272. Current best value is 32.82718929591965 with parameters: {'x': -3.7295016620924066}.
[I 2018-05-09 10:03:22,478] Finished trial#5 resulted in value: 42.486606942847395. Current best value is 32.82718929591965 with parameters: {'x': -3.7295016620924066}.
[I 2018-05-09 10:03:22,479] Finished trial#6 resulted in value: 1.130813338091735. Current best value is 1.130813338091735 with parameters: {'x': 3.063397074517198}.
...
[I 2018-05-09 10:03:23,431] Finished trial#99 resulted in value: 8.760381111220335. Current best value is 0.0026232243068543526 with parameters: {'x': 1.9487825780924659}.
In [5]: study.best_params
Out[5]: {'x': 1.9487825780924659}





We can see that Optuna found the best x value 1.9487825780924659, which is close to the optimal value of 2.


Note

When used to search for hyper-parameters in machine learning, usually the objective function would return the loss or accuracy of the model.






Study Object

Let us clarify the terminology in Optuna as follows:


	Trial: A single call of the objective function


	Study: An optimization session, which is a set of trials


	Parameter: A variable whose value is to be optimized, such as x in the above example




In Optuna, we use the study object to manage optimization. Method create_study() returns a study object.
A study object has useful properties for analyzing the optimization outcome.

In [5]: study.best_params
Out[5]: {'x': 1.9926578647650126}

In [6]: study.best_value
Out[6]: 5.390694980884334e-05

In [7]: study.best_trial
Out[7]: FrozenTrial(number=26, state=<TrialState.COMPLETE: 1>, params={'x': 1.9926578647650126}, user_attrs={}, system_attrs={'_number': 26}, value=5.390694980884334e-05, intermediate_values={}, datetime_start=datetime.datetime(2018, 5, 9, 10, 23, 0, 87060), datetime_complete=datetime.datetime(2018, 5, 9, 10, 23, 0, 91010), trial_id=26)

In [8]: study.trials  # all trials
Out[8]:
[FrozenTrial(number=0, state=<TrialState.COMPLETE: 1>, params={'x': -4.219801301030433}, user_attrs={}, system_attrs={'_number': 0}, value=38.685928224299865, intermediate_values={}, datetime_start=datetime.datetime(2018, 5, 9, 10, 22, 59, 983824), datetime_complete=datetime.datetime(2018, 5, 9, 10, 22, 59, 984053), trial_id=0),
 ...
 user_attrs={}, system_attrs={'_number': 99}, value=8.2881000286123179, intermediate_values={}, datetime_start=datetime.datetime(2018, 5, 9, 10, 23, 0, 886434), datetime_complete=datetime.datetime(2018, 5, 9, 10, 23, 0, 891347), trial_id=99)]

In [9]: len(study.trials)
Out[9]: 100





By executing optimize() again, we can continue the optimization.

In [10]: study.optimize(objective, n_trials=100)
...

In [11]: len(study.trials)
Out[11]: 200











          

      

      

    

  

    
      
          
            
  
Advanced Configurations


Defining Parameter Spaces

Optuna supports five kinds of parameters.

def objective(trial):
    # Categorical parameter
    optimizer = trial.suggest_categorical('optimizer', ['MomentumSGD', 'Adam'])

    # Int parameter
    num_layers = trial.suggest_int('num_layers', 1, 3)

    # Uniform parameter
    dropout_rate = trial.suggest_uniform('dropout_rate', 0.0, 1.0)

    # Loguniform parameter
    learning_rate = trial.suggest_loguniform('learning_rate', 1e-5, 1e-2)

    # Discrete-uniform parameter
    drop_path_rate = trial.suggest_discrete_uniform('drop_path_rate', 0.0, 1.0, 0.1)

    ...








Branches and Loops

You can use branches or loops depending on the parameter values.

def objective(trial):
    classifier_name = trial.suggest_categorical('classifier', ['SVC', 'RandomForest'])
    if classifier_name == 'SVC':
        svc_c = trial.suggest_loguniform('svc_c', 1e-10, 1e10)
        classifier_obj = sklearn.svm.SVC(C=svc_c)
    else:
        rf_max_depth = int(trial.suggest_loguniform('rf_max_depth', 2, 32))
        classifier_obj = sklearn.ensemble.RandomForestClassifier(max_depth=rf_max_depth)

    ...





def create_model(trial):
    n_layers = trial.suggest_int('n_layers', 1, 3)

    layers = []
    for i in range(n_layers):
        n_units = int(trial.suggest_loguniform('n_units_l{}'.format(i), 4, 128))
        layers.append(L.Linear(None, n_units))
        layers.append(F.relu)
    layers.append(L.Linear(None, 10))

    return chainer.Sequential(*layers)





Please also refer to examples [https://github.com/optuna/optuna/tree/master/examples].


Note on the Number of Parameters

The difficulty of optimization increases roughly exponentially with regard to the number of parameters. That is, the number of necessary trials increases exponentially when you increase the number of parameters, so it is recommended to not add unimportant parameters.






Arguments for Study.optimize

The method optimize() (and optuna study optimize CLI command as well)
has several useful options such as timeout.
For details, please refer to the API reference for optimize().

FYI: If you give neither n_trials nor timeout options, the optimization continues until it receives a termination signal such as Ctrl+C or SIGTERM.
This is useful for use cases such as when it is hard to estimate the computational costs required to optimize your objective function.







          

      

      

    

  

    
      
          
            
  
Saving/Resuming Study with RDB Backend

An RDB backend enables persistent experiments (i.e., to save and resume a study) as well as access to history of studies.
In addition, we can run multi-node optimization tasks with this feature, which is described in Distributed Optimization.

In this section, let’s try simple examples running on a local environment with SQLite DB.


Note

You can also utilize other RDB backends, e.g., PostgreSQL or MySQL, by setting the storage argument to the DB’s URL.
Please refer to SQLAlchemy’s document [https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] for how to set up the URL.




New Study

We can create a persistent study by calling create_study() function as follows.
An SQLite file example.db is automatically initialized with a new study record.

import optuna
study_name = 'example-study'  # Unique identifier of the study.
study = optuna.create_study(study_name=study_name, storage='sqlite:///example.db')





To run a study, call optimize() method passing an objective function.

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return (x - 2) ** 2

study.optimize(objective, n_trials=3)








Resume Study

To resume a study, instantiate a Study object passing the study name example-study and the DB URL sqlite:///example.db.

study = optuna.create_study(study_name='example-study', storage='sqlite:///example.db', load_if_exists=True)
study.optimize(objective, n_trials=3)








Experimental History

We can access histories of studies and trials via the Study class.
For example, we can get all trials of example-study as:

import optuna
study = optuna.create_study(study_name='example-study', storage='sqlite:///example.db', load_if_exists=True)
df = study.trials_dataframe(attrs=('number', 'value', 'params', 'state'))





The method trials_dataframe() returns a pandas dataframe like:

number       value  params_x     state
     0   25.301959 -3.030105  COMPLETE
     1    1.406223  0.814157  COMPLETE
     2   44.010366 -4.634031  COMPLETE
     3   55.872181  9.474770  COMPLETE
     4  113.039223 -8.631991  COMPLETE
     5   57.319570  9.570969  COMPLETE





A Study object also provides properties such as trials, best_value, best_params (see also First Optimization).

study.best_params  # Get best parameters for the objective function.
study.best_value  # Get best objective value.
study.best_trial  # Get best trial's information.
study.trials  # Get all trials' information.











          

      

      

    

  

    
      
          
            
  
Distributed Optimization

There is no complicated setup but just sharing the same study name among nodes/processes.

First, create a shared study using optuna create-study command (or using optuna.create_study() in a Python script).

$ optuna create-study --study-name "distributed-example" --storage "sqlite:///example.db"
[I 2018-10-31 18:21:57,885] A new study created with name: distributed-example





Then, write an optimization script. Let’s assume that foo.py contains the following code.

import optuna

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return (x - 2) ** 2

if __name__ == '__main__':
    study = optuna.load_study(study_name='distributed-example', storage='sqlite:///example.db')
    study.optimize(objective, n_trials=100)





Finally, run the shared study from multiple processes.
For example, run Process 1 in a terminal, and do Process 2 in another one.
They get parameter suggestions based on shared trials’ history.

Process 1:

$ python foo.py
[I 2018-10-31 18:46:44,308] Finished a trial resulted in value: 1.1097007755908204. Current best value is 0.00020881104123229936 with parameters: {'x': 2.014450295541348}.
[I 2018-10-31 18:46:44,361] Finished a trial resulted in value: 0.5186699439824186. Current best value is 0.00020881104123229936 with parameters: {'x': 2.014450295541348}.
...





Process 2 (the same command as process 1):

$ python foo.py
[I 2018-10-31 18:47:02,912] Finished a trial resulted in value: 29.821448668796563. Current best value is 0.00020881104123229936 with parameters: {'x': 2.014450295541348}.
[I 2018-10-31 18:47:02,968] Finished a trial resulted in value: 0.7962498978463782. Current best value is 0.00020881104123229936 with parameters: {'x': 2.014450295541348}.
...






Note

We do not recommend SQLite for large scale distributed optimizations because it may cause serious performance issues. Please consider to use another database engine like PostgreSQL or MySQL.




Note

Please avoid putting the SQLite database on NFS when running distributed optimizations. See also: https://www.sqlite.org/faq.html#q5







          

      

      

    

  

    
      
          
            
  
Command-Line Interface







	Command

	Description





	create-study

	Create a new study.



	dashboard

	Launch web dashboard (beta).



	storage upgrade

	Upgrade the schema of a storage.



	studies

	Show a list of studies.



	study optimize

	Start optimization of a study.



	study set-user-attr

	Set a user attribute to a study.






Optuna provides command-line interface as shown in the above table.

Let us assume you are not in IPython shell and writing Python script files instead.
It is totally fine to write scripts like the following:

import optuna


def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return (x - 2) ** 2


if __name__ == '__main__':
    study = optuna.create_study()
    study.optimize(objective, n_trials=100)
    print('Best value: {} (params: {})\n'.format(study.best_value, study.best_params))





However, we can reduce boilerplate codes by using our optuna command.
Let us assume that foo.py contains only the following code.

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return (x - 2) ** 2





Even so, we can invoke the optimization as follows. (Don’t care about --storage sqlite:///example.db for now, which is described in Saving/Resuming Study with RDB Backend.)

$ cat foo.py
def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return (x - 2) ** 2

$ STUDY_NAME=`optuna create-study --storage sqlite:///example.db`
$ optuna study optimize foo.py objective --n-trials=100 --storage sqlite:///example.db --study $STUDY_NAME
[I 2018-05-09 10:40:25,196] Finished a trial resulted in value: 54.353767789264026. Current best value is 54.353767789264026 with parameters: {'x': -5.372500782588228}.
[I 2018-05-09 10:40:25,197] Finished a trial resulted in value: 15.784266965526376. Current best value is 15.784266965526376 with parameters: {'x': 5.972941852774387}.
...
[I 2018-05-09 10:40:26,204] Finished a trial resulted in value: 14.704254135013741. Current best value is 2.280758099793617e-06 with parameters: {'x': 1.9984897821018828}.





Please note that foo.py only contains the definition of the objective function.
By giving the script file name and the method name of objective function to optuna study optimize command,
we can invoke the optimization.





          

      

      

    

  

    
      
          
            
  
User Attributes

This feature is to annotate experiments with user-defined attributes.


Adding User Attributes to Studies

A Study object provides set_user_attr() method to
register a pair of key and value as an user-defined attribute.
A key is supposed to be a str, and a value be any object serializable with json.dumps.

import optuna
study = optuna.create_study(storage='sqlite:///example.db')
study.set_user_attr('contributors', ['Akiba', 'Sano'])
study.set_user_attr('dataset', 'MNIST')





We can access annotated attributes with user_attr property.

study.user_attrs  # {'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}





StudySummary object, which can be retrieved by
get_all_study_summaries(), also contains user-defined attributes.

study_summaries = optuna.get_all_study_summaries('sqlite:///example.db')
study_summaries[0].user_attrs  # {'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}






See also

optuna study set-user-attr command, which sets an attribute via command line interface.






Adding User Attributes to Trials

As with Study, a Trial object provides
set_user_attr() method.
Attributes are set inside an objective function.

def objective(trial):
    iris = sklearn.datasets.load_iris()
    x, y = iris.data, iris.target

    svc_c = trial.suggest_loguniform('svc_c', 1e-10, 1e10)
    clf = sklearn.svm.SVC(C=svc_c)
    accuracy = sklearn.model_selection.cross_val_score(clf, x, y).mean()

    trial.set_user_attr('accuracy', accuracy)

    return 1.0 - accuracy  # return error for minimization





We can access annotated attributes as:

study.trials[0].user_attrs  # {'accuracy': 0.83}





Note that, in this example, the attribute is not annotated to a Study
but a single Trial.







          

      

      

    

  

    
      
          
            
  
Pruning Unpromising Trials

This feature automatically stops unpromising trials at the early stages of the training (a.k.a., automated early-stopping).
Optuna provides interfaces to concisely implement the pruning mechanism in iterative training algorithms.


Activating Pruners

To turn on the pruning feature, you need to call report() and should_prune() after each step of the iterative training.
report() periodically monitors the intermediate objective values.
should_prune() decides termination of the trial that does not meet a predefined condition.

"""filename: prune.py"""

import sklearn.datasets
import sklearn.linear_model
import sklearn.model_selection

import optuna

def objective(trial):
    iris = sklearn.datasets.load_iris()
    classes = list(set(iris.target))
    train_x, test_x, train_y, test_y = \
        sklearn.model_selection.train_test_split(iris.data, iris.target, test_size=0.25, random_state=0)

    alpha = trial.suggest_loguniform('alpha', 1e-5, 1e-1)
    clf = sklearn.linear_model.SGDClassifier(alpha=alpha)

    for step in range(100):
        clf.partial_fit(train_x, train_y, classes=classes)

        # Report intermediate objective value.
        intermediate_value = 1.0 - clf.score(test_x, test_y)
        trial.report(intermediate_value, step)

        # Handle pruning based on the intermediate value.
        if trial.should_prune():
            raise optuna.exceptions.TrialPruned()

    return 1.0 - clf.score(test_x, test_y)

# Set up the median stopping rule as the pruning condition.
study = optuna.create_study(pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=20)





Executing the script above:

$ python prune.py
[I 2018-11-21 17:27:57,836] Finished trial#0 resulted in value: 0.052631578947368474. Current best value is 0.052631578947368474 with parameters: {'alpha': 0.011428158279113485}.
[I 2018-11-21 17:27:57,963] Finished trial#1 resulted in value: 0.02631578947368418. Current best value is 0.02631578947368418 with parameters: {'alpha': 0.01862693201743629}.
[I 2018-11-21 17:27:58,164] Finished trial#2 resulted in value: 0.21052631578947367. Current best value is 0.02631578947368418 with parameters: {'alpha': 0.01862693201743629}.
[I 2018-11-21 17:27:58,333] Finished trial#3 resulted in value: 0.02631578947368418. Current best value is 0.02631578947368418 with parameters: {'alpha': 0.01862693201743629}.
[I 2018-11-21 17:27:58,617] Finished trial#4 resulted in value: 0.23684210526315785. Current best value is 0.02631578947368418 with parameters: {'alpha': 0.01862693201743629}.
[I 2018-11-21 17:27:58,642] Setting status of trial#5 as TrialState.PRUNED.
[I 2018-11-21 17:27:58,666] Setting status of trial#6 as TrialState.PRUNED.
[I 2018-11-21 17:27:58,675] Setting status of trial#7 as TrialState.PRUNED.
[I 2018-11-21 17:27:59,183] Finished trial#8 resulted in value: 0.39473684210526316. Current best value is 0.02631578947368418 with parameters: {'alpha': 0.01862693201743629}.
[I 2018-11-21 17:27:59,202] Setting status of trial#9 as TrialState.PRUNED.
...





We can see Setting status of trial#{} as TrialState.PRUNED in the log messages.
This means several trials are stopped before they finish all iterations.




Integration Modules for Pruning

To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following libraries.


	XGBoost: optuna.integration.XGBoostPruningCallback


	LightGBM: optuna.integration.LightGBMPruningCallback


	Chainer: optuna.integration.ChainerPruningExtension


	Keras: optuna.integration.KerasPruningCallback


	TensorFlow optuna.integration.TensorFlowPruningHook


	tf.keras optuna.integration.TFKerasPruningCallback


	MXNet optuna.integration.MXNetPruningCallback


	PyTorch Ignite optuna.integration.PyTorchIgnitePruningHandler


	PyTorch Lightning optuna.integration.PyTorchLightningPruningCallback


	FastAI optuna.integration.FastAIPruningCallback




For example, XGBoostPruningCallback introduces pruning without directly changing the logic of training iteration.
(See also example [https://github.com/optuna/optuna/blob/master/examples/pruning/xgboost_integration.py] for the entire script.)

pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'validation-error')
bst = xgb.train(param, dtrain, evals=[(dtest, 'validation')], callbacks=[pruning_callback])











          

      

      

    

  

    
      
          
            
  
User-Defined Sampler

Thanks to user-defined samplers, you can:


	experiment your own sampling algorithms,


	implement task-specific algorithms to refine the optimization performance, or


	wrap other optimization libraries to integrate them into Optuna pipelines (e.g., SkoptSampler).




This section describes the internal behavior of sampler classes and shows an example of implementing a user-defined sampler.


Overview of Sampler

A sampler has the responsibility to determine the parameter values to be evaluated in a trial.
When a suggest API (e.g., suggest_uniform()) is called inside an objective function, the corresponding distribution object (e.g., UniformDistribution) is created internally. A sampler samples a parameter value from the distribution. The sampled value is returned to the caller of the suggest API and evaluated in the objective function.

To create a new sampler, you need to define a class that inherits BaseSampler.
The base class has three abstract methods;
infer_relative_search_space(),
sample_relative(), and
sample_independent().

As the method names imply, Optuna supports two types of sampling: one is relative sampling that can consider the correlation of the parameters in a trial, and the other is independent sampling that samples each parameter independently.

At the beginning of a trial, infer_relative_search_space() is called to provide the relative search space for the trial. Then, sample_relative() is invoked to sample relative parameters from the search space. During the execution of the objective function, sample_independent() is used to sample parameters that don’t belong to the relative search space.


Note

Please refer to the document of BaseSampler for further details.






An Example: Implementing SimulatedAnnealingSampler

For example, the following code defines a sampler based on
Simulated Annealing (SA) [https://en.wikipedia.org/wiki/Simulated_annealing]:

import numpy as np
import optuna


class SimulatedAnnealingSampler(optuna.samplers.BaseSampler):
    def __init__(self, temperature=100):
        self._rng = np.random.RandomState()
        self._temperature = temperature  # Current temperature.
        self._current_trial = None  # Current state.

    def sample_relative(self, study, trial, search_space):
        if search_space == {}:
            return {}

        #
        # An implementation of SA algorithm.
        #

        # Calculate transition probability.
        prev_trial = study.trials[-2]
        if self._current_trial is None or prev_trial.value <= self._current_trial.value:
            probability = 1.0
        else:
            probability = np.exp((self._current_trial.value - prev_trial.value) / self._temperature)
        self._temperature *= 0.9  # Decrease temperature.

        # Transit the current state if the previous result is accepted.
        if self._rng.uniform(0, 1) < probability:
            self._current_trial = prev_trial

        # Sample parameters from the neighborhood of the current point.
        #
        # The sampled parameters will be used during the next execution of
        # the objective function passed to the study.
        params = {}
        for param_name, param_distribution in search_space.items():
            if not isinstance(param_distribution, optuna.distributions.UniformDistribution):
                raise NotImplementedError('Only suggest_uniform() is supported')

            current_value = self._current_trial.params[param_name]
            width = (param_distribution.high - param_distribution.low) * 0.1
            neighbor_low = max(current_value - width, param_distribution.low)
            neighbor_high = min(current_value + width, param_distribution.high)
            params[param_name] = self._rng.uniform(neighbor_low, neighbor_high)

        return params

    #
    # The rest is boilerplate code and unrelated to SA algorithm.
    #
    def infer_relative_search_space(self, study, trial):
        return optuna.samplers.intersection_search_space(study)

    def sample_independent(self, study, trial, param_name, param_distribution):
        independent_sampler = optuna.samplers.RandomSampler()
        return independent_sampler.sample_independent(study, trial, param_name, param_distribution)






Note

In favor of code simplicity, the above implementation doesn’t support some features (e.g., maximization).
If you’re interested in how to support those features, please see
examples/samplers/simulated_annealing.py [https://github.com/optuna/optuna/blob/master/examples/samplers/simulated_annealing_sampler.py].



You can use SimulatedAnnealingSampler in the same way as built-in samplers as follows:

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    y = trial.suggest_uniform('y', -5, 5)
    return x**2 + y

sampler = SimulatedAnnealingSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)





In this optimization, the values of x and y parameters are sampled by using
SimulatedAnnealingSampler.sample_relative method.


Note

Strictly speaking, in the first trial,
SimulatedAnnealingSampler.sample_independent method is used to sample parameter values.
Because intersection_search_space() used in
SimulatedAnnealingSampler.infer_relative_search_space cannot infer the search space
if there are no complete trials.
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Distributions


	
class optuna.distributions.UniformDistribution(low, high)

	A uniform distribution in the linear domain.

This object is instantiated by suggest_uniform(), and passed to
samplers in general.


	
low

	Lower endpoint of the range of the distribution. low is included in the range.






	
high

	Upper endpoint of the range of the distribution. high is excluded from the range.






	
single()

	Test whether the range of this distribution contains just a single value.

When this method returns True [https://docs.python.org/3/library/constants.html#True], samplers always sample
the same value from the distribution.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].














	
class optuna.distributions.LogUniformDistribution(low, high)

	A uniform distribution in the log domain.

This object is instantiated by suggest_loguniform(), and passed to
samplers in general.


	
low

	Lower endpoint of the range of the distribution. low is included in the range.






	
high

	Upper endpoint of the range of the distribution. high is excluded from the range.






	
single()

	Test whether the range of this distribution contains just a single value.

When this method returns True [https://docs.python.org/3/library/constants.html#True], samplers always sample
the same value from the distribution.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].














	
class optuna.distributions.DiscreteUniformDistribution(low, high, q)

	A discretized uniform distribution in the linear domain.

This object is instantiated by suggest_discrete_uniform(), and passed
to samplers in general.


	
low

	Lower endpoint of the range of the distribution. low is included in the range.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.






	
q

	A discretization step.






	
single()

	Test whether the range of this distribution contains just a single value.

When this method returns True [https://docs.python.org/3/library/constants.html#True], samplers always sample
the same value from the distribution.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].














	
class optuna.distributions.IntUniformDistribution(low, high)

	A uniform distribution on integers.

This object is instantiated by suggest_int(), and passed to
samplers in general.


	
low

	Lower endpoint of the range of the distribution. low is included in the range.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.






	
single()

	Test whether the range of this distribution contains just a single value.

When this method returns True [https://docs.python.org/3/library/constants.html#True], samplers always sample
the same value from the distribution.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].














	
class optuna.distributions.CategoricalDistribution(choices)

	A categorical distribution.

This object is instantiated by suggest_categorical(), and
passed to samplers in general.


	Parameters

	choices – Parameter value candidates.






Note

Not all types are guaranteed to be compatible with all storages. It is recommended to
restrict the types of the choices to None [https://docs.python.org/3/library/constants.html#None], bool [https://docs.python.org/3/library/functions.html#bool], :class”int,
float [https://docs.python.org/3/library/functions.html#float] and str [https://docs.python.org/3/library/stdtypes.html#str].




	
choices

	Parameter value candidates.






	
single()

	Test whether the range of this distribution contains just a single value.

When this method returns True [https://docs.python.org/3/library/constants.html#True], samplers always sample
the same value from the distribution.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].














	
optuna.distributions.distribution_to_json(dist)

	Serialize a distribution to JSON format.


	Parameters

	dist – A distribution to be serialized.



	Returns

	A JSON string of a given distribution.










	
optuna.distributions.json_to_distribution(json_str)

	Deserialize a distribution in JSON format.


	Parameters

	json_str – A JSON-serialized distribution.



	Returns

	A deserialized distribution.










	
optuna.distributions.check_distribution_compatibility(dist_old, dist_new)

	A function to check compatibility of two distributions.

Note that this method is not supposed to be called by library users.


	Parameters

	
	dist_old – A distribution previously recorded in storage.


	dist_new – A distribution newly added to storage.






	Returns

	True denotes given distributions are compatible. Otherwise, they are not.













          

      

      

    

  

    
      
          
            
  
Exceptions


	
class optuna.exceptions.OptunaError

	Base class for Optuna specific errors.






	
class optuna.exceptions.TrialPruned

	Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is
supposed to be raised after optuna.trial.Trial.should_prune() as shown in the following
example.

Example

>>> def objective(trial):
>>>     ...
>>>     for step in range(n_train_iter):
>>>         ...
>>>         if trial.should_prune():
>>>             raise TrailPruned()










	
class optuna.exceptions.CLIUsageError

	Exception for CLI.

CLI raises this exception when it receives invalid configuration.






	
class optuna.exceptions.StorageInternalError

	Exception for storage operation.

This error is raised when an operation failed in backend DB of storage.






	
class optuna.exceptions.DuplicatedStudyError

	Exception for a duplicated study name.

This error is raised when a specified study name already exists in the storage.









          

      

      

    

  

    
      
          
            
  
Integration


	
class optuna.integration.ChainerPruningExtension(trial, observation_key, pruner_trigger)

	Chainer extension to prune unpromising trials.

Example

Add a pruning extension which observes validation losses to
Chainer Trainer [https://docs.chainer.org/en/stable/reference/generated/chainer.training.Trainer.html].

trainer.extend(
    ChainerPruningExtension(trial, 'validation/main/loss', (1, 'epoch')))






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	observation_key – An evaluation metric for pruning, e.g., main/loss and
validation/main/accuracy. Please refer to
chainer.Reporter reference [https://docs.chainer.org/en/stable/reference/util/generated/chainer.Reporter.html] for further details.


	pruner_trigger – A trigger to execute pruning. pruner_trigger is an instance of
IntervalTrigger [https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.IntervalTrigger.html] or
ManualScheduleTrigger [https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.ManualScheduleTrigger.html]. IntervalTrigger [https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.IntervalTrigger.html] can be specified by a tuple of the interval length and its
unit like (1, 'epoch').















	
class optuna.integration.ChainerMNStudy(study, comm)

	A wrapper of Study to incorporate Optuna with ChainerMN.


See also

ChainerMNStudy provides the same interface as
Study. Please refer to optuna.study.Study for further
details.



Example

Optimize an objective function that trains neural network written with ChainerMN.

comm = chainermn.create_communicator('naive')
study = optuna.load_study(study_name, storage_url)
chainermn_study = optuna.integration.ChainerMNStudy(study, comm)
chainermn_study.optimize(objective, n_trials=25)






	Parameters

	
	study – A Study object.


	comm – A ChainerMN communicator [https://docs.chainer.org/en/stable/chainermn/reference/index.html#communicators].









	
optimize(func, n_trials=None, timeout=None, catch=())

	Optimize an objective function.

This method provides the same interface as optuna.study.Study.optimize() except
the absence of n_jobs argument.










	
class optuna.integration.CmaEsSampler(x0=None, sigma0=None, cma_stds=None, seed=None, cma_opts=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True)

	A Sampler using cma library as the backend.

Example

Optimize a simple quadratic function by using CmaEsSampler.

def objective(trial):
    x = trial.suggest_uniform('x', -1, 1)
    y = trial.suggest_int('y', -1, 1)
    return x**2 + y

sampler = optuna.integration.CmaEsSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)





Note that parallel execution of trials may affect the optimization performance of CMA-ES,
especially if the number of trials running in parallel exceeds the population size.


	Parameters

	
	x0 – A dictionary of an initial parameter values for CMA-ES. By default, the mean of low
and high for each distribution is used.
Please refer to cma.CMAEvotionStrategy [http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of x0.


	sigma0 – Initial standard deviation of CMA-ES. By default, sigma0 is set to
min_range / 6, where min_range denotes the minimum range of the distributions
in the search space. If distribution is categorical, min_range is
len(choices) - 1.
Please refer to cma.CMAEvotionStrategy [http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of sigma0.




	cma_stds – A dictionary of multipliers of sigma0 for each parameters. The default value is 1.0.
Please refer to cma.CMAEvotionStrategy [http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of cma_stds.




	seed – A random seed for CMA-ES.


	cma_opts – Options passed to the constructor of
cma.CMAEvotionStrategy [http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] class.

Note that BoundaryHandler, bounds, CMA_stds and seed arguments in
cma_opts will be ignored because it is added by
CmaEsSampler automatically.




	n_startup_trials – The independent sampling is used instead of the CMA-ES algorithm until the given number
of trials finish in the same study.


	independent_sampler – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for CmaEsSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.


See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.






	warn_independent_sampling – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.















	
class optuna.integration.FastAIPruningCallback(learn, trial, monitor)

	FastAI callback to prune unpromising trials for fastai.


Note

This callback is for fastai<2.0, not the coming version developed in fastai/fastai_dev.



Example

Add a pruning callback which monitors validation loss directly to Learner.

# If registering this callback in construction
from functools import partial

learn = Learner(
    data, model,
    callback_fns=[partial(FastAIPruningCallback, trial=trial, monitor='valid_loss')])





Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn.fit(n_epochs, callbacks=[FastAIPruningCallback(learn, trial, 'valid_loss')])
learn.fit_one_cycle(
    n_epochs, cyc_len, max_lr,
    callbacks=[FastAIPruningCallback(learn, trial, 'valid_loss')])






	Parameters

	
	learn – fastai.basic_train.Learner [https://docs.fast.ai/basic_train.html#Learner].


	trial – A Trial corresponding to the current
evaluation of the objective function.


	monitor – An evaluation metric for pruning, e.g. valid_loss and Accuracy.
Please refer to fastai.Callback reference [https://docs.fast.ai/callback.html#Callback] for further
details.













	
class optuna.integration.PyTorchIgnitePruningHandler(trial, metric, trainer)

	PyTorch Ignite handler to prune unpromising trials.

Example

Add a pruning handler which observes validation accuracy.

evaluator = create_supervised_evaluator(model,
                                        metrics={'accuracy': Accuracy()},
                                        device=device)
handler = PyTorchIgnitePruningHandler(trial, 'accuracy', trainer)
evaluator.add_event_handler(Events.COMPLETED, handler)

@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
    evaluator.run(val_loader)






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	metric – A name of metric for pruning, e.g., accuracy and loss.


	trainer – A trainer engine of PyTorch Ignite. Please refer to ignite.engine.Engine reference [https://pytorch.org/ignite/engine.html#ignite.engine.Engine] for further details.













	
class optuna.integration.KerasPruningCallback(trial, monitor)

	Keras callback to prune unpromising trials.

Example

Add a pruning callback which observes validation losses.

model.fit(X, y, callbacks=KerasPruningCallback(trial, 'val_loss'))






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	monitor – An evaluation metric for pruning, e.g., val_loss and
val_acc. Please refer to keras.Callback reference [https://keras.io/callbacks/#callback] for further details.













	
class optuna.integration.LightGBMPruningCallback(trial, metric, valid_name='valid_0')

	Callback for LightGBM to prune unpromising trials.

Example

Add a pruning callback which observes validation scores to training of a LightGBM model.

param = {'objective': 'binary', 'metric': 'binary_error'}
pruning_callback = LightGBMPruningCallback(trial, 'binary_error')
gbm = lgb.train(param, dtrain, valid_sets=[dtest], callbacks=[pruning_callback])






	Parameters

	
	trial – A Trial corresponding to the current evaluation of
the objective function.


	metric – An evaluation metric for pruning, e.g., binary_error and multi_error.
Please refer to
LightGBM reference [https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric]
for further details.


	valid_name – The name of the target validation.
Validation names are specified by valid_names option of
train method [https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.train].
If omitted, valid_0 is used which is the default name of the first validation.
Note that this argument will be ignored if you are calling
cv method [https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.cv]
instead of train method.













	
class optuna.integration.MXNetPruningCallback(trial, eval_metric)

	MXNet callback to prune unpromising trials.

Example

Add a pruning callback which observes validation accuracy.

model.fit(train_data=X, eval_data=Y,
          eval_end_callback=MXNetPruningCallback(trial, eval_metric='accuracy'))






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	eval_metric – An evaluation metric name for pruning, e.g., cross-entropy and
accuracy. If using default metrics like mxnet.metrics.Accuracy, use it’s
default metric name. For custom metrics, use the metric_name provided to
constructor. Please refer to mxnet.metrics reference [https://mxnet.apache.org/api/python/metric/metric.html] for further details.













	
class optuna.integration.PyTorchLightningPruningCallback(trial, monitor)

	PyTorch Lightning callback to prune unpromising trials.

Example

Add a pruning callback which observes validation accuracy.

trainer.pytorch_lightning.Trainer(
    early_stop_callback=PyTorchLightningPruningCallback(trial, monitor='avg_val_acc'))






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	monitor – An evaluation metric for pruning, e.g., val_loss or
val_acc. The metrics are obtained from the returned dictionaries from e.g.
pytorch_lightning.LightningModule.training_step or
pytorch_lightning.LightningModule.validation_end and the names thus depend on
how this dictionary is formatted.













	
class optuna.integration.SkoptSampler(independent_sampler=None, warn_independent_sampling=True, skopt_kwargs=None)

	Sampler using Scikit-Optimize as the backend.

Example

Optimize a simple quadratic function by using SkoptSampler.

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    y = trial.suggest_int('y', 0, 10)
    return x**2 + y

sampler = optuna.integration.SkoptSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)






	Parameters

	
	independent_sampler – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for SkoptSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.


See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.






	warn_independent_sampling – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.




	skopt_kwargs – Keyword arguments passed to the constructor of
skopt.Optimizer [https://scikit-optimize.github.io/#skopt.Optimizer]
class.

Note that dimensions argument in skopt_kwargs will be ignored
because it is added by SkoptSampler automatically.















	
class optuna.integration.TensorFlowPruningHook(trial, estimator, metric, run_every_steps, is_higher_better=None)

	TensorFlow SessionRunHook to prune unpromising trials.

Example

Add a pruning SessionRunHook for a TensorFlow’s Estimator.

pruning_hook = TensorFlowPruningHook(
    trial=trial,
    estimator=clf,
    metric="accuracy",
    is_higher_better=True,
    run_every_steps=10,
)
hooks = [pruning_hook]
tf.estimator.train_and_evaluate(
    clf,
    tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=500, hooks=hooks),
    eval_spec
)






	Parameters

	
	trial – A Trial corresponding to the current evaluation of
the objective function.


	estimator – An estimator which you will use.


	metric – An evaluation metric for pruning, e.g., accuracy and loss.


	run_every_steps – An interval to watch the summary file.


	is_higher_better – Please do not use this argument because this class refers to
StudyDirection to check whether the current study is
minimize or maximize.













	
class optuna.integration.TFKerasPruningCallback(trial, monitor)

	tf.keras callback to prune unpromising trials.

This callback is intend to be compatible for TensorFlow v1 and v2,
but only tested with TensorFlow v1.

Example

Add a pruning callback which observes validation losses.

model.fit(x, y, callbacks=[TFKerasPruningCallback(trial, 'val_loss')])






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	monitor – An evaluation metric for pruning, e.g., val_loss or val_acc.













	
class optuna.integration.XGBoostPruningCallback(trial, observation_key)

	Callback for XGBoost to prune unpromising trials.

Example

Add a pruning callback which observes validation errors to training of an XGBoost model.

pruning_callback = XGBoostPruningCallback(trial, 'validation-error')
bst = xgb.train(param, dtrain, evals=[(dtest, 'validation')],
                callbacks=[pruning_callback])






	Parameters

	
	trial – A Trial corresponding to the current evaluation of the
objective function.


	observation_key – An evaluation metric for pruning, e.g., validation-error and
validation-merror. Please refer to eval_metric in
XGBoost reference [https://xgboost.readthedocs.io/en/latest/parameter.html]
for further details.













	
class optuna.integration.OptunaSearchCV(estimator, param_distributions, cv=5, enable_pruning=False, error_score=nan, max_iter=1000, n_jobs=1, n_trials=10, random_state=None, refit=True, return_train_score=False, scoring=None, study=None, subsample=1.0, timeout=None, verbose=0)

	Hyperparameter search with cross-validation.


Warning

This feature is experimental. The interface may be changed in the future.




	Parameters

	
	estimator – Object to use to fit the data. This is assumed to implement the
scikit-learn estimator interface. Either this needs to provide
score, or scoring must be passed.


	param_distributions – Dictionary where keys are parameters and values are distributions.
Distributions are assumed to implement the optuna distribution
interface.


	cv – Cross-validation strategy. Possible inputs for cv are:


	integer to specify the number of folds in a CV splitter,


	a CV splitter,


	an iterable yielding (train, test) splits as arrays of indices.




For integer, if estimator is a classifier and y is
either binary or multiclass,
sklearn.model_selection.StratifiedKFold is used. otherwise,
sklearn.model_selection.KFold is used.




	enable_pruning – If True [https://docs.python.org/3/library/constants.html#True], pruning is performed in the case where the
underlying estimator supports partial_fit.


	error_score – Value to assign to the score if an error occurs in fitting. If
‘raise’, the error is raised. If numeric,
sklearn.exceptions.FitFailedWarning is raised. This does not
affect the refit step, which will always raise the error.


	max_iter – Maximum number of epochs. This is only used if the underlying
estimator supports partial_fit.


	n_jobs – Number of parallel jobs. -1 means using all processors.


	n_trials – Number of trials. If None [https://docs.python.org/3/library/constants.html#None], there is no limitation on the
number of trials. If timeout is also set to None [https://docs.python.org/3/library/constants.html#None],
the study continues to create trials until it receives a
termination signal such as Ctrl+C or SIGTERM. This trades off
runtime vs quality of the solution.


	random_state – Seed of the pseudo random number generator. If int, this is the
seed used by the random number generator. If
numpy.random.RandomState object, this is the random number
generator. If None [https://docs.python.org/3/library/constants.html#None], the global random state from
numpy.random is used.


	refit – If True [https://docs.python.org/3/library/constants.html#True], refit the estimator with the best found
hyperparameters. The refitted estimator is made available at the
best_estimator_ attribute and permits using predict
directly.


	return_train_score – If True [https://docs.python.org/3/library/constants.html#True], training scores will be included. Computing
training scores is used to get insights on how different
hyperparameter settings impact the overfitting/underfitting
trade-off. However computing training scores can be
computationally expensive and is not strictly required to select
the hyperparameters that yield the best generalization
performance.


	scoring – String or callable to evaluate the predictions on the test data.
If None [https://docs.python.org/3/library/constants.html#None], score on the estimator is used.


	study – Study corresponds to the optimization task. If None [https://docs.python.org/3/library/constants.html#None], a new
study is created.


	subsample – Proportion of samples that are used during hyperparameter search.


	If int, then draw subsample samples.


	If float, then draw subsample * X.shape[0] samples.







	timeout – Time limit in seconds for the search of appropriate models. If
None [https://docs.python.org/3/library/constants.html#None], the study is executed without time limitation. If
n_trials is also set to None [https://docs.python.org/3/library/constants.html#None], the study continues to
create trials until it receives a termination signal such as
Ctrl+C or SIGTERM. This trades off runtime vs quality of the
solution.


	verbose – Verbosity level. The higher, the more messages.









	
best_estimator_

	Estimator that was chosen by the search. This is present only if
refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
n_splits_

	Number of cross-validation splits.






	
refit_time_

	Time for refitting the best estimator. This is present only if
refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
sample_indices_

	Indices of samples that are used during hyperparameter search.






	
scorer_

	Scorer function.






	
study_

	Actual study.





Examples

>>> import optuna
>>> from sklearn.datasets import load_iris
>>> from sklearn.svm import SVC
>>> clf = SVC(gamma='auto')
>>> param_distributions = {
...     'C': optuna.distributions.LogUniformDistribution(1e-10, 1e+10)
... }
>>> optuna_search = optuna.integration.OptunaSearchCV(
...     clf,
...     param_distributions
... )
>>> X, y = load_iris(return_X_y=True)
>>> optuna_search.fit(X, y) # doctest: +ELLIPSIS
OptunaSearchCV(...)
>>> y_pred = optuna_search.predict(X)






	
best_index_

	Index which corresponds to the best candidate parameter setting.






	
best_params_

	Parameters of the best trial in the Study.






	
best_score_

	Mean cross-validated score of the best estimator.






	
best_trial_

	Best trial in the Study.






	
classes_

	Class labels.






	
decision_function

	Call decision_function on the best estimator.

This is available only if the underlying estimator supports
decision_function and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
fit(X, y=None, groups=None, **fit_params)

	Run fit with all sets of parameters.


	Parameters

	
	X – Training data.


	y – Target variable.


	groups – Group labels for the samples used while splitting the dataset
into train/test set.


	**fit_params – Parameters passed to fit on the estimator.






	Returns

	Return self.



	Return type

	self










	
inverse_transform

	Call inverse_transform on the best estimator.

This is available only if the underlying estimator supports
inverse_transform and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
n_trials_

	Actual number of trials.






	
predict

	Call predict on the best estimator.

This is available only if the underlying estimator supports predict
and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
predict_log_proba

	Call predict_log_proba on the best estimator.

This is available only if the underlying estimator supports
predict_log_proba and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
predict_proba

	Call predict_proba on the best estimator.

This is available only if the underlying estimator supports
predict_proba and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
score(X, y=None)

	Return the score on the given data.


	Parameters

	
	X – Data.


	y – Target variable.






	Returns

	Scaler score.



	Return type

	score










	
score_samples

	Call score_samples on the best estimator.

This is available only if the underlying estimator supports
score_samples and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
set_user_attr

	Call set_user_attr on the Study.






	
transform

	Call transform on the best estimator.

This is available only if the underlying estimator supports
transform and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
trials_

	All trials in the Study.






	
trials_dataframe

	Call trials_dataframe on the Study.






	
user_attrs_

	User attributes in the Study.













          

      

      

    

  

    
      
          
            
  
Logging


	
optuna.logging.get_verbosity()

	Return the current level for the Optuna’s root logger.


	Returns

	Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.






Note

Optuna has following logging levels:


	optuna.logging.CRITICAL, optuna.logging.FATAL


	optuna.logging.ERROR


	optuna.logging.WARNING, optuna.logging.WARN


	optuna.logging.INFO


	optuna.logging.DEBUG











	
optuna.logging.set_verbosity(verbosity)

	Set the level for the Optuna’s root logger.


	Parameters

	verbosity – Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.










	
optuna.logging.disable_default_handler()

	Disable the default handler of the Optuna’s root logger.

Example

Stop and then resume logging to standard output.

>> study = optuna.create_study()
>> optuna.logging.disable_default_handler()
>> study.optimize(objective, n_trials=10)
>> len(study.trials)
10
>> optuna.logging.enable_default_handler()
>> study.optimize(objective, n_trials=10)
[I 2018-11-07 16:11:28,285] Finished a trial resulted in value: 3787.44371584515. ...










	
optuna.logging.enable_default_handler()

	Enable the default handler of the Optuna’s root logger.

Please refer to the example shown in disable_default_handler().






	
optuna.logging.disable_propagation()

	Disable propagation of the library log outputs.

Note that log propagation is disabled by default.






	
optuna.logging.enable_propagation()

	Enable propagation of the library log outputs.

Please disable the Optuna’s default handler to prevent double logging if the root logger has
been configured.

Example

Propagate all log output to the root logger in order to save them to the file.

>> logging.getLogger().setLevel(logging.INFO)  # Setup the root logger.
>> logging.getLogger().addHandler(logging.FileHandler('foo.log'))

>> optuna.logging.enable_propagation()  # Propagate logs to the root logger.
>> optuna.logging.disable_default_handler()  # Stop showing logs in stderr.

>> study = optuna.create_study()
>> logging.getLogger().info("Start optimization.")
>> study.optimize(objective, n_trials=10)
>> open('foo.log').readlines()
["Start optimization.", "Finished trial#0 resulted in value: ...













          

      

      

    

  

    
      
          
            
  
Pruners


	
class optuna.pruners.BasePruner

	Base class for pruners.


	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters

	
	study – Study object of the target study.


	trial – FrozenTrial object of the target trial.






	Returns

	A boolean value representing whether the trial should be pruned.














	
class optuna.pruners.MedianPruner(n_startup_trials=5, n_warmup_steps=0, interval_steps=1)

	Pruner using the median stopping rule.

Prune if the trial’s best intermediate result is worse than median of intermediate results of
previous trials at the same step.

Example

We minimize an objective function with the median stopping rule.

>>> from optuna import create_study
>>> from optuna.pruners import MedianPruner
>>>
>>> def objective(trial):
>>>     ...
>>>
>>> study = create_study(pruner=MedianPruner())
>>> study.optimize(objective)






	Parameters

	
	n_startup_trials – Pruning is disabled until the given number of trials finish in the same study.


	n_warmup_steps – Pruning is disabled until the trial reaches the given number of step.


	interval_steps – Interval in number of steps between the pruning checks, offset by the warmup steps.
If no value has been reported at the time of a pruning check, that particular check
will be postponed until a value is reported.













	
class optuna.pruners.NopPruner

	Pruner which never prunes trials.

Example

>>> from optuna import create_study
>>> from optuna.pruners import NopPruner
>>>
>>> def objective(trial):
>>>     ...
>>>
>>> study = create_study(pruner=NopPruner())
>>> study.optimize(objective)










	
class optuna.pruners.PercentilePruner(percentile, n_startup_trials=5, n_warmup_steps=0, interval_steps=1)

	Pruner to keep the specified percentile of the trials.

Prune if the best intermediate value is in the bottom percentile among trials at the same step.

Example

>>> from optuna import create_study
>>> from optuna.pruners import PercentilePruner
>>>
>>> def objective(trial):
>>>     ...
>>>
>>> study = create_study(pruner=PercentilePruner(25.0))
>>> study.optimize(objective)






	Parameters

	
	percentile – Percentile which must be between 0 and 100 inclusive
(e.g., When given 25.0, top of 25th percentile trials are kept).


	n_startup_trials – Pruning is disabled until the given number of trials finish in the same study.


	n_warmup_steps – Pruning is disabled until the trial reaches the given number of step.


	interval_steps – Interval in number of steps between the pruning checks, offset by the warmup steps.
If no value has been reported at the time of a pruning check, that particular check
will be postponed until a value is reported. Value must be at least 1.













	
class optuna.pruners.SuccessiveHalvingPruner(min_resource=1, reduction_factor=4, min_early_stopping_rate=0)

	Pruner using Asynchronous Successive Halving Algorithm.

Successive Halving [https://arxiv.org/abs/1502.07943] is a bandit-based algorithm to
identify the best one among multiple configurations. This class implements an asynchronous
version of Successive Halving. Please refer to the paper of
Asynchronous Successive Halving [http://arxiv.org/abs/1810.05934] for detailed descriptions.

Note that, this class does not take care of the parameter for the maximum
resource, referred to as \(R\) in the paper. The maximum resource allocated to a trial is
typically limited inside the objective function (e.g., step number in simple.py [https://github.com/optuna/optuna/tree/c5777b3e/examples/pruning/simple.py#L31],
EPOCH number in chainer_integration.py [https://github.com/optuna/optuna/tree/c5777b3e/examples/pruning/chainer_integration.py#L65]).

Example

We minimize an objective function with SuccessiveHalvingPruner.

>>> from optuna import create_study
>>> from optuna.pruners import SuccessiveHalvingPruner
>>>
>>> def objective(trial):
>>>     ...
>>>
>>> study = create_study(pruner=SuccessiveHalvingPruner())
>>> study.optimize(objective)






	Parameters

	
	min_resource – A parameter for specifying the minimum resource allocated to a trial
(in the paper [http://arxiv.org/abs/1810.05934] this parameter is
referred to as \(r\)).

A trial is never pruned until it executes
\(\mathsf{min}\_\mathsf{resource} \times
\mathsf{reduction}\_\mathsf{factor}^{
\mathsf{min}\_\mathsf{early}\_\mathsf{stopping}\_\mathsf{rate}}\)
steps (i.e., the completion point of the first rung). When the trial completes
the first rung, it will be promoted to the next rung only
if the value of the trial is placed in the top
\({1 \over \mathsf{reduction}\_\mathsf{factor}}\) fraction of
the all trials that already have reached the point (otherwise it will be pruned there).
If the trial won the competition, it runs until the next completion point (i.e.,
\(\mathsf{min}\_\mathsf{resource} \times
\mathsf{reduction}\_\mathsf{factor}^{
(\mathsf{min}\_\mathsf{early}\_\mathsf{stopping}\_\mathsf{rate}
+ \mathsf{rung})}\) steps)
and repeats the same procedure.




	reduction_factor – A parameter for specifying reduction factor of promotable trials
(in the paper [http://arxiv.org/abs/1810.05934] this parameter is
referred to as \(\eta\)).  At the completion point of each rung,
about \({1 \over \mathsf{reduction}\_\mathsf{factor}}\)
trials will be promoted.




	min_early_stopping_rate – A parameter for specifying the minimum early-stopping rate
(in the paper [http://arxiv.org/abs/1810.05934] this parameter is
referred to as \(s\)).


















          

      

      

    

  

    
      
          
            
  
Samplers


	
class optuna.samplers.BaseSampler

	Base class for samplers.

Optuna combines two types of sampling strategies, which are called relative sampling and
independent sampling.

The relative sampling determines values of multiple parameters simultaneously so that
sampling algorithms can use relationship between parameters (e.g., correlation).
Target parameters of the relative sampling are described in a relative search space, which
is determined by infer_relative_search_space().

The independent sampling determines a value of a single parameter without considering any
relationship between parameters. Target parameters of the independent sampling are the
parameters not described in the relative search space.

More specifically, parameters are sampled by the following procedure.
At the beginning of a trial, infer_relative_search_space()
is called to determine the relative search space for the trial. Then,
sample_relative() is invoked to sample parameters
from the relative search space. During the execution of the objective function,
sample_independent() is used to sample
parameters that don’t belong to the relative search space.

The following figure depicts the lifetime of a trial and how the above three methods are
called in the trial.

[image: ../_images/sampling-sequence.png]







	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is pass to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters

	
	study – Target study object.


	trial – Target trial object.






	Returns

	A dictionary containing the parameter names and parameter’s distributions.






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


	Parameters

	
	study – Target study object.


	trial – Target trial object.


	param_name – Name of the sampled parameter.


	param_distribution – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns

	A parameter value.










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


	Parameters

	
	study – Target study object.


	trial – Target trial object.


	search_space – The search space returned by
infer_relative_search_space().






	Returns

	A dictionary containing the parameter names and the values.














	
class optuna.samplers.RandomSampler(seed=None)

	Sampler using random sampling.

This sampler is based on independent sampling.
See also BaseSampler for more details of ‘independent sampling’.

Example

>>> study = optuna.create_study(sampler=RandomSampler())
>>> study.optimize(objective, direction='minimize')






	Args:

	seed: Seed for random number generator.










	
class optuna.samplers.TPESampler(consider_prior=True, prior_weight=1.0, consider_magic_clip=True, consider_endpoints=False, n_startup_trials=10, n_ei_candidates=24, gamma=<function default_gamma>, weights=<function default_weights>, seed=None)

	Sampler using TPE (Tree-structured Parzen Estimator) algorithm.

This sampler is based on independent sampling.
See also BaseSampler for more details of ‘independent sampling’.

On each trial, for each parameter, TPE fits one Gaussian Mixture Model (GMM) l(x) to
the set of parameter values associated with the best objective values, and another GMM
g(x) to the remaining parameter values. It chooses the parameter value x that
maximizes the ratio l(x)/g(x).

For further information about TPE algorithm, please refer to the following papers:


	Algorithms for Hyper-Parameter Optimization [https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]


	Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures [http://proceedings.mlr.press/v28/bergstra13.pdf]




Example

import optuna
from optuna.samplers import TPESampler

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return x**2

study = optuna.create_study(sampler=TPESampler())
study.optimize(objective, n_trials=100)






	
static hyperopt_parameters()

	Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned
by this method.

Example

Create a TPESampler instance with the default
parameters of hyperopt [https://github.com/hyperopt/hyperopt/tree/0.1.2].

import optuna
from optuna.samplers import TPESampler

def objective(trial):
    x = trial.suggest_uniform('x', -10, 10)
    return x**2

sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)






	Returns

	A dictionary containing the default parameters of hyperopt.














	
optuna.samplers.intersection_search_space(study)

	Return the intersection search space of the BaseStudy.

Intersection search space contains the intersection of parameter distributions that have been
suggested in the completed trials of the study so far.
If there are multiple parameters that have the same name but different distributions,
neither is included in the resulting search space
(i.e., the parameters with dynamic value ranges are excluded).


	Returns

	A dictionary containing the parameter names and parameter’s distributions.













          

      

      

    

  

    
      
          
            
  
Storages


	
class optuna.storages.RDBStorage(url, engine_kwargs=None, skip_compatibility_check=False)

	Storage class for RDB backend.

Note that library users can instantiate this class, but the attributes
provided by this class are not supposed to be directly accessed by them.

Example

We create an RDBStorage instance with
customized pool_size and max_overflow settings.

>>> import optuna
>>>
>>> def objective(trial):
>>>     ...
>>>
>>> storage = optuna.storages.RDBStorage(
>>>     url='postgresql://foo@localhost/db',
>>>     engine_kwargs={
>>>         'pool_size': 20,
>>>         'max_overflow': 0
>>>     }
>>> )
>>>
>>> study = optuna.create_study(storage=storage)
>>> study.optimize(objective)






	Parameters

	
	url – URL of the storage.


	engine_kwargs – A dictionary of keyword arguments that is passed to
sqlalchemy.engine.create_engine [https://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine] function.
















          

      

      

    

  

    
      
          
            
  
Structs


	
class optuna.structs.TrialState

	State of a Trial.


	
RUNNING

	The Trial is running.






	
COMPLETE

	The Trial has been finished without any error.






	
PRUNED

	The Trial has been pruned with
TrialPruned.






	
FAIL

	The Trial has failed due to an uncaught error.










	
class optuna.structs.StudyDirection

	Direction of a Study.


	
NOT_SET

	Direction has not been set.






	
MINIMIZE

	Study minimizes the objective function.






	
MAXIMIZE

	Study maximizes the objective function.










	
class optuna.structs.FrozenTrial(number, state, value, datetime_start, datetime_complete, params, distributions, user_attrs, system_attrs, intermediate_values, trial_id)

	Status and results of a Trial.


	
number

	Unique and consecutive number of Trial for each
Study. Note that this field uses zero-based numbering.






	
state

	TrialState of the Trial.






	
value

	Objective value of the Trial.






	
datetime_start

	Datetime where the Trial started.






	
datetime_complete

	Datetime where the Trial finished.






	
params

	Dictionary that contains suggested parameters.






	
distributions

	Dictionary that contains the distributions of params.






	
user_attrs

	Dictionary that contains the attributes of the Trial set with
optuna.trial.Trial.set_user_attr().






	
intermediate_values

	Intermediate objective values set with optuna.trial.Trial.report().






	
distributions

	Return the distributions for this trial.


	Returns

	The distributions.














	
class optuna.structs.StudySummary(study_name, direction, best_trial, user_attrs, system_attrs, n_trials, datetime_start, study_id)

	Basic attributes and aggregated results of a Study.

See also optuna.study.get_all_study_summaries().


	
study_name

	Name of the Study.






	
direction

	StudyDirection of the Study.






	
best_trial

	FrozenTrial with best objective value in the Study.






	
user_attrs

	Dictionary that contains the attributes of the Study set with
optuna.study.Study.set_user_attr().






	
system_attrs

	Dictionary that contains the attributes of the Study internally
set by Optuna.






	
n_trials

	The number of trials ran in the Study.






	
datetime_start

	Datetime where the Study started.






	
study_id

	Return the study ID.


Deprecated since version 0.20.0: The direct use of this attribute is deprecated and it is recommended that you use
study_name instead.




	Returns

	The study ID.

















          

      

      

    

  

    
      
          
            
  
Study


	
class optuna.study.Study(study_name, storage, sampler=None, pruner=None)

	A study corresponds to an optimization task, i.e., a set of trials.

This object provides interfaces to run a new Trial, access trials’
history, set/get user-defined attributes of the study itself.

Note that the direct use of this constructor is not recommended.
To create and load a study, please refer to the documentation of
create_study() and load_study() respectively.


	
best_params

	Return parameters of the best trial in the study.


	Returns

	A dictionary containing parameters of the best trial.










	
best_trial

	Return the best trial in the study.


	Returns

	A FrozenTrial object of the best trial.










	
best_value

	Return the best objective value in the study.


	Returns

	A float representing the best objective value.










	
direction

	Return the direction of the study.


	Returns

	A StudyDirection object.










	
get_trials(deepcopy=True)

	Return all trials in the study.

The returned trials are ordered by trial number.

For library users, it’s recommended to use more handy
trials property to get the trials instead.


	Parameters

	deepcopy – Flag to control whether to apply copy.deepcopy() to the trials.
Note that if you set the flag to False [https://docs.python.org/3/library/constants.html#False], you shouldn’t mutate
any fields of the returned trial. Otherwise the internal state of
the study may corrupt and unexpected behavior may happen.



	Returns

	A list of FrozenTrial objects.










	
optimize(func, n_trials=None, timeout=None, n_jobs=1, catch=(), callbacks=None, gc_after_trial=True)

	Optimize an objective function.


	Parameters

	
	func – A callable that implements objective function.


	n_trials – The number of trials. If this argument is set to None [https://docs.python.org/3/library/constants.html#None], there is no
limitation on the number of trials. If timeout is also set to None [https://docs.python.org/3/library/constants.html#None],
the study continues to create trials until it receives a termination signal such
as Ctrl+C or SIGTERM.


	timeout – Stop study after the given number of second(s). If this argument is set to
None [https://docs.python.org/3/library/constants.html#None], the study is executed without time limitation. If n_trials is
also set to None [https://docs.python.org/3/library/constants.html#None], the study continues to create trials until it receives a
termination signal such as Ctrl+C or SIGTERM.


	n_jobs – The number of parallel jobs. If this argument is set to -1, the number is
set to CPU count.


	catch – A study continues to run even when a trial raises one of the exceptions specified
in this argument. Default is an empty tuple, i.e. the study will stop for any
exception except for TrialPruned.


	callbacks – List of callback functions that are invoked at the end of each trial.


	gc_after_trial – Flag to execute garbage collection at the end of each trial. By default, garbage
collection is enabled, just in case. You can turn it off with this argument if
memory is safely managed in your objective function.













	
set_user_attr(key, value)

	Set a user attribute to the study.


	Parameters

	
	key – A key string of the attribute.


	value – A value of the attribute. The value should be JSON serializable.













	
study_id

	Return the study ID.


Deprecated since version 0.20.0: The direct use of this attribute is deprecated and it is recommended that you use
study_name instead.




	Returns

	The study ID.










	
trials

	Return all trials in the study.

The returned trials are ordered by trial number.

This is a short form of self.get_trials(deepcopy=True).


	Returns

	A list of FrozenTrial objects.










	
trials_dataframe(attrs=('number', 'value', 'datetime_start', 'datetime_complete', 'params', 'user_attrs', 'system_attrs', 'state'), multi_index=False)

	Export trials as a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html].

The DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] provides various features to analyze studies. It is also useful to draw a
histogram of objective values and to export trials as a CSV file.
If there are no trials, an empty DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] is returned.

Example

import optuna
import pandas

def objective(trial):
    x = trial.suggest_uniform('x', -1, 1)
    return x ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

# Create a dataframe from the study.
df = study.trials_dataframe()
assert isinstance(df, pandas.DataFrame)
assert df.shape[0] == 3  # n_trials.






	Parameters

	
	attrs – Specifies field names of FrozenTrial to include them to a
DataFrame of trials.


	multi_index – Specifies whether the returned DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] employs MultiIndex [https://pandas.pydata.org/pandas-docs/stable/advanced.html] or not. Columns that
are hierarchical by nature such as (params, x) will be flattened to
params_x when set to False [https://docs.python.org/3/library/constants.html#False].






	Returns

	A pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] of trials in the Study.










	
user_attrs

	Return user attributes.


	Returns

	A dictionary containing all user attributes.














	
optuna.study.create_study(storage=None, sampler=None, pruner=None, study_name=None, direction='minimize', load_if_exists=False)

	Create a new Study.


	Parameters

	
	storage – Database URL. If this argument is set to None, in-memory storage is used, and the
Study will not be persistent.


Note


When a database URL is passed, Optuna internally uses SQLAlchemy [https://www.sqlalchemy.org/] to handle
the database. Please refer to SQLAlchemy’s document [https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] for further details.
If you want to specify non-default options to SQLAlchemy Engine [https://docs.sqlalchemy.org/en/latest/core/engines.html], you can
instantiate RDBStorage with your desired options and
pass it to the storage argument instead of a URL.









	sampler – A sampler object that implements background algorithm for value suggestion.
If None [https://docs.python.org/3/library/constants.html#None] is specified, TPESampler is used
as the default. See also samplers.


	pruner – A pruner object that decides early stopping of unpromising trials. See also
pruners.


	study_name – Study’s name. If this argument is set to None, a unique name is generated
automatically.


	direction – Direction of optimization. Set minimize for minimization and maximize for
maximization.


	load_if_exists – Flag to control the behavior to handle a conflict of study names.
In the case where a study named study_name already exists in the storage,
a DuplicatedStudyError is raised if load_if_exists is
set to False [https://docs.python.org/3/library/constants.html#False].
Otherwise, the creation of the study is skipped, and the existing one is returned.






	Returns

	A Study object.










	
optuna.study.load_study(study_name, storage, sampler=None, pruner=None)

	Load the existing Study that has the specified name.


	Parameters

	
	study_name – Study’s name. Each study has a unique name as an identifier.


	storage – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.


	sampler – A sampler object that implements background algorithm for value suggestion.
If None [https://docs.python.org/3/library/constants.html#None] is specified, TPESampler is used
as the default. See also samplers.


	pruner – A pruner object that decides early stopping of unpromising trials.
If None [https://docs.python.org/3/library/constants.html#None] is specified, MedianPruner is used
as the default. See also pruners.













	
optuna.study.delete_study(study_name, storage)

	Delete a Study object.


	Parameters

	
	study_name – Study’s name.


	storage – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.













	
optuna.study.get_all_study_summaries(storage)

	Get all history of studies stored in a specified storage.


	Parameters

	storage – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.



	Returns

	List of study history summarized as StudySummary objects.













          

      

      

    

  

    
      
          
            
  
Trial


	
class optuna.trial.Trial(study, trial_id)

	A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter
suggestion, manage the trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended.
This object is seamlessly instantiated and passed to the objective function behind
the optuna.study.Study.optimize() method; hence library users do not care about
instantiation of this object.


	Parameters

	
	study – A Study object.


	trial_id – A trial ID that is automatically generated.









	
datetime_start

	Return start datetime.


	Returns

	Datetime where the Trial started.










	
distributions

	Return distributions of parameters to be optimized.


	Returns

	A dictionary containing all distributions.










	
number

	Return trial’s number which is consecutive and unique in a study.


	Returns

	A trial number.










	
params

	Return parameters to be optimized.


	Returns

	A dictionary containing all parameters.










	
report(value, step=None)

	Report an objective function value.

If step is set to None [https://docs.python.org/3/library/constants.html#None], the value is stored as a final value of the trial.
Otherwise, it is saved as an intermediate value.

Note that the reported value is converted to float type by applying float()
function internally. Thus, it accepts all float-like types (e.g., numpy.float32).
If the conversion fails, a TypeError is raised.

Example

Report intermediate scores of SGDClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html] training

>>> def objective(trial):
>>>     ...
>>>     clf = sklearn.linear_model.SGDClassifier()
>>>     for step in range(100):
>>>         clf.partial_fit(x_train , y_train , classes)
>>>         intermediate_value = clf.score(x_val , y_val)
>>>         trial.report(intermediate_value , step=step)
>>>         if trial.should_prune():
>>>             raise TrialPruned()
>>>     ...






	Parameters

	
	value – A value returned from the objective function.


	step – Step of the trial (e.g., Epoch of neural network training).













	
set_user_attr(key, value)

	Set user attributes to the trial.

The user attributes in the trial can be access via optuna.trial.Trial.user_attrs().

Example

Save fixed hyperparameters of neural network training:

>>> def objective(trial):
>>>     ...
>>>     trial.set_user_attr('BATCHSIZE', 128)
>>>
>>> study.best_trial.user_attrs
{'BATCHSIZE': 128}






	Parameters

	
	key – A key string of the attribute.


	value – A value of the attribute. The value should be JSON serializable.













	
should_prune(step=None)

	Suggest whether the trial should be pruned or not.

The suggestion is made by a pruning algorithm associated with the trial and is based on
previously reported values. The algorithm can be specified when constructing a
Study.


Note

If no values have been reported, the algorithm cannot make meaningful suggestions.
Similarly, if this method is called multiple times with the exact same set of reported
values, the suggestions will be the same.




See also

Please refer to the example code in optuna.trial.Trial.report().




	Parameters

	step – Deprecated since 0.12.0: Step of the trial (e.g., epoch of neural network
training). Deprecated in favor of always considering the most recent step.



	Returns

	A boolean value. If True [https://docs.python.org/3/library/constants.html#True], the trial should be pruned according to the
configured pruning algorithm. Otherwise, the trial should continue.










	
study_id

	Return the study ID.


Deprecated since version 0.20.0: The direct use of this attribute is deprecated and it is recommended that you use
study instead.




	Returns

	The study ID.










	
suggest_categorical(name, choices)

	Suggest a value for the categorical parameter.

The value is sampled from choices.

Example

Suggest a kernel function of SVC [https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html].

>>> def objective(trial):
>>>     ...
>>>     kernel = trial.suggest_categorical('kernel', ['linear', 'poly', 'rbf'])
>>>     clf = sklearn.svm.SVC(kernel=kernel)
>>>     ...






	Parameters

	
	name – A parameter name.


	choices – Parameter value candidates.









See also

CategoricalDistribution.




	Returns

	A suggested value.










	
suggest_discrete_uniform(name, low, high, q)

	Suggest a value for the discrete parameter.

The value is sampled from the range \([\mathsf{low}, \mathsf{high}]\),
and the step of discretization is \(q\). More specifically,
this method returns one of the values in the sequence
\(\mathsf{low}, \mathsf{low} + q, \mathsf{low} + 2 q, \dots,
\mathsf{low} + k q \le \mathsf{high}\),
where \(k\) denotes an integer. Note that \(high\) may be changed due to round-off
errors if \(q\) is not an integer. Please check warning messages to find the changed
values.

Example

Suggest a fraction of samples used for fitting the individual learners of
GradientBoostingClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html].

>>> def objective(trial):
>>>     ...
>>>     subsample = trial.suggest_discrete_uniform('subsample', 0.1, 1.0, 0.1)
>>>     clf = sklearn.ensemble.GradientBoostingClassifier(subsample=subsample)
>>>     ...






	Parameters

	
	name – A parameter name.


	low – Lower endpoint of the range of suggested values. low is included in the range.


	high – Upper endpoint of the range of suggested values. high is included in the range.


	q – A step of discretization.






	Returns

	A suggested float value.










	
suggest_int(name, low, high)

	Suggest a value for the integer parameter.

The value is sampled from the integers in \([\mathsf{low}, \mathsf{high}]\).

Example

Suggest the number of trees in RandomForestClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html].

>>> def objective(trial):
>>>     ...
>>>     n_estimators = trial.suggest_int('n_estimators', 50, 400)
>>>     clf = sklearn.ensemble.RandomForestClassifier(n_estimators=n_estimators)
>>>     ...






	Parameters

	
	name – A parameter name.


	low – Lower endpoint of the range of suggested values. low is included in the range.


	high – Upper endpoint of the range of suggested values. high is included in the range.






	Returns

	A suggested integer value.










	
suggest_loguniform(name, low, high)

	Suggest a value for the continuous parameter.

The value is sampled from the range \([\mathsf{low}, \mathsf{high})\)
in the log domain. When \(\mathsf{low} = \mathsf{high}\), the value of
\(\mathsf{low}\) will be returned.

Example

Suggest penalty parameter C of SVC [https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html].

>>> def objective(trial):
>>>     ...
>>>     c = trial.suggest_loguniform('c', 1e-5, 1e2)
>>>     clf = sklearn.svm.SVC(C=c)
>>>     ...






	Parameters

	
	name – A parameter name.


	low – Lower endpoint of the range of suggested values. low is included in the range.


	high – Upper endpoint of the range of suggested values. high is excluded from the
range.






	Returns

	A suggested float value.










	
suggest_uniform(name, low, high)

	Suggest a value for the continuous parameter.

The value is sampled from the range \([\mathsf{low}, \mathsf{high})\)
in the linear domain. When \(\mathsf{low} = \mathsf{high}\), the value of
\(\mathsf{low}\) will be returned.

Example

Suggest a dropout rate for neural network training.

>>> def objective(trial):
>>>     ...
>>>     dropout_rate = trial.suggest_uniform('dropout_rate', 0, 1.0)
>>>     ...






	Parameters

	
	name – A parameter name.


	low – Lower endpoint of the range of suggested values. low is included in the range.


	high – Upper endpoint of the range of suggested values. high is excluded from the
range.






	Returns

	A suggested float value.










	
user_attrs

	Return user attributes.


	Returns

	A dictionary containing all user attributes.














	
class optuna.trial.FixedTrial(params)

	A trial class which suggests a fixed value for each parameter.

This object has the same methods as Trial, and it suggests pre-defined
parameter values. The parameter values can be determined at the construction of the
FixedTrial object. In contrast to Trial,
FixedTrial does not depend on Study, and it is
useful for deploying optimization results.

Example

Evaluate an objective function with parameter values given by a user:

>>> def objective(trial):
>>>     x = trial.suggest_uniform('x', -100, 100)
>>>     y = trial.suggest_categorical('y', [-1, 0, 1])
>>>     return x ** 2 + y
>>>
>>> objective(FixedTrial({'x': 1, 'y': 0}))
1






Note

Please refer to Trial for details of methods and properties.




	Parameters

	params – A dictionary containing all parameters.













          

      

      

    

  

    
      
          
            
  
Visualization


	
optuna.visualization.plot_contour(study, params=None)

	Plot the parameter relationship as contour plot in a study.


Note that, If a parameter contains missing values, a trial with missing values is not
plotted.




Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna

def objective(trial):
    ...

study = optuna.create_study()
study.optimize(objective, n_trials=100)

optuna.visualization.plot_contour(study, params=['param_a', 'param_b'])






	Parameters

	
	study – A Study object whose trials are plotted for their objective
values.


	params – Parameter list to visualize. The default is all parameters.






	Returns

	A plotly.graph_objs.Figure object.










	
optuna.visualization.plot_intermediate_values(study)

	Plot intermediate values of all trials in a study.

Example

The following code snippet shows how to plot intermediate values.

import optuna

def objective(trial):
    # Intermediate values are supposed to be reported inside the objective function.
    ...

study = optuna.create_study()
study.optimize(objective, n_trials=100)

optuna.visualization.plot_intermediate_values(study)






	Parameters

	study – A Study object whose trials are plotted for their intermediate
values.



	Returns

	A plotly.graph_objs.Figure object.










	
optuna.visualization.plot_optimization_history(study)

	Plot optimization history of all trials in a study.

Example

The following code snippet shows how to plot optimization history.

import optuna

def objective(trial):
    ...

study = optuna.create_study()
study.optimize(objective, n_trials=100)

optuna.visualization.plot_optimization_history(study)






	Parameters

	study – A Study object whose trials are plotted for their objective
values.



	Returns

	A plotly.graph_objs.Figure object.










	
optuna.visualization.plot_parallel_coordinate(study, params=None)

	Plot the high-dimentional parameter relationships in a study.


Note that, If a parameter contains missing values, a trial with missing values is not
plotted.




Example

The following code snippet shows how to plot the high-dimentional parameter relationships.

import optuna

def objective(trial):
    ...

study = optuna.create_study()
study.optimize(objective, n_trials=100)

optuna.visualization.plot_parallel_coordinate(study, params=['param_a', 'param_b'])






	Parameters

	
	study – A Study object whose trials are plotted for their objective
values.


	params – Parameter list to visualize. The default is all parameters.






	Returns

	A plotly.graph_objs.Figure object.










	
optuna.visualization.plot_slice(study, params=None)

	Plot the parameter relationship as slice plot in a study.


Note that, If a parameter contains missing values, a trial with missing values is not
plotted.




Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna

def objective(trial):
    ...

study = optuna.create_study()
study.optimize(objective, n_trials=100)

optuna.visualization.plot_slice(study, params=['param_a', 'param_b'])






	Parameters

	
	study – A Study object whose trials are plotted for their objective
values.


	params – Parameter list to visualize. The default is all parameters.






	Returns

	A plotly.graph_objs.Figure object.










	
optuna.visualization.is_available()

	Returns whether visualization is available or not.


Note

visualization module depends on plotly version 4.0.0 or higher. If a
supported version of plotly isn’t installed in your environment, this function will return
False [https://docs.python.org/3/library/constants.html#False]. In such case, please execute $ pip install -U plotly>=4.0.0 to install
plotly.




	Returns

	True [https://docs.python.org/3/library/constants.html#True] if visualization is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.













          

      

      

    

  

    
      
          
            
  
FAQ


Can I use Optuna with X? (where X is your favorite ML library)

Optuna is compatible with most ML libraries, and it’s easy to use Optuna with those.
Please refer to examples [https://github.com/optuna/optuna/tree/master/examples].




How to define objective functions that have own arguments?

There are two ways to realize it.

First, callable classes can be used for that purpose as follows:

import optuna

class Objective(object):
    def __init__(self, min_x, max_x):
        # Hold this implementation specific arguments as the fields of the class.
        self.min_x = min_x
        self.max_x = max_x

    def __call__(self, trial):
        # Calculate an objective value by using the extra arguments.
        x = trial.suggest_uniform('x', self.min_x, self.max_x)
        return (x - 2) ** 2

# Execute an optimization by using an `Objective` instance.
study = optuna.create_study()
study.optimize(Objective(-100, 100), n_trials=100)





Second, you can use lambda or functools.partial for creating functions (closures) that hold extra arguments.
Below is an example that uses lambda:

import optuna

# Objective function that takes three arguments.
def objective(trial, min_x, max_x):
    x = trial.suggest_uniform('x', min_x, max_x)
    return (x - 2) ** 2

# Extra arguments.
min_x = -100
max_x = 100

# Execute an optimization by using the above objective function wrapped by `lambda`.
study = optuna.create_study()
study.optimize(lambda trial: objective(trial, min_x, max_x), n_trials=100)





Please also refer to sklearn_addtitional_args.py [https://github.com/optuna/optuna/blob/master/examples/sklearn_additional_args.py] example.




Can I use Optuna without remote RDB servers?

Yes, it’s possible.

In the simplest form, Optuna works with in-memory storage:

study = optuna.create_study()
study.optimize(objective)





If you want to save and resume studies,  it’s handy to use SQLite as the local storage:

study = optuna.create_study(study_name='foo_study', storage='sqlite:///example.db')
study.optimize(objective)  # The state of `study` will be persisted to the local SQLite file.





Please see Saving/Resuming Study with RDB Backend for more details.




How to suppress log messages of Optuna?

By default, Optuna shows log messages at the optuna.logging.INFO level.
You can change logging levels by using  optuna.logging.set_verbosity().

For instance, you can stop showing each trial result as follows:

optuna.logging.set_verbosity(optuna.logging.WARNING)

study = optuna.create_study()
study.optimize(objective)
# Logs like '[I 2018-12-05 11:41:42,324] Finished a trial resulted in value:...' are disabled.





Please refer to optuna.logging for further details.




How to save machine learning models trained in objective functions?

Optuna saves hyperparameter values with its corresponding objective value to storage,
but it discards intermediate objects such as machine learning models and neural network weights.
To save models or weights, please use features of the machine learning library you used.

We recommend saving optuna.trial.Trial.number with a model in order to identify its corresponding trial.
For example, you can save SVM models trained in the objective function as follows:

def objective(trial):
    svc_c = trial.suggest_loguniform('svc_c', 1e-10, 1e10)
    clf = sklearn.svm.SVC(C=svc_c)
    clf.fit(X_train, y_train)

    # Save a trained model to a file.
    with open('{}.pickle'.format(trial.number), 'wb') as fout:
        pickle.dump(clf, fout)
    return 1.0 - accuracy_score(y_test, clf.predict(X_test))


study = optuna.create_study()
study.optimize(objective, n_trials=100)

# Load the best model.
with open('{}.pickle'.format(study.best_trial.number), 'rb') as fin:
    best_clf = pickle.load(fin)
print(accuracy_score(y_test, best_clf.predict(X_test)))








How can I obtain reproducible optimization results?

To make the parameters suggested by Optuna reproducible, you can specify a fixed random seed via seed argument of RandomSampler or TPESampler as follows:

sampler = TPESampler(seed=10)  # Make the sampler behave in a deterministic way.
study = optuna.create_study(sampler=sampler)
study.optimize(objective)





However, there are two caveats.

First, when optimizing a study in distributed or parallel mode, there is inherent non-determinism.
Thus it is very difficult to reproduce the same results in such condition.
We recommend executing optimization of a study sequentially if you would like to reproduce the result.

Second, if your objective function behaves in a non-deterministic way (i.e., it does not return the same value even if the same parameters were suggested), you cannot reproduce an optimization.
To deal with this problem, please set an option (e.g., random seed) to make the behavior deterministic if your optimization target (e.g., an ML library) provides it.




How does Optuna handle NaNs and exceptions reported by the objective function?

Optuna treats such trials as failures (i.e., FAIL) and continues the study.
The Optuna’s system process will not be crashed by any objective values or exceptions raised in objective functions.

You can find the failed trials in log messages.
Errors raised in objective functions are shown as follows:

[W 2018-12-07 16:38:36,889] Setting status of trial#0 as TrialState.FAIL because of \
the following error: ValueError('A sample error in objective.')





And trials which returned NaN are shown as follows:

[W 2018-12-07 16:41:59,000] Setting status of trial#2 as TrialState.FAIL because the \
objective function returned nan.





You can also find the failed trials by checking the trial states as follows:

study.trials_dataframe()















	number

	state

	value

	…

	params

	system_attrs



	0

	TrialState.FAIL

	
	…

	0

	Setting status of trial#0 as TrialState.FAIL because of the following error: ValueError(‘A test error in objective.’)



	1

	TrialState.COMPLETE

	1269

	…

	1

	








How can I use two GPUs for evaluating two trials simultaneously?

If your optimization target supports GPU (CUDA) acceleration and you want to specify which GPU is used, the easiest way is to set CUDA_VISIBLE_DEVICES environment variable:

# On a terminal.
#
# Specify to use the first GPU, and run an optimization.
$ export CUDA_VISIBLE_DEVICES=0
$ optuna study optimize foo.py objective --study foo --storage sqlite:///example.db

# On another terminal.
#
# Specify to use the second GPU, and run another optimization.
$ export CUDA_VISIBLE_DEVICES=1
$ optuna study optimize bar.py objective --study bar --storage sqlite:///example.db





Please refer to CUDA C Programming Guide [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars] for further details.




How can I test my objective functions?

When you test objective functions, you may prefer fixed parameter values to sampled ones.
In that case, you can use FixedTrial, which suggests fixed parameter values based on a given dictionary of parameters.
For instance, you can input arbitrary values of \(x\) and \(y\) to the objective function \(x + y\) as follows:

def objective(trial):
    x = trial.suggest_uniform('x', -1.0, 1.0)
    y = trial.suggest_int('y', -5, 5)
    return x + y

objective(FixedTrial({'x': 1.0, 'y': -1}))  # 0.0
objective(FixedTrial({'x': -1.0, 'y': -4}))  # -5.0





Using FixedTrial, you can write unit tests as follows:

# A test function of pytest
def test_objective():
    assert 1.0 == objective(FixedTrial({'x': 1.0, 'y': 0}))
    assert -1.0 == objective(FixedTrial({'x': 0.0, 'y': -1}))
    assert 0.0 == objective(FixedTrial({'x': -1.0, 'y': 1}))
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