

    
      
          
            
  [image: OPTUNA]


Optuna: A hyperparameter optimization framework

Optuna is an automatic hyperparameter optimization software framework,
particularly designed for machine learning. It features an imperative,
define-by-run style user API. Thanks to our define-by-run API, the
code written with Optuna enjoys high modularity, and the user of Optuna
can dynamically construct the search spaces for the hyperparameters.


Key Features

Optuna has modern functionalities as follows:


	Lightweight, versatile, and platform agnostic architecture


	Handle a wide variety of tasks with a simple installation that has few requirements.






	Pythonic search spaces


	Define search spaces using familiar Python syntax including conditionals and loops.






	Efficient optimization algorithms


	Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials.






	Easy parallelization


	Scale studies to tens or hundreds of workers with little or no changes to the code.






	Quick visualization


	Inspect optimization histories from a variety of plotting functions.










Basic Concepts

We use the terms study and trial as follows:


	Study: optimization based on an objective function


	Trial: a single execution of the objective function




Please refer to sample code below. The goal of a study is to find out
the optimal set of hyperparameter values (e.g., classifier and
svm_c) through multiple trials (e.g., n_trials=100). Optuna is
a framework designed for the automation and the acceleration of the
optimization studies.

[image: Open in Colab] [http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb]

import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('classifier', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.







Communication


	GitHub Discussions [https://github.com/optuna/optuna/discussions] for questions.


	GitHub Issues [https://github.com/optuna/optuna/issues] for bug
reports and feature requests.






Contribution

Any contributions to Optuna are welcome! When you send a pull request,
please follow the contribution guide [https://github.com/optuna/optuna/blob/master/CONTRIBUTING.md].



License

MIT License (see LICENSE [https://github.com/optuna/optuna/blob/master/LICENSE]).

Optuna uses the codes from SciPy and fdlibm projects (see Third-party License).



Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization
Framework. In KDD (arXiv [https://arxiv.org/abs/1907.10902]).
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Installation

Optuna supports Python 3.7 or newer.

We recommend to install Optuna via pip:

$ pip install optuna





You can also install the development version of Optuna from master branch of Git repository:

$ pip install git+https://github.com/optuna/optuna.git





You can also install Optuna via conda:

$ conda install -c conda-forge optuna








            

          

      

      

    

  

    
      
          
            
  
Tutorial

If you are new to Optuna or want a general introduction, we highly recommend the below video.


  
    
    

    API Reference
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
API Reference
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optuna

The optuna module is primarily used as an alias for basic Optuna functionality coded in other modules. Currently, two modules are aliased: (1) from optuna.study, functions regarding the Study lifecycle, and (2) from optuna.exceptions, the TrialPruned Exception raised when a trial is pruned.



	optuna.create_study

	Create a new Study.



	optuna.load_study

	Load the existing Study that has the specified name.



	optuna.delete_study

	Delete a Study object.



	optuna.copy_study

	Copy study from one storage to another.



	optuna.get_all_study_names

	Get all study names stored in a specified storage.



	optuna.get_all_study_summaries

	Get all history of studies stored in a specified storage.



	optuna.TrialPruned

	Exception for pruned trials.
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optuna.create_study


	
optuna.create_study(*, storage=None, sampler=None, pruner=None, study_name=None, direction=None, load_if_exists=False, directions=None)

	Create a new Study.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)






	Parameters:

	
	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | storages.BaseStorage | None) – Database URL. If this argument is set to None, in-memory storage is used, and the
Study will not be persistent.


Note


When a database URL is passed, Optuna internally uses SQLAlchemy [https://www.sqlalchemy.org/] to handle
the database. Please refer to SQLAlchemy’s document [https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] for further details.
If you want to specify non-default options to SQLAlchemy Engine [https://docs.sqlalchemy.org/en/latest/core/engines.html], you can
instantiate RDBStorage with your desired options and
pass it to the storage argument instead of a URL.









	sampler ('samplers.BaseSampler' | None) – A sampler object that implements background algorithm for value suggestion.
If None [https://docs.python.org/3/library/constants.html#None] is specified, TPESampler is used during
single-objective optimization and NSGAIISampler during
multi-objective optimization. See also samplers.


	pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of unpromising trials. If None [https://docs.python.org/3/library/constants.html#None]
is specified, MedianPruner is used as the default. See
also pruners.


	study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Study’s name. If this argument is set to None, a unique name is generated
automatically.


	direction (str [https://docs.python.org/3/library/stdtypes.html#str] | StudyDirection | None) – Direction of optimization. Set minimize for minimization and maximize for
maximization. You can also pass the corresponding StudyDirection
object. direction and directions must not be specified at the same time.


Note

If none of direction and directions are specified, the direction of the study
is set to “minimize”.






	load_if_exists (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to control the behavior to handle a conflict of study names.
In the case where a study named study_name already exists in the storage,
a DuplicatedStudyError is raised if load_if_exists is
set to False [https://docs.python.org/3/library/constants.html#False].
Otherwise, the creation of the study is skipped, and the existing one is returned.


	directions (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str] | StudyDirection] | None) – A sequence of directions during multi-objective optimization.
direction and directions must not be specified at the same time.






	Returns:

	A Study object.



	Return type:

	Study






See also

optuna.create_study() is an alias of optuna.study.create_study().




See also

The Saving/Resuming Study with RDB Backend tutorial provides concrete examples to save and resume optimization using
RDB.
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optuna.load_study


	
optuna.load_study(*, study_name, storage, sampler=None, pruner=None)

	Load the existing Study that has the specified name.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study")
study.optimize(objective, n_trials=3)

loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.db")
assert len(loaded_study.trials) == len(study.trials)






	Parameters:

	
	study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Study’s name. Each study has a unique name as an identifier. If None [https://docs.python.org/3/library/constants.html#None], checks
whether the storage contains a single study, and if so loads that study.
study_name is required if there are multiple studies in the storage.


	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | storages.BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.


	sampler ('samplers.BaseSampler' | None) – A sampler object that implements background algorithm for value suggestion.
If None [https://docs.python.org/3/library/constants.html#None] is specified, TPESampler is used
as the default. See also samplers.


	pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of unpromising trials.
If None [https://docs.python.org/3/library/constants.html#None] is specified, MedianPruner is used
as the default. See also pruners.






	Return type:

	Study






See also

optuna.load_study() is an alias of optuna.study.load_study().
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optuna.delete_study


	
optuna.delete_study(*, study_name, storage)

	Delete a Study object.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

optuna.delete_study(study_name="example-study", storage="sqlite:///example.db")






	Parameters:

	
	study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Study’s name.


	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.






	Return type:

	None






See also

optuna.delete_study() is an alias of optuna.study.delete_study().










            

          

      

      

    

  

  
    
    

    optuna.copy_study
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.copy_study


	
optuna.copy_study(*, from_study_name, from_storage, to_storage, to_study_name=None)

	Copy study from one storage to another.

The direction(s) of the objective(s) in the study, trials, user attributes and system
attributes are copied.


Note

copy_study() copies a study even if the optimization is working on.
It means users will get a copied study that contains a trial that is not finished.



Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(
    study_name="example-study",
    storage="sqlite:///example.db",
)
study.optimize(objective, n_trials=3)

optuna.copy_study(
    from_study_name="example-study",
    from_storage="sqlite:///example.db",
    to_storage="sqlite:///example_copy.db",
)

study = optuna.load_study(
    study_name=None,
    storage="sqlite:///example_copy.db",
)






	Parameters:

	
	from_study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of study.


	from_storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Source database URL such as sqlite:///example.db. Please see also the
documentation of create_study() for further details.


	to_storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Destination database URL.


	to_study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Name of the created study. If omitted, from_study_name is used.






	Raises:

	DuplicatedStudyError – If a study with a conflicting name already exists in the destination storage.



	Return type:

	None
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optuna.get_all_study_names


	
optuna.get_all_study_names(storage)

	Get all study names stored in a specified storage.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

study_names = optuna.study.get_all_study_names(storage="sqlite:///example.db")
assert len(study_names) == 1

assert study_names[0] == "example-study"






	Parameters:

	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.



	Returns:

	List of all study names in the storage.



	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]






See also

optuna.get_all_study_names() is an alias of
optuna.study.get_all_study_names().
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optuna.get_all_study_summaries


	
optuna.get_all_study_summaries(storage, include_best_trial=True)

	Get all history of studies stored in a specified storage.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries(storage="sqlite:///example.db")
assert len(study_summaries) == 1

study_summary = study_summaries[0]
assert study_summary.study_name == "example-study"






	Parameters:

	
	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.


	include_best_trial (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the best trials if exist. It potentially increases the number of queries and
may take longer to fetch summaries depending on the storage.






	Returns:

	List of study history summarized as StudySummary objects.



	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][StudySummary]






See also

optuna.get_all_study_summaries() is an alias of
optuna.study.get_all_study_summaries().










            

          

      

      

    

  

  
    
    

    optuna.TrialPruned
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.TrialPruned


	
exception optuna.TrialPruned

	Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is
supposed to be raised after optuna.trial.Trial.should_prune() as shown in the following
example.


See also

optuna.TrialPruned is an alias of optuna.exceptions.TrialPruned.



Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)






	
add_note()

	Exception.add_note(note) –
add a note to the exception
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optuna.artifacts

The artifacts module provides the way to manage artifacts (output files) in Optuna.



	optuna.artifacts.FileSystemArtifactStore

	An artifact store for file systems.



	optuna.artifacts.Boto3ArtifactStore

	An artifact backend for Boto3.



	optuna.artifacts.GCSArtifactStore

	An artifact backend for Google Cloud Storage (GCS).



	optuna.artifacts.Backoff

	An artifact store's middleware for exponential backoff.



	optuna.artifacts.upload_artifact

	Upload an artifact to the artifact store.
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optuna.artifacts.FileSystemArtifactStore


	
class optuna.artifacts.FileSystemArtifactStore(base_path)

	An artifact store for file systems.


	Parameters:

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str] | Path) – The base path to a directory to store artifacts.





Example

import os

import optuna
from optuna.artifacts import FileSystemArtifactStore
from optuna.artifacts import upload_artifact


base_path = "./artifacts"
os.makedirs(base_path, exist_ok=True)
artifact_store = FileSystemArtifactStore(base_path=base_path)


def objective(trial: optuna.Trial) -> float:
    ... = trial.suggest_float("x", -10, 10)
    file_path = generate_example(...)
    upload_artifact(trial, file_path, artifact_store)
    return ...






Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.



Methods



	open_reader(artifact_id)

	



	remove(artifact_id)

	



	write(artifact_id, content_body)
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optuna.artifacts.Boto3ArtifactStore


	
class optuna.artifacts.Boto3ArtifactStore(bucket_name, client=None, *, avoid_buf_copy=False)

	An artifact backend for Boto3.


	Parameters:

	
	bucket_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the bucket to store artifacts.


	client (S3Client | None) – A Boto3 client to use for storage operations. If not specified, a new client will
be created.


	avoid_buf_copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, skip procedure to copy the content of the source file object to a buffer
before uploading it to S3 ins. This is default to False because using upload_fileobj()
method of Boto3 client might close the source file object.








Example

import optuna
from optuna.artifacts import upload_artifact
from optuna.artifacts import Boto3ArtifactStore


artifact_store = Boto3ArtifactStore("my-bucket")


def objective(trial: optuna.Trial) -> float:
    ... = trial.suggest_float("x", -10, 10)
    file_path = generate_example(...)
    upload_artifact(trial, file_path, artifact_store)
    return ...






Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.



Methods



	open_reader(artifact_id)

	



	remove(artifact_id)

	



	write(artifact_id, content_body)
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optuna.artifacts.GCSArtifactStore


	
class optuna.artifacts.GCSArtifactStore(bucket_name, client=None)

	An artifact backend for Google Cloud Storage (GCS).


	Parameters:

	
	bucket_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the bucket to store artifacts.


	client (google.cloud.storage.Client | None) – A google-cloud-storage Client to use for storage operations. If not specified, a new
client will be created with default settings.








Example

import optuna
from optuna.artifacts import GCSArtifactStore, upload_artifact


artifact_backend = GCSArtifactStore("my-bucket")


def objective(trial: optuna.Trial) -> float:
    ... = trial.suggest_float("x", -10, 10)
    file_path = generate_example(...)
    upload_artifact(trial, file_path, artifact_backend)
    return ...





Before running this code, you will have to install gcloud and run

gcloud auth application-default login





so that the Cloud Storage library can automatically find the credential.


Note

Added in v3.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.4.0.



Methods



	open_reader(artifact_id)

	



	remove(artifact_id)

	



	write(artifact_id, content_body)
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optuna.artifacts.Backoff


	
class optuna.artifacts.Backoff(backend, *, max_retries=10, multiplier=2, min_delay=0.1, max_delay=30)

	An artifact store’s middleware for exponential backoff.

Example

import optuna
from optuna.artifacts import upload_artifact
from optuna.artifacts import Boto3ArtifactStore
from optuna.artifacts import Backoff


artifact_store = Backoff(Boto3ArtifactStore("my-bucket"))


def objective(trial: optuna.Trial) -> float:
    ... = trial.suggest_float("x", -10, 10)
    file_path = generate_example(...)
    upload_artifact(trial, file_path, artifact_store)
    return ...





Methods



	open_reader(artifact_id)

	



	remove(artifact_id)

	



	write(artifact_id, content_body)

	







	Parameters:

	
	backend (ArtifactStore) – 


	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – 


	multiplier (float [https://docs.python.org/3/library/functions.html#float]) – 


	min_delay (float [https://docs.python.org/3/library/functions.html#float]) – 


	max_delay (float [https://docs.python.org/3/library/functions.html#float]) – 
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optuna.artifacts.upload_artifact


	
optuna.artifacts.upload_artifact(study_or_trial, file_path, artifact_store, *, storage=None, mimetype=None, encoding=None)

	Upload an artifact to the artifact store.


	Parameters:

	
	study_or_trial (Trial | FrozenTrial | Study) – A Trial object, a FrozenTrial, or
a Study object.


	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to the file to be uploaded.


	artifact_store (ArtifactStore) – An artifact store.


	storage (BaseStorage | None) – A storage object. If trial is not a Trial object, this argument
is required.


	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – A MIME type of the artifact. If not specified, the MIME type is guessed from the file
extension.


	encoding (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – An encoding of the artifact, which is suitable for use as a Content-Encoding
header (e.g. gzip). If not specified, the encoding is guessed from the file extension.






	Returns:

	An artifact ID.



	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]






Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.
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optuna.cli

The cli module implements Optuna’s command-line functionality.

For detail, please see the result of

$ optuna --help






See also

The Command-Line Interface tutorial provides use-cases with examples.
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optuna.distributions

The distributions module defines various classes representing probability distributions, mainly used to suggest initial hyperparameter values for an optimization trial. Distribution classes inherit from a library-internal BaseDistribution, and is initialized with specific parameters, such as the low and high endpoints for a IntDistribution.

Optuna users should not use distribution classes directly, but instead use utility functions provided by Trial such as suggest_int().



	optuna.distributions.FloatDistribution

	A distribution on floats.



	optuna.distributions.IntDistribution

	A distribution on integers.



	optuna.distributions.UniformDistribution

	A uniform distribution in the linear domain.



	optuna.distributions.LogUniformDistribution

	A uniform distribution in the log domain.



	optuna.distributions.DiscreteUniformDistribution

	A discretized uniform distribution in the linear domain.



	optuna.distributions.IntUniformDistribution

	A uniform distribution on integers.



	optuna.distributions.IntLogUniformDistribution

	A uniform distribution on integers in the log domain.



	optuna.distributions.CategoricalDistribution

	A categorical distribution.



	optuna.distributions.distribution_to_json

	Serialize a distribution to JSON format.



	optuna.distributions.json_to_distribution

	Deserialize a distribution in JSON format.



	optuna.distributions.check_distribution_compatibility

	A function to check compatibility of two distributions.
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optuna.distributions.FloatDistribution


	
class optuna.distributions.FloatDistribution(low, high, log=False, step=None)

	A distribution on floats.

This object is instantiated by suggest_float(), and passed to
samplers in general.


Note

When step is not None [https://docs.python.org/3/library/constants.html#None], if the range \([\mathsf{low}, \mathsf{high}]\)
is not divisible by \(\mathsf{step}\), \(\mathsf{high}\) will be replaced
with the maximum of \(k \times \mathsf{step} + \mathsf{low} < \mathsf{high}\),
where \(k\) is an integer.




	Parameters:

	
	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 


	log (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	step (None | float [https://docs.python.org/3/library/functions.html#float]) – 









	
low

	Lower endpoint of the range of the distribution. low is included in the range.
low must be less than or equal to high. If log is True [https://docs.python.org/3/library/constants.html#True],
low must be larger than 0.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.






	
log

	If log is True [https://docs.python.org/3/library/constants.html#True], this distribution is in log-scaled domain.
In this case, all parameters enqueued to the distribution must be positive values.
This parameter must be False [https://docs.python.org/3/library/constants.html#False] when the parameter step is not None [https://docs.python.org/3/library/constants.html#None].






	
step

	A discretization step. step must be larger than 0.
This parameter must be None [https://docs.python.org/3/library/constants.html#None] when the parameter log is True [https://docs.python.org/3/library/constants.html#True].





Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.IntDistribution


	
class optuna.distributions.IntDistribution(low, high, log=False, step=1)

	A distribution on integers.

This object is instantiated by suggest_int(), and passed to
samplers in general.


Note

When step is not None [https://docs.python.org/3/library/constants.html#None], if the range \([\mathsf{low}, \mathsf{high}]\)
is not divisible by \(\mathsf{step}\), \(\mathsf{high}\) will be replaced
with the maximum of \(k \times \mathsf{step} + \mathsf{low} < \mathsf{high}\),
where \(k\) is an integer.




	Parameters:

	
	low (int [https://docs.python.org/3/library/functions.html#int]) – 


	high (int [https://docs.python.org/3/library/functions.html#int]) – 


	log (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	step (int [https://docs.python.org/3/library/functions.html#int]) – 









	
low

	Lower endpoint of the range of the distribution. low is included in the range.
low must be less than or equal to high. If log is True [https://docs.python.org/3/library/constants.html#True],
low must be larger than or equal to 1.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.






	
log

	If log is True [https://docs.python.org/3/library/constants.html#True], this distribution is in log-scaled domain.
In this case, all parameters enqueued to the distribution must be positive values.
This parameter must be False [https://docs.python.org/3/library/constants.html#False] when the parameter step is not 1.






	
step

	A discretization step. step must be a positive integer. This parameter must be 1
when the parameter log is True [https://docs.python.org/3/library/constants.html#True].





Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (int [https://docs.python.org/3/library/functions.html#int]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.UniformDistribution


	
class optuna.distributions.UniformDistribution(low, high)

	A uniform distribution in the linear domain.

This object is instantiated by suggest_float(), and passed to
samplers in general.


	Parameters:

	
	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 









	
low

	Lower endpoint of the range of the distribution. low is included in the range.
low must be less than or equal to high.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use FloatDistribution instead.



Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.LogUniformDistribution


	
class optuna.distributions.LogUniformDistribution(low, high)

	A uniform distribution in the log domain.

This object is instantiated by suggest_float() with log=True,
and passed to samplers in general.


	Parameters:

	
	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 









	
low

	Lower endpoint of the range of the distribution. low is included in the range.
low must be larger than 0. low must be less than or equal to high.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use FloatDistribution instead.



Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.DiscreteUniformDistribution


	
class optuna.distributions.DiscreteUniformDistribution(low, high, q)

	A discretized uniform distribution in the linear domain.

This object is instantiated by suggest_float() with step
argument, and passed to samplers in general.


Note

If the range \([\mathsf{low}, \mathsf{high}]\) is not divisible by \(q\),
\(\mathsf{high}\) will be replaced with the maximum of \(k q + \mathsf{low}
< \mathsf{high}\), where \(k\) is an integer.




	Parameters:

	
	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower endpoint of the range of the distribution. low is included in the range.
low must be less than or equal to high.


	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.


	q (float [https://docs.python.org/3/library/functions.html#float]) – A discretization step. q must be larger than 0.









	
low

	Lower endpoint of the range of the distribution. low is included in the range.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use FloatDistribution instead.



Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.






Attributes



	q

	Discretization step.







	
property q: float [https://docs.python.org/3/library/functions.html#float]

	Discretization step.

DiscreteUniformDistribution is a subtype of
FloatDistribution.
This property is a proxy for its step attribute.






	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.IntUniformDistribution


	
class optuna.distributions.IntUniformDistribution(low, high, step=1)

	A uniform distribution on integers.

This object is instantiated by suggest_int(), and passed to
samplers in general.


Note

If the range \([\mathsf{low}, \mathsf{high}]\) is not divisible by
\(\mathsf{step}\), \(\mathsf{high}\) will be replaced with the maximum of
\(k \times \mathsf{step} + \mathsf{low} < \mathsf{high}\), where \(k\) is
an integer.




	Parameters:

	
	low (int [https://docs.python.org/3/library/functions.html#int]) – 


	high (int [https://docs.python.org/3/library/functions.html#int]) – 


	step (int [https://docs.python.org/3/library/functions.html#int]) – 









	
low

	Lower endpoint of the range of the distribution. low is included in the range.
low must be less than or equal to high.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.






	
step

	A discretization step. step must be a positive integer.






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use IntDistribution instead.



Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (int [https://docs.python.org/3/library/functions.html#int]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.IntLogUniformDistribution


	
class optuna.distributions.IntLogUniformDistribution(low, high, step=1)

	A uniform distribution on integers in the log domain.

This object is instantiated by suggest_int(), and passed to
samplers in general.


	Parameters:

	
	low (int [https://docs.python.org/3/library/functions.html#int]) – 


	high (int [https://docs.python.org/3/library/functions.html#int]) – 


	step (int [https://docs.python.org/3/library/functions.html#int]) – 









	
low

	Lower endpoint of the range of the distribution. low is included in the range
and must be larger than or equal to 1. low must be less than or equal to high.






	
high

	Upper endpoint of the range of the distribution. high is included in the range.
high must be greater than or equal to low.






	
step

	A discretization step. step must be a positive integer.


Warning

Deprecated in v2.0.0. step argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0,
but this schedule is subject to change.

Samplers and other components in Optuna relying on this distribution will ignore
this value and assume that step is always 1.
User-defined samplers may continue to use other values besides 1 during the
deprecation.








Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use IntDistribution instead.



Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (int [https://docs.python.org/3/library/functions.html#int]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.distributions.CategoricalDistribution


	
class optuna.distributions.CategoricalDistribution(choices)

	A categorical distribution.

This object is instantiated by suggest_categorical(), and
passed to samplers in general.


	Parameters:

	choices (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][None | bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]]) – Parameter value candidates. choices must have one element at least.






Note

Not all types are guaranteed to be compatible with all storages. It is recommended to
restrict the types of the choices to None [https://docs.python.org/3/library/constants.html#None], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int],
float [https://docs.python.org/3/library/functions.html#float] and str [https://docs.python.org/3/library/stdtypes.html#str].




	
choices

	Parameter value candidates.





Methods



	single()

	Test whether the range of this distribution contains just a single value.



	to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.



	to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.







	
single()

	Test whether the range of this distribution contains just a single value.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the range of this distribution contains just a single value,
otherwise False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
to_external_repr(param_value_in_internal_repr)

	Convert internal representation of a parameter value into external representation.


	Parameters:

	param_value_in_internal_repr (float [https://docs.python.org/3/library/functions.html#float]) – Optuna’s internal representation of a parameter value.



	Returns:

	Optuna’s external representation of a parameter value.



	Return type:

	None | bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]










	
to_internal_repr(param_value_in_external_repr)

	Convert external representation of a parameter value into internal representation.


	Parameters:

	param_value_in_external_repr (None | bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Optuna’s external representation of a parameter value.



	Returns:

	Optuna’s internal representation of a parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
















            

          

      

      

    

  

  
    
    

    optuna.distributions.distribution_to_json
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.distributions.distribution_to_json


	
optuna.distributions.distribution_to_json(dist)

	Serialize a distribution to JSON format.


	Parameters:

	dist (BaseDistribution) – A distribution to be serialized.



	Returns:

	A JSON string of a given distribution.



	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]
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optuna.distributions.json_to_distribution(json_str)

	Deserialize a distribution in JSON format.


	Parameters:

	json_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – A JSON-serialized distribution.



	Returns:

	A deserialized distribution.



	Return type:

	BaseDistribution
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optuna.distributions.check_distribution_compatibility


	
optuna.distributions.check_distribution_compatibility(dist_old, dist_new)

	A function to check compatibility of two distributions.

It checks whether dist_old and dist_new are the same kind of distributions.
If dist_old is CategoricalDistribution,
it further checks choices are the same between dist_old and dist_new.
Note that this method is not supposed to be called by library users.


	Parameters:

	
	dist_old (BaseDistribution) – A distribution previously recorded in storage.


	dist_new (BaseDistribution) – A distribution newly added to storage.






	Return type:

	None
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optuna.exceptions

The exceptions module defines Optuna-specific exceptions deriving from a base OptunaError class. Of special importance for library users is the TrialPruned exception to be raised if optuna.trial.Trial.should_prune() returns True for a trial that should be pruned.



	optuna.exceptions.OptunaError

	Base class for Optuna specific errors.



	optuna.exceptions.TrialPruned

	Exception for pruned trials.



	optuna.exceptions.CLIUsageError

	Exception for CLI.



	optuna.exceptions.StorageInternalError

	Exception for storage operation.



	optuna.exceptions.DuplicatedStudyError

	Exception for a duplicated study name.
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optuna.exceptions.OptunaError


	
exception optuna.exceptions.OptunaError

	Base class for Optuna specific errors.


	
add_note()

	Exception.add_note(note) –
add a note to the exception
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optuna.exceptions.TrialPruned


	
exception optuna.exceptions.TrialPruned

	Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is
supposed to be raised after optuna.trial.Trial.should_prune() as shown in the following
example.


See also

optuna.TrialPruned is an alias of optuna.exceptions.TrialPruned.



Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)






	
add_note()

	Exception.add_note(note) –
add a note to the exception
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optuna.exceptions.CLIUsageError


	
exception optuna.exceptions.CLIUsageError

	Exception for CLI.

CLI raises this exception when it receives invalid configuration.


	
add_note()

	Exception.add_note(note) –
add a note to the exception
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optuna.exceptions.StorageInternalError


	
exception optuna.exceptions.StorageInternalError

	Exception for storage operation.

This error is raised when an operation failed in backend DB of storage.


	
add_note()

	Exception.add_note(note) –
add a note to the exception
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optuna.exceptions.DuplicatedStudyError


	
exception optuna.exceptions.DuplicatedStudyError

	Exception for a duplicated study name.

This error is raised when a specified study name already exists in the storage.


	
add_note()

	Exception.add_note(note) –
add a note to the exception
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optuna.importance

The importance module provides functionality for evaluating hyperparameter importances based on completed trials in a given study. The utility function get_param_importances() takes a Study and optional evaluator as two of its inputs. The evaluator must derive from BaseImportanceEvaluator, and is initialized as a FanovaImportanceEvaluator by default when not passed in. Users implementing custom evaluators should refer to either FanovaImportanceEvaluator or MeanDecreaseImpurityImportanceEvaluator as a guide, paying close attention to the format of the return value from the Evaluator’s evaluate function.


Note

FanovaImportanceEvaluator takes over 1 minute when given a study that contains 1000+ trials.
We published optuna-fast-fanova [https://github.com/optuna/optuna-fast-fanova] library,
that is a Cython accelerated fANOVA implementation. By using it, you can get hyperparameter
importances within a few seconds.





	optuna.importance.get_param_importances

	Evaluate parameter importances based on completed trials in the given study.



	optuna.importance.FanovaImportanceEvaluator

	fANOVA importance evaluator.



	optuna.importance.MeanDecreaseImpurityImportanceEvaluator

	Mean Decrease Impurity (MDI) parameter importance evaluator.
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optuna.importance.get_param_importances


	
optuna.importance.get_param_importances(study, *, evaluator=None, params=None, target=None, normalize=True)

	Evaluate parameter importances based on completed trials in the given study.

The parameter importances are returned as a dictionary where the keys consist of parameter
names and their values importances.
The importances are represented by non-negative floating point numbers, where higher values
mean that the parameters are more important.
The returned dictionary is ordered by its values in a descending order.
By default, the sum of the importance values are normalized to 1.0.

If params is None [https://docs.python.org/3/library/constants.html#None], all parameter that are present in all of the completed trials are
assessed.
This implies that conditional parameters will be excluded from the evaluation.
To assess the importances of conditional parameters, a list [https://docs.python.org/3/library/stdtypes.html#list] of parameter names can be
specified via params.
If specified, only completed trials that contain all of the parameters will be considered.
If no such trials are found, an error will be raised.

If the given study does not contain completed trials, an error will be raised.


Note

If params is specified as an empty list, an empty dictionary is returned.




See also

See plot_param_importances() to plot importances.




	Parameters:

	
	study (Study) – An optimized study.


	evaluator (BaseImportanceEvaluator | None) – An importance evaluator object that specifies which algorithm to base the importance
assessment on.
Defaults to
FanovaImportanceEvaluator.


Note

FanovaImportanceEvaluator takes over 1 minute
when given a study that contains 1000+ trials. We published
optuna-fast-fanova [https://github.com/optuna/optuna-fast-fanova] library,
that is a Cython accelerated fANOVA implementation.
By using it, you can get hyperparameter importances within a few seconds.






	params (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – A list of names of parameters to assess.
If None [https://docs.python.org/3/library/constants.html#None], all parameters that are present in all of the completed trials are
assessed.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to evaluate importances.
If it is None [https://docs.python.org/3/library/constants.html#None] and study is being used for single-objective optimization,
the objective values are used. target must be specified if study is being
used for multi-objective optimization.


Note

Specify this argument if study is being used for multi-objective
optimization. For example, to get the hyperparameter importance of the first
objective, use target=lambda t: t.values[0] for the target parameter.






	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean option to specify whether the sum of the importance values should be
normalized to 1.0.
Defaults to True [https://docs.python.org/3/library/constants.html#True].


Note

Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v3.0.0.










	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] where the keys are parameter names and the values are assessed importances.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]
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optuna.importance.FanovaImportanceEvaluator


	
class optuna.importance.FanovaImportanceEvaluator(*, n_trees=64, max_depth=64, seed=None)

	fANOVA importance evaluator.

Implements the fANOVA hyperparameter importance evaluation algorithm in
An Efficient Approach for Assessing Hyperparameter Importance [http://proceedings.mlr.press/v32/hutter14.html].

fANOVA fits a random forest regression model that predicts the objective values
of COMPLETE trials given their parameter configurations.
The more accurate this model is, the more reliable the importances assessed
by this class are.


Note

This class takes over 1 minute when given a study that contains 1000+ trials.
We published optuna-fast-fanova [https://github.com/optuna/optuna-fast-fanova] library,
that is a Cython accelerated fANOVA implementation. By using it, you can get hyperparameter
importances within a few seconds.




Note

Requires the sklearn [https://github.com/scikit-learn/scikit-learn] Python package.




Note

The performance of fANOVA depends on the prediction performance of the underlying
random forest model. In order to obtain high prediction performance, it is necessary to
cover a wide range of the hyperparameter search space. It is recommended to use an
exploration-oriented sampler such as RandomSampler.




Note

For how to cite the original work, please refer to
https://automl.github.io/fanova/cite.html.




	Parameters:

	
	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – The number of trees in the forest.


	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – The maximum depth of the trees in the forest.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Controls the randomness of the forest. For deterministic behavior, specify a value
other than None [https://docs.python.org/3/library/constants.html#None].








Methods



	evaluate(study[, params, target])

	Evaluate parameter importances based on completed trials in the given study.







	
evaluate(study, params=None, *, target=None)

	Evaluate parameter importances based on completed trials in the given study.


Note

This method is not meant to be called by library users.




See also

Please refer to get_param_importances() for how a concrete
evaluator should implement this method.




	Parameters:

	
	study (Study) – An optimized study.


	params (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – A list of names of parameters to assess.
If None [https://docs.python.org/3/library/constants.html#None], all parameters that are present in all of the completed trials are
assessed.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to evaluate importances.
If it is None [https://docs.python.org/3/library/constants.html#None] and study is being used for single-objective optimization,
the objective values are used. Can also be used for other trial attributes, such as
the duration, like target=lambda t: t.duration.total_seconds().


Note

Specify this argument if study is being used for multi-objective
optimization. For example, to get the hyperparameter importance of the first
objective, use target=lambda t: t.values[0] for the target parameter.










	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] where the keys are parameter names and the values are assessed
importances.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]
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optuna.importance.MeanDecreaseImpurityImportanceEvaluator


	
class optuna.importance.MeanDecreaseImpurityImportanceEvaluator(*, n_trees=64, max_depth=64, seed=None)

	Mean Decrease Impurity (MDI) parameter importance evaluator.

This evaluator fits fits a random forest regression model that predicts the objective values
of COMPLETE trials given their parameter configurations.
Feature importances are then computed using MDI.


Note

This evaluator requires the sklearn [https://scikit-learn.org/stable/] Python package
and is based on sklearn.ensemble.RandomForestClassifier.feature_importances_ [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_].




	Parameters:

	
	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – Number of trees in the random forest.


	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – The maximum depth of each tree in the random forest.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for the random forest.








Methods



	evaluate(study[, params, target])

	Evaluate parameter importances based on completed trials in the given study.







	
evaluate(study, params=None, *, target=None)

	Evaluate parameter importances based on completed trials in the given study.


Note

This method is not meant to be called by library users.




See also

Please refer to get_param_importances() for how a concrete
evaluator should implement this method.




	Parameters:

	
	study (Study) – An optimized study.


	params (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – A list of names of parameters to assess.
If None [https://docs.python.org/3/library/constants.html#None], all parameters that are present in all of the completed trials are
assessed.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to evaluate importances.
If it is None [https://docs.python.org/3/library/constants.html#None] and study is being used for single-objective optimization,
the objective values are used. Can also be used for other trial attributes, such as
the duration, like target=lambda t: t.duration.total_seconds().


Note

Specify this argument if study is being used for multi-objective
optimization. For example, to get the hyperparameter importance of the first
objective, use target=lambda t: t.values[0] for the target parameter.










	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] where the keys are parameter names and the values are assessed
importances.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]
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optuna.integration

The integration module contains classes used to integrate Optuna with external machine learning frameworks.


Note

Optuna’s integration modules for third-party libraries have started migrating from Optuna itself to a package called
optuna-integration. Please check the repository [https://github.com/optuna/optuna-integration] and
the documentation [https://optuna-integration.readthedocs.io/en/latest/index.html].



For most of the ML frameworks supported by Optuna, the corresponding Optuna integration class serves only to implement a callback object and functions, compliant with the framework’s specific callback API, to be called with each intermediate step in the model training. The functionality implemented in these callbacks across the different ML frameworks includes:


	Reporting intermediate model scores back to the Optuna trial using optuna.trial.Trial.report(),


	According to the results of optuna.trial.Trial.should_prune(), pruning the current model by raising optuna.TrialPruned(), and


	Reporting intermediate Optuna data such as the current trial number back to the framework, as done in MLflowCallback.




For scikit-learn, an integrated OptunaSearchCV estimator is available that combines scikit-learn BaseEstimator functionality with access to a class-level Study object.


BoTorch



	optuna.integration.BoTorchSampler

	A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.



	optuna.integration.botorch.logei_candidates_func

	Log Expected Improvement (LogEI).



	optuna.integration.botorch.qei_candidates_func

	Quasi MC-based batch Expected Improvement (qEI).



	optuna.integration.botorch.qnei_candidates_func

	Quasi MC-based batch Noisy Expected Improvement (qNEI).



	optuna.integration.botorch.qehvi_candidates_func

	Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).



	optuna.integration.botorch.qnehvi_candidates_func

	Quasi MC-based batch Noisy Expected Hypervolume Improvement (qNEHVI).



	optuna.integration.botorch.qparego_candidates_func

	Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.








CatBoost



	optuna.integration.CatBoostPruningCallback

	Callback for catboost to prune unpromising trials.








Dask



	optuna.integration.DaskStorage

	Dask-compatible storage class.








fast.ai



	optuna.integration.FastAIV1PruningCallback

	FastAI callback to prune unpromising trials for fastai.



	optuna.integration.FastAIV2PruningCallback

	FastAI callback to prune unpromising trials for fastai.



	optuna.integration.FastAIPruningCallback

	alias of FastAIV2PruningCallback








LightGBM



	optuna.integration.LightGBMPruningCallback

	Callback for LightGBM to prune unpromising trials.



	optuna.integration.lightgbm.train

	Wrapper of LightGBM Training API to tune hyperparameters.



	optuna.integration.lightgbm.LightGBMTuner

	Hyperparameter tuner for LightGBM.



	optuna.integration.lightgbm.LightGBMTunerCV

	Hyperparameter tuner for LightGBM with cross-validation.








MLflow



	optuna.integration.MLflowCallback

	Callback to track Optuna trials with MLflow.








Weights & Biases



	optuna.integration.WeightsAndBiasesCallback

	Callback to track Optuna trials with Weights & Biases.








pycma



	optuna.integration.PyCmaSampler

	A Sampler using cma library as the backend.



	optuna.integration.CmaEsSampler

	Wrapper class of PyCmaSampler for backward compatibility.








PyTorch



	optuna.integration.PyTorchIgnitePruningHandler

	PyTorch Ignite handler to prune unpromising trials.



	optuna.integration.PyTorchLightningPruningCallback

	PyTorch Lightning callback to prune unpromising trials.



	optuna.integration.TorchDistributedTrial

	A wrapper of Trial to incorporate Optuna with PyTorch distributed.








scikit-learn



	optuna.integration.OptunaSearchCV

	Hyperparameter search with cross-validation.








scikit-optimize



	optuna.integration.SkoptSampler

	Sampler using Scikit-Optimize as the backend.








TensorFlow



	optuna.integration.TensorBoardCallback

	Callback to track Optuna trials with TensorBoard.








XGBoost



	optuna.integration.XGBoostPruningCallback

	Callback for XGBoost to prune unpromising trials.
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optuna.integration.BoTorchSampler


	
class optuna.integration.BoTorchSampler(*, candidates_func=None, constraints_func=None, n_startup_trials=10, consider_running_trials=False, independent_sampler=None, seed=None, device=None)

	A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.

This sampler allows using BoTorch’s optimization algorithms from Optuna to suggest parameter
configurations. Parameters are transformed to continuous space and passed to BoTorch, and then
transformed back to Optuna’s representations. Categorical parameters are one-hot encoded.


See also

See an example [https://github.com/optuna/optuna-examples/blob/main/multi_objective/botorch_simple.py] how to use the sampler.




See also

See the BoTorch [https://botorch.org/] homepage for details and for how to implement
your own candidates_func.




Note

An instance of this sampler should not be used with different studies when used with
constraints. Instead, a new instance should be created for each new study. The reason for
this is that the sampler is stateful keeping all the computed constraints.




	Parameters:

	
	candidates_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None, torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None], torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]] | None) – An optional function that suggests the next candidates. It must take the training
data, the objectives, the constraints, the search space bounds and return the next
candidates. The arguments are of type torch.Tensor. The return value must be a
torch.Tensor. However, if constraints_func is omitted, constraints will be
None [https://docs.python.org/3/library/constants.html#None]. For any constraints that failed to compute, the tensor will contain
NaN.

If omitted, it is determined automatically based on the number of objectives and
whether a constraint is specified. If the
number of objectives is one and no constraint is specified, log-Expected Improvement
is used. If constraints are specified, quasi MC-based batch Expected Improvement
(qEI) is used.
If the number of objectives is either two or three, Quasi MC-based
batch Expected Hypervolume Improvement (qEHVI) is used. Otherwise, for larger number
of objectives, the faster Quasi MC-based extended ParEGO (qParEGO) is used.

The function should assume maximization of the objective.


See also

See optuna.integration.botorch.qei_candidates_func() for an example.






	constraints_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]] | None) – An optional function that computes the objective constraints. It must take a
FrozenTrial and return the constraints. The return value must
be a sequence of float [https://docs.python.org/3/library/functions.html#float] s. A value strictly larger than 0 means that a
constraint is violated. A value equal to or smaller than 0 is considered feasible.

If omitted, no constraints will be passed to candidates_func nor taken into
account during suggestion.




	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial trials, that is the number of trials to resort to independent
sampling.


	consider_running_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the acquisition function takes into consideration the running parameters
whose evaluation has not completed. Enabling this option is considered to improve the
performance of parallel optimization.


Note

Added in v3.2.0 as an experimental argument.






	independent_sampler (BaseSampler | None) – An independent sampler to use for the initial trials and for parameters that are
conditional.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.


	device (torch.device [https://pytorch.org/docs/stable/tensor_attributes.html#torch.device] | None) – A torch.device to store input and output data of BoTorch. Please set a CUDA device
if you fasten sampling.









Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.integration.botorch.logei_candidates_func


	
optuna.integration.botorch.logei_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Log Expected Improvement (LogEI).

The default value of candidates_func in BoTorchSampler
with single-objective optimization for non-constrained problems.


	Parameters:

	
	train_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previous parameter configurations. A torch.Tensor of shape
(n_trials, n_params). n_trials is the number of already observed trials
and n_params is the number of parameters. n_params may be larger than the
actual number of parameters if categorical parameters are included in the search
space, since these parameters are one-hot encoded.
Values are not normalized.


	train_obj (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previously observed objectives. A torch.Tensor of shape
(n_trials, n_objectives). n_trials is identical to that of train_x.
n_objectives is the number of objectives. Observations are not normalized.


	train_con (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Objective constraints. This option is not supported in logei_candidates_func and
must be None [https://docs.python.org/3/library/constants.html#None].


	bounds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Search space bounds. A torch.Tensor of shape (2, n_params). n_params is
identical to that of train_x. The first and the second rows correspond to the
lower and upper bounds for each parameter respectively.


	pending_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Pending parameter configurations. A torch.Tensor of shape
(n_pending, n_params). n_pending is the number of the trials which are already
suggested all their parameters but have not completed their evaluation, and
n_params is identical to that of train_x.






	Returns:

	Next set of candidates. Usually the return value of BoTorch’s optimize_acqf.



	Return type:

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]






Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.
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optuna.integration.botorch.qei_candidates_func


	
optuna.integration.botorch.qei_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Expected Improvement (qEI).

The default value of candidates_func in BoTorchSampler
with single-objective optimization for constrained problems.


	Parameters:

	
	train_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previous parameter configurations. A torch.Tensor of shape
(n_trials, n_params). n_trials is the number of already observed trials
and n_params is the number of parameters. n_params may be larger than the
actual number of parameters if categorical parameters are included in the search
space, since these parameters are one-hot encoded.
Values are not normalized.


	train_obj (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Previously observed objectives. A torch.Tensor of shape
(n_trials, n_objectives). n_trials is identical to that of train_x.
n_objectives is the number of objectives. Observations are not normalized.


	train_con (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Objective constraints. A torch.Tensor of shape (n_trials, n_constraints).
n_trials is identical to that of train_x. n_constraints is the number of
constraints. A constraint is violated if strictly larger than 0. If no constraints are
involved in the optimization, this argument will be None [https://docs.python.org/3/library/constants.html#None].


	bounds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Search space bounds. A torch.Tensor of shape (2, n_params). n_params is
identical to that of train_x. The first and the second rows correspond to the
lower and upper bounds for each parameter respectively.


	pending_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – Pending parameter configurations. A torch.Tensor of shape
(n_pending, n_params). n_pending is the number of the trials which are already
suggested all their parameters but have not completed their evaluation, and
n_params is identical to that of train_x.






	Returns:

	Next set of candidates. Usually the return value of BoTorch’s optimize_acqf.



	Return type:

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]






Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.










            

          

      

      

    

  

  
    
    

    optuna.integration.botorch.qnei_candidates_func
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.integration.botorch.qnei_candidates_func


	
optuna.integration.botorch.qnei_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Noisy Expected Improvement (qNEI).

This function may perform better than qEI (qei_candidates_func) when
the evaluated values of objective function are noisy.


See also

qei_candidates_func() for argument and return value
descriptions.




Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	train_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_obj (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_con (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 


	bounds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	pending_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 






	Return type:

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]
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optuna.integration.botorch.qehvi_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

The default value of candidates_func in BoTorchSampler
with multi-objective optimization when the number of objectives is three or less.


See also

qei_candidates_func() for argument and return value
descriptions.




Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	train_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_obj (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_con (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 


	bounds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	pending_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 






	Return type:

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]
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optuna.integration.botorch.qnehvi_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based batch Noisy Expected Hypervolume Improvement (qNEHVI).

According to Botorch/Ax documentation,
this function may perform better than qEHVI (qehvi_candidates_func).
(cf. https://botorch.org/tutorials/constrained_multi_objective_bo )


See also

qei_candidates_func() for argument and return value
descriptions.




Note

Added in v3.1.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.




	Parameters:

	
	train_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_obj (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_con (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 


	bounds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	pending_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 






	Return type:

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]
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optuna.integration.botorch.qparego_candidates_func


	
optuna.integration.botorch.qparego_candidates_func(train_x, train_obj, train_con, bounds, pending_x)

	Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.

The default value of candidates_func in BoTorchSampler
with multi-objective optimization when the number of objectives is larger than three.


See also

qei_candidates_func() for argument and return value
descriptions.




Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	train_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_obj (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	train_con (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 


	bounds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – 


	pending_x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] | None) – 






	Return type:

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]
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optuna.integration.CatBoostPruningCallback


	
class optuna.integration.CatBoostPruningCallback(trial, metric, eval_set_index=None)

	Callback for catboost to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/catboost/catboost_pruning.py]
if you want to add a pruning callback which observes validation accuracy of
a CatBoost model.


Note

optuna.TrialPruned cannot be raised
in after_iteration()
that is called in CatBoost via CatBoostPruningCallback.
You must call check_pruned()
after training manually unlike other pruning callbacks
to raise optuna.TrialPruned.




Note

This callback cannot be used with CatBoost on GPUs because CatBoost doesn’t support
a user-defined callback for GPU.
Please refer to CatBoost issue [https://github.com/catboost/catboost/issues/1792].




	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.


	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., Logloss and AUC.
Please refer to
CatBoost reference [https://catboost.ai/docs/references/eval-metric__supported-metrics.html]
for further details.


	eval_set_index (int [https://docs.python.org/3/library/functions.html#int] | None) – The index of the target validation dataset.
If you set only one eval_set, eval_set_index is None.
If you set multiple datasets as eval_set, the index of eval_set must be
eval_set_index, e.g., 0 or 1 when eval_set contains two datasets.









Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	after_iteration(info)

	Report an evaluation metric value for Optuna pruning after each CatBoost's iteration.



	check_pruned()

	Raise optuna.TrialPruned manually if the CatBoost optimization is pruned.







	
after_iteration(info)

	Report an evaluation metric value for Optuna pruning after each CatBoost’s iteration.

This method is called by CatBoost.


	Parameters:

	info (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A SimpleNamespace containing iteraion, validation_name, metric_name
and history of losses.
For example SimpleNamespace(iteration=2, metrics={
'learn': {'Logloss': [0.6, 0.5]},
'validation': {'Logloss': [0.7, 0.6], 'AUC': [0.8, 0.9]}
}).



	Returns:

	A boolean value. If False [https://docs.python.org/3/library/constants.html#False], CatBoost internally stops the optimization
with Optuna’s pruning logic without raising optuna.TrialPruned.
Otherwise, the optimization continues.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
check_pruned()

	Raise optuna.TrialPruned manually if the CatBoost optimization is pruned.


	Return type:

	None
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optuna.integration.DaskStorage


	
class optuna.integration.DaskStorage(storage=None, name=None, client=None, register=True)

	Dask-compatible storage class.

This storage class wraps a Optuna storage class (e.g. Optuna’s in-memory or sqlite storage)
and is used to run optimization trials in parallel on a Dask cluster.
The underlying Optuna storage object lives on the cluster’s scheduler and any method calls on
the DaskStorage instance results in the same method being called on the underlying
Optuna storage object.

See this example [https://github.com/optuna/optuna-examples/blob/master/dask/dask_simple.py] or the following YouTube video
for how to use DaskStorage to extend Optuna’s in-memory storage class to run across
multiple processes.
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optuna.integration.FastAIV1PruningCallback


	
class optuna.integration.FastAIV1PruningCallback(learn, trial, monitor)

	FastAI callback to prune unpromising trials for fastai.


Note

This callback is for fastai<2.0.



See the example [https://github.com/optuna/optuna-examples/blob/main/fastai/fastaiv1_simple.py]
if you want to add a pruning callback which monitors validation loss of a Learner.

Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn.fit(n_epochs, callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")])
learn.fit_one_cycle(
    n_epochs,
    cyc_len,
    max_lr,
    callbacks=[FastAIPruningCallback(learn, trial, "valid_loss")],
)






	Parameters:

	
	learn (Learner) – fastai.basic_train.Learner [https://docs.fast.ai/basic_train.html#Learner].


	trial (Trial) – A Trial corresponding to the current
evaluation of the objective function.


	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g. valid_loss and Accuracy.
Please refer to fastai.callbacks.TrackerCallback reference [https://fastai1.fast.ai/callbacks.tracker.html#TrackerCallback] for further
details.









Warning

Deprecated in v2.4.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v2.4.0.



Methods



	on_epoch_end(epoch, **kwargs)
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optuna.integration.FastAIV2PruningCallback


	
class optuna.integration.FastAIV2PruningCallback(trial, monitor='valid_loss')

	FastAI callback to prune unpromising trials for fastai.


Note

This callback is for fastai>=2.0.



See the example [https://github.com/optuna/optuna-examples/blob/main/fastai/fastaiv2_simple.py]
if you want to add a pruning callback which monitors validation loss of a Learner.

Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn = cnn_learner(dls, resnet18, metrics=[error_rate])
learn.fit(n_epochs, cbs=[FastAIPruningCallback(trial)])  # Monitor "valid_loss"
learn.fit_one_cycle(
    n_epochs,
    lr_max,
    cbs=[FastAIPruningCallback(trial, monitor="error_rate")],  # Monitor "error_rate"
)






	Parameters:

	
	trial (Trial) – A Trial corresponding to the current
evaluation of the objective function.


	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g. valid_loss or accuracy.
Please refer to fastai.callback.TrackerCallback reference [https://docs.fast.ai/callback.tracker#TrackerCallback] for further
details.








Methods



	after_epoch()

	



	after_fit()
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optuna.integration.FastAIPruningCallback


	
optuna.integration.FastAIPruningCallback

	alias of FastAIV2PruningCallback
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optuna.integration.LightGBMPruningCallback


	
class optuna.integration.LightGBMPruningCallback(trial, metric, valid_name='valid_0', report_interval=1)

	Callback for LightGBM to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/lightgbm/lightgbm_integration.py]
if you want to add a pruning callback which observes accuracy
of a LightGBM model.


	Parameters:

	
	trial (optuna.trial.Trial) – A Trial corresponding to the current evaluation of
the objective function.


	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., binary_error and multi_error.
Please refer to
LightGBM reference [https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric]
for further details.


	valid_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the target validation.
Validation names are specified by valid_names option of
train method [https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.train].
If omitted, valid_0 is used which is the default name of the first validation.
Note that this argument will be ignored if you are calling
cv method [https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.cv]
instead of train method.


	report_interval (int [https://docs.python.org/3/library/functions.html#int]) – Check if the trial should report intermediate values for pruning every n-th boosting
iteration. By default report_interval=1 and reporting is performed after every
iteration. Note that the pruning itself is performed according to the interval
definition of the pruner.
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optuna.integration.lightgbm.train


	
optuna.integration.lightgbm.train(*args, **kwargs)

	Wrapper of LightGBM Training API to tune hyperparameters.

It tunes important hyperparameters (e.g., min_child_samples and feature_fraction) in a
stepwise manner. It is a drop-in replacement for lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html]. See
a simple example of LightGBM Tuner [https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_tuner_simple.py] which optimizes the validation log loss of cancer
detection.

train() is a wrapper function of
LightGBMTuner. To use feature in Optuna such as
suspended/resumed optimization and/or parallelization, refer to
LightGBMTuner instead of this function.

Arguments and keyword arguments for lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] can be passed.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]
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optuna.integration.lightgbm.LightGBMTuner


	
class optuna.integration.lightgbm.LightGBMTuner(params, train_set, num_boost_round=1000, valid_sets=None, valid_names=None, feval=None, feature_name='auto', categorical_feature='auto', keep_training_booster=False, callbacks=None, time_budget=None, sample_size=None, study=None, optuna_callbacks=None, model_dir=None, verbosity=None, show_progress_bar=True, *, optuna_seed=None)

	Hyperparameter tuner for LightGBM.

It optimizes the following hyperparameters in a stepwise manner:
lambda_l1, lambda_l2, num_leaves, feature_fraction, bagging_fraction,
bagging_freq and min_child_samples.

You can find the details of the algorithm and benchmark results in this blog article [https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258] by Kohei Ozaki [https://www.kaggle.com/confirm], a Kaggle Grandmaster.

Arguments and keyword arguments for lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] can be passed.
The arguments that only LightGBMTuner has are
listed below:


	Parameters:

	
	time_budget (int [https://docs.python.org/3/library/functions.html#int] | None) – A time budget for parameter tuning in seconds.


	study (optuna.study.Study | None) – A Study instance to store optimization results. The
Trial instances in it has the following user attributes:
elapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster
model in the trial. lgbm_params is a JSON-serialized dictionary of LightGBM
parameters used in the trial.


	optuna_callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[[Study, FrozenTrial], None]] | None) – List of Optuna callback functions that are invoked at the end of each trial.
Each function must accept two parameters with the following types in this order:
Study and FrozenTrial.
Please note that this is not a callbacks argument of lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] .


	model_dir (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – A directory to save boosters. By default, it is set to None [https://docs.python.org/3/library/constants.html#None] and no boosters are
saved. Please set shared directory (e.g., directories on NFS) if you want to access
get_best_booster() in distributed
environments. Otherwise, it may raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. If the directory does not
exist, it will be created. The filenames of the boosters will be
{model_dir}/{trial_number}.pkl (e.g., ./boosters/0.pkl).


	verbosity (int [https://docs.python.org/3/library/functions.html#int] | None) – A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity [https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity] .


Warning

Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0,
but this schedule is subject to change.

Please use set_verbosity() instead.






	show_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to show progress bars or not. To disable progress bar, set this False [https://docs.python.org/3/library/constants.html#False].


Note

Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.






	optuna_seed (int [https://docs.python.org/3/library/functions.html#int] | None) – seed of TPESampler for random number generator
that affects sampling for num_leaves, bagging_fraction, bagging_freq,
lambda_l1, and lambda_l2.


Note

The deterministic [https://lightgbm.readthedocs.io/en/latest/Parameters.html#deterministic] parameter of LightGBM makes training reproducible.
Please enable it when you use this argument.






	params (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – 


	train_set (lgb.Dataset) – 


	num_boost_round (int [https://docs.python.org/3/library/functions.html#int]) – 


	valid_sets ('VALID_SET_TYPE' | None) – 


	valid_names (Any | None) – 


	feval (Callable[..., Any] | None) – 


	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	categorical_feature (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	keep_training_booster (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[..., Any]] | None) – 


	sample_size (int [https://docs.python.org/3/library/functions.html#int] | None) – 








Methods



	compare_validation_metrics(val_score, best_score)

	



	get_best_booster()

	Return the best booster.



	higher_is_better()

	



	run()

	Perform the hyperparameter-tuning with given parameters.



	sample_train_set()

	Make subset of self.train_set Dataset object.



	tune_bagging([n_trials])

	



	tune_feature_fraction([n_trials])

	



	tune_feature_fraction_stage2([n_trials])

	



	tune_min_data_in_leaf()

	



	tune_num_leaves([n_trials])

	



	tune_regularization_factors([n_trials])

	






Attributes



	best_params

	Return parameters of the best booster.



	best_score

	Return the score of the best booster.







	
property best_params: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return parameters of the best booster.






	
property best_score: float [https://docs.python.org/3/library/functions.html#float]

	Return the score of the best booster.






	
get_best_booster()

	Return the best booster.

If the best booster cannot be found, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised. To prevent the
errors, please save boosters by specifying the model_dir argument of
__init__(),
when you resume tuning or you run tuning in parallel.


	Return type:

	Booster [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html#lightgbm.Booster]










	
run()

	Perform the hyperparameter-tuning with given parameters.


	Return type:

	None










	
sample_train_set()

	Make subset of self.train_set Dataset object.


	Return type:

	None
















            

          

      

      

    

  

  
    
    

    optuna.integration.lightgbm.LightGBMTunerCV
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.integration.lightgbm.LightGBMTunerCV


	
class optuna.integration.lightgbm.LightGBMTunerCV(params, train_set, num_boost_round=1000, folds=None, nfold=5, stratified=True, shuffle=True, feval=None, feature_name='auto', categorical_feature='auto', fpreproc=None, seed=0, callbacks=None, time_budget=None, sample_size=None, study=None, optuna_callbacks=None, verbosity=None, show_progress_bar=True, model_dir=None, return_cvbooster=False, *, optuna_seed=None)

	Hyperparameter tuner for LightGBM with cross-validation.

It employs the same stepwise approach as
LightGBMTuner.
LightGBMTunerCV invokes lightgbm.cv() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.cv.html] to train
and validate boosters while LightGBMTuner invokes
lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html]. See
a simple example [https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_tuner_cv.py] which optimizes the validation log loss of cancer detection.

Arguments and keyword arguments for lightgbm.cv() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.cv.html] can be passed except
metrics, init_model and eval_train_metric.
The arguments that only LightGBMTunerCV has are
listed below:


	Parameters:

	
	time_budget (int [https://docs.python.org/3/library/functions.html#int] | None) – A time budget for parameter tuning in seconds.


	study (optuna.study.Study | None) – A Study instance to store optimization results. The
Trial instances in it has the following user attributes:
elapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster
model in the trial. lgbm_params is a JSON-serialized dictionary of LightGBM
parameters used in the trial.


	optuna_callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[[Study, FrozenTrial], None]] | None) – List of Optuna callback functions that are invoked at the end of each trial.
Each function must accept two parameters with the following types in this order:
Study and FrozenTrial.
Please note that this is not a callbacks argument of lightgbm.train() [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html] .


	model_dir (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – A directory to save boosters. By default, it is set to None [https://docs.python.org/3/library/constants.html#None] and no boosters are
saved. Please set shared directory (e.g., directories on NFS) if you want to access
get_best_booster()
in distributed environments.
Otherwise, it may raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. If the directory does not exist, it will be
created. The filenames of the boosters will be {model_dir}/{trial_number}.pkl
(e.g., ./boosters/0.pkl).


	verbosity (int [https://docs.python.org/3/library/functions.html#int] | None) – A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity [https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity] .


Warning

Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0,
but this schedule is subject to change.

Please use set_verbosity() instead.






	show_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to show progress bars or not. To disable progress bar, set this False [https://docs.python.org/3/library/constants.html#False].


Note

Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.






	return_cvbooster (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable get_best_booster().


	optuna_seed (int [https://docs.python.org/3/library/functions.html#int] | None) – seed of TPESampler for random number generator
that affects sampling for num_leaves, bagging_fraction, bagging_freq,
lambda_l1, and lambda_l2.


Note

The deterministic [https://lightgbm.readthedocs.io/en/latest/Parameters.html#deterministic] parameter of LightGBM makes training reproducible.
Please enable it when you use this argument.






	params (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – 


	train_set (lgb.Dataset) – 


	num_boost_round (int [https://docs.python.org/3/library/functions.html#int]) – 


	folds (Generator[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], None, None] | Iterator[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] | 'BaseCrossValidator' | None) – 


	nfold (int [https://docs.python.org/3/library/functions.html#int]) – 


	stratified (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	shuffle (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	feval (Callable[..., Any] | None) – 


	feature_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	categorical_feature (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	fpreproc (Callable[..., Any] | None) – 


	seed (int [https://docs.python.org/3/library/functions.html#int]) – 


	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable[..., Any]] | None) – 


	sample_size (int [https://docs.python.org/3/library/functions.html#int] | None) – 








Methods



	compare_validation_metrics(val_score, best_score)

	



	get_best_booster()

	Return the best cvbooster.



	higher_is_better()

	



	run()

	Perform the hyperparameter-tuning with given parameters.



	sample_train_set()

	Make subset of self.train_set Dataset object.



	tune_bagging([n_trials])

	



	tune_feature_fraction([n_trials])

	



	tune_feature_fraction_stage2([n_trials])

	



	tune_min_data_in_leaf()

	



	tune_num_leaves([n_trials])

	



	tune_regularization_factors([n_trials])

	






Attributes



	best_params

	Return parameters of the best booster.



	best_score

	Return the score of the best booster.







	
property best_params: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return parameters of the best booster.






	
property best_score: float [https://docs.python.org/3/library/functions.html#float]

	Return the score of the best booster.






	
get_best_booster()

	Return the best cvbooster.

If the best booster cannot be found, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised.
To prevent the errors, please save boosters by specifying
both of the model_dir and the return_cvbooster arguments of
__init__(),
when you resume tuning or you run tuning in parallel.


	Return type:

	CVBooster [https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.CVBooster.html#lightgbm.CVBooster]










	
run()

	Perform the hyperparameter-tuning with given parameters.


	Return type:

	None










	
sample_train_set()

	Make subset of self.train_set Dataset object.


	Return type:

	None
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class optuna.integration.MLflowCallback(tracking_uri=None, metric_name='value', create_experiment=True, mlflow_kwargs=None, tag_study_user_attrs=False, tag_trial_user_attrs=True)

	Callback to track Optuna trials with MLflow.

This callback adds relevant information that is
tracked by Optuna to MLflow.

Example

Add MLflow callback to Optuna optimization.

import optuna
from optuna.integration.mlflow import MLflowCallback


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


mlflc = MLflowCallback(
    tracking_uri=YOUR_TRACKING_URI,
    metric_name="my metric score",
)

study = optuna.create_study(study_name="my_study")
study.optimize(objective, n_trials=10, callbacks=[mlflc])






	Parameters:

	
	tracking_uri (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – The URI of the MLflow tracking server.

Please refer to mlflow.set_tracking_uri [https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.set_tracking_uri]
for more details.




	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name assigned to optimized metric. In case of multi-objective optimization,
list of names can be passed. Those names will be assigned
to metrics in the order returned by objective function.
If single name is provided, or this argument is left to default value,
it will be broadcasted to each objective with a number suffix in order
returned by objective function e.g. two objectives and default metric name
will be logged as value_0 and value_1. The number of metrics must be
the same as the number of values an objective function returns.


	create_experiment (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], new MLflow experiment will be created for each optimization run,
named after the Optuna study. Setting this argument to False [https://docs.python.org/3/library/constants.html#False] lets user run
optimization under existing experiment, set via mlflow.set_experiment [https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.get_tracking_uri],
by passing experiment_id as one of mlflow_kwargs or under default MLflow
experiment, when no additional arguments are passed. Note that this argument
must be set to False [https://docs.python.org/3/library/constants.html#False] when using Optuna with this callback within
Databricks Notebook.


	mlflow_kwargs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Set of arguments passed when initializing MLflow run.
Please refer to MLflow API documentation [https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.start_run]
for more details.



Note

nest_trials argument added in v2.3.0 is a part of mlflow_kwargs
since v3.0.0. Anyone using nest_trials=True should migrate to
mlflow_kwargs={"nested": True} to avoid raising TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].









	tag_study_user_attrs (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether or not to add the study’s user attrs
to the mlflow trial as tags. Please note that when this flag is
set, key value pairs in user_attrs
will supersede existing tags.


	tag_trial_user_attrs (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether or not to add the trial’s user attrs
to the mlflow trial as tags. Please note that when both trial and
study user attributes are logged, the latter will supersede the former
in case of a collision.









Note

Added in v1.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.



Methods



	track_in_mlflow()

	Decorator for using MLflow logging in the objective function.







	
track_in_mlflow()

	Decorator for using MLflow logging in the objective function.

This decorator enables the extension of MLflow logging provided by the callback.

All information logged in the decorated objective function will be added to the MLflow
run for the trial created by the callback.

Example

Add additional logging to MLflow.

import optuna
import mlflow
from optuna.integration.mlflow import MLflowCallback

mlflc = MLflowCallback(
    tracking_uri=YOUR_TRACKING_URI,
    metric_name="my metric score",
)


@mlflc.track_in_mlflow()
def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    mlflow.log_param("power", 2)
    mlflow.log_metric("base of metric", x - 2)

    return (x - 2) ** 2


study = optuna.create_study(study_name="my_other_study")
study.optimize(objective, n_trials=10, callbacks=[mlflc])






	Returns:

	Objective function with tracking to MLflow enabled.



	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]






Note

Added in v2.9.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.9.0.
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class optuna.integration.WeightsAndBiasesCallback(metric_name='value', wandb_kwargs=None, as_multirun=False)

	Callback to track Optuna trials with Weights & Biases.

This callback enables tracking of Optuna study in
Weights & Biases. The study is tracked as a single experiment
run, where all suggested hyperparameters and optimized metrics
are logged and plotted as a function of optimizer steps.


Note

User needs to be logged in to Weights & Biases before
using this callback in online mode. For more information, please
refer to wandb setup [https://docs.wandb.ai/quickstart#1-set-up-wandb].




Note

Users who want to run multiple Optuna studies within the same process
should call wandb.finish() between subsequent calls to
study.optimize(). Calling wandb.finish() is not necessary
if you are running one Optuna study per process.




Note

To ensure correct trial order in Weights & Biases, this callback
should only be used with study.optimize(n_jobs=1).



Example

Add Weights & Biases callback to Optuna optimization.

import optuna
from optuna.integration.wandb import WeightsAndBiasesCallback


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study()

wandb_kwargs = {"project": "my-project"}
wandbc = WeightsAndBiasesCallback(wandb_kwargs=wandb_kwargs)

study.optimize(objective, n_trials=10, callbacks=[wandbc])





Weights & Biases logging in multirun mode.

import optuna
from optuna.integration.wandb import WeightsAndBiasesCallback

wandb_kwargs = {"project": "my-project"}
wandbc = WeightsAndBiasesCallback(wandb_kwargs=wandb_kwargs, as_multirun=True)


@wandbc.track_in_wandb()
def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study()
study.optimize(objective, n_trials=10, callbacks=[wandbc])






	Parameters:

	
	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name assigned to optimized metric. In case of multi-objective optimization,
list of names can be passed. Those names will be assigned
to metrics in the order returned by objective function.
If single name is provided, or this argument is left to default value,
it will be broadcasted to each objective with a number suffix in order
returned by objective function e.g. two objectives and default metric name
will be logged as value_0 and value_1. The number of metrics must be
the same as the number of values objective function returns.


	wandb_kwargs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Set of arguments passed when initializing Weights & Biases run.
Please refer to Weights & Biases API documentation [https://docs.wandb.ai/ref/python/init] for more details.


	as_multirun (bool [https://docs.python.org/3/library/functions.html#bool]) – Creates new runs for each trial. Useful for generating W&B Sweeps like
panels (for ex., parameter importance, parallel coordinates, etc).









Note

Added in v2.9.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.9.0.



Methods



	track_in_wandb()

	Decorator for using W&B for logging inside the objective function.







	
track_in_wandb()

	Decorator for using W&B for logging inside the objective function.

The run is initialized with the same wandb_kwargs that are passed to the callback.
All the metrics from inside the objective function will be logged into the same run
which stores the parameters for a given trial.

Example

Add additional logging to Weights & Biases.

import optuna
from optuna.integration.wandb import WeightsAndBiasesCallback
import wandb

wandb_kwargs = {"project": "my-project"}
wandbc = WeightsAndBiasesCallback(wandb_kwargs=wandb_kwargs, as_multirun=True)


@wandbc.track_in_wandb()
def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    wandb.log({"power": 2, "base of metric": x - 2})

    return (x - 2) ** 2


study = optuna.create_study()
study.optimize(objective, n_trials=10, callbacks=[wandbc])






	Returns:

	Objective function with W&B tracking enabled.



	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.
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optuna.integration.PyCmaSampler


	
class optuna.integration.PyCmaSampler(x0=None, sigma0=None, cma_stds=None, seed=None, cma_opts=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True)

	A Sampler using cma library as the backend.

Example

Optimize a simple quadratic function by using PyCmaSampler.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    y = trial.suggest_int("y", -1, 1)
    return x**2 + y


sampler = optuna.integration.PyCmaSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=20)





Note that parallel execution of trials may affect the optimization performance of CMA-ES,
especially if the number of trials running in parallel exceeds the population size.


Note

CmaEsSampler is deprecated and renamed to
PyCmaSampler in v2.0.0. Please use
PyCmaSampler instead of
CmaEsSampler.




	Parameters:

	
	x0 (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – A dictionary of an initial parameter values for CMA-ES. By default, the mean of low
and high for each distribution is used.
Please refer to cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of x0.


	sigma0 (float [https://docs.python.org/3/library/functions.html#float] | None) – Initial standard deviation of CMA-ES. By default, sigma0 is set to
min_range / 6, where min_range denotes the minimum range of the distributions
in the search space. If distribution is categorical, min_range is
len(choices) - 1.
Please refer to cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of sigma0.


	cma_stds (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]] | None) – A dictionary of multipliers of sigma0 for each parameters. The default value is 1.0.
Please refer to cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] for further details of cma_stds.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – A random seed for CMA-ES.


	cma_opts (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Options passed to the constructor of cma.CMAEvolutionStrategy [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html] class.

Note that default option is cma_default_options [https://cma-es.github.io/apidocs-pycma/cma.evolution_strategy.html#cma_default_options_],
but BoundaryHandler, bounds, CMA_stds and seed arguments in
cma_opts will be ignored because it is added by
PyCmaSampler automatically.




	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The independent sampling is used instead of the CMA-ES algorithm until the given number
of trials finish in the same study.


	independent_sampler (BaseSampler | None) – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for PyCmaSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.


See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.






	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.










Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]
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optuna.integration.CmaEsSampler


	
class optuna.integration.CmaEsSampler(x0=None, sigma0=None, cma_stds=None, seed=None, cma_opts=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True)

	Wrapper class of PyCmaSampler for backward compatibility.


Warning

Deprecated in v2.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v2.0.0.

This class is renamed to PyCmaSampler.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	Parameters:

	
	x0 (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – 


	sigma0 (float [https://docs.python.org/3/library/functions.html#float] | None) – 


	cma_stds (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]] | None) – 


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – 


	cma_opts (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – 


	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – 


	independent_sampler (BaseSampler | None) – 


	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – 









	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]
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optuna.integration.PyTorchIgnitePruningHandler


	
class optuna.integration.PyTorchIgnitePruningHandler(trial, metric, trainer)

	PyTorch Ignite handler to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py]
if you want to add a pruning handler which observes validation accuracy.


	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.


	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name of metric for pruning, e.g., accuracy and loss.


	trainer (Engine) – A trainer engine of PyTorch Ignite. Please refer to ignite.engine.Engine reference [https://pytorch.org/ignite/engine.html#ignite.engine.Engine] for further details.
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optuna.integration.PyTorchLightningPruningCallback


	
class optuna.integration.PyTorchLightningPruningCallback(trial, monitor)

	PyTorch Lightning callback to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_lightning_simple.py]
if you want to add a pruning callback which observes accuracy.


	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.


	monitor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., val_loss or
val_acc. The metrics are obtained from the returned dictionaries from e.g.
pytorch_lightning.LightningModule.training_step or
pytorch_lightning.LightningModule.validation_epoch_end and the names thus depend on
how this dictionary is formatted.









Note

For the distributed data parallel training, the version of PyTorchLightning needs to be
higher than or equal to v1.6.0. In addition, Study should be
instantiated with RDB storage.




Note

If you would like to use PyTorchLightningPruningCallback in a distributed training
environment, you need to evoke PyTorchLightningPruningCallback.check_pruned()
manually so that TrialPruned is properly handled.



Methods



	check_pruned()

	Raise optuna.TrialPruned manually if pruned.



	on_fit_start(trainer, pl_module)

	



	on_validation_end(trainer, pl_module)

	







	
check_pruned()

	Raise optuna.TrialPruned manually if pruned.

Currently, intermediate_values are not properly propagated between processes due to
storage cache. Therefore, necessary information is kept in trial_system_attrs when the
trial runs in a distributed situation. Please call this method right after calling
pytorch_lightning.Trainer.fit().
If a callback doesn’t have any backend storage for DDP, this method does nothing.


	Return type:

	None
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optuna.integration.TorchDistributedTrial


	
class optuna.integration.TorchDistributedTrial(trial, group=None)

	A wrapper of Trial to incorporate Optuna with PyTorch distributed.


See also

TorchDistributedTrial provides the same interface as
Trial. Please refer to optuna.trial.Trial for further
details.



See the example [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_distributed_simple.py]
if you want to optimize an objective function that trains neural network
written with PyTorch distributed data parallel.


	Parameters:

	
	trial (BaseTrial | None) – A Trial object or None [https://docs.python.org/3/library/constants.html#None]. Please set trial object in
rank-0 node and set None [https://docs.python.org/3/library/constants.html#None] in the other rank node.


	group (ProcessGroup | None) – A torch.distributed.ProcessGroup to communicate with the other nodes.
TorchDistributedTrial use CPU tensors to communicate, make sure the group
supports CPU tensors communications.

Use gloo backend when group is None.
Create a global gloo backend when group is None and WORLD is nccl.











Note

The methods of TorchDistributedTrial are expected to be
called by all workers at once. They invoke synchronous data transmission to share
processing results and synchronize timing.




Note

Added in v2.6.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.



Methods



	report(value, step)

	



	set_system_attr(key, value)

	



	set_user_attr(key, value)

	



	should_prune()

	



	suggest_categorical()

	



	suggest_discrete_uniform(name, low, high, q)

	



	suggest_float(name, low, high, *[, step, log])

	



	suggest_int(name, low, high[, step, log])

	



	suggest_loguniform(name, low, high)

	



	suggest_uniform(name, low, high)

	






Attributes



	datetime_start

	



	distributions

	



	number

	



	params

	



	system_attrs

	



	user_attrs

	







	
set_system_attr(key, value)

	
Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.




	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	None










	
suggest_discrete_uniform(name, low, high, q)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, step=…) instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 


	q (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
suggest_loguniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, log=True) instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
suggest_uniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
property system_attrs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.
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optuna.integration.OptunaSearchCV


	
class optuna.integration.OptunaSearchCV(estimator, param_distributions, *, cv=None, enable_pruning=False, error_score=nan, max_iter=1000, n_jobs=None, n_trials=10, random_state=None, refit=True, return_train_score=False, scoring=None, study=None, subsample=1.0, timeout=None, verbose=0, callbacks=None)

	Hyperparameter search with cross-validation.


	Parameters:

	
	estimator (sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator]) – Object to use to fit the data. This is assumed to implement the
scikit-learn estimator interface. Either this needs to provide
score, or scoring must be passed.


	param_distributions (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – Dictionary where keys are parameters and values are distributions.
Distributions are assumed to implement the optuna distribution
interface.


	cv (int [https://docs.python.org/3/library/functions.html#int] | BaseCrossValidator | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable] | None) – Cross-validation strategy. Possible inputs for cv are:


	None [https://docs.python.org/3/library/constants.html#None], to use the default 5-fold cross validation,


	integer to specify the number of folds in a CV splitter,


	CV splitter [https://scikit-learn.org/stable/glossary.html#term-CV-splitter],


	an iterable yielding (train, validation) splits as arrays of indices.




For integer, if estimator is a classifier and y is
either binary or multiclass,
sklearn.model_selection.StratifiedKFold is used. otherwise,
sklearn.model_selection.KFold is used.




	enable_pruning (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], pruning is performed in the case where the
underlying estimator supports partial_fit.


	error_score (Number [https://docs.python.org/3/library/numbers.html#numbers.Number] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Value to assign to the score if an error occurs in fitting. If
‘raise’, the error is raised. If numeric,
sklearn.exceptions.FitFailedWarning is raised. This does not
affect the refit step, which will always raise the error.


	max_iter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of epochs. This is only used if the underlying
estimator supports partial_fit.


	n_jobs (int [https://docs.python.org/3/library/functions.html#int] | None) – Number of threading [https://docs.python.org/3/library/threading.html#module-threading] based parallel jobs. None [https://docs.python.org/3/library/constants.html#None] means 1.
-1 means using the number is set to CPU count.



Note

n_jobs allows parallelization using threading [https://docs.python.org/3/library/threading.html#module-threading] and may suffer from
Python’s GIL [https://wiki.python.org/moin/GlobalInterpreterLock].
It is recommended to use process-based parallelization
if func is CPU bound.









	n_trials (int [https://docs.python.org/3/library/functions.html#int]) – Number of trials. If None [https://docs.python.org/3/library/constants.html#None], there is no limitation on the
number of trials. If timeout is also set to None [https://docs.python.org/3/library/constants.html#None],
the study continues to create trials until it receives a
termination signal such as Ctrl+C or SIGTERM. This trades off
runtime vs quality of the solution.


	random_state (int [https://docs.python.org/3/library/functions.html#int] | RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState] | None) – Seed of the pseudo random number generator. If int, this is the
seed used by the random number generator. If
numpy.random.RandomState object, this is the random number
generator. If None [https://docs.python.org/3/library/constants.html#None], the global random state from
numpy.random is used.


	refit (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], refit the estimator with the best found
hyperparameters. The refitted estimator is made available at the
best_estimator_ attribute and permits using predict
directly.


	return_train_score (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], training scores will be included. Computing
training scores is used to get insights on how different
hyperparameter settings impact the overfitting/underfitting
trade-off. However computing training scores can be
computationally expensive and is not strictly required to select
the hyperparameters that yield the best generalization
performance.


	scoring (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], float [https://docs.python.org/3/library/functions.html#float]] | str [https://docs.python.org/3/library/stdtypes.html#str] | None) – String or callable to evaluate the predictions on the validation data.
If None [https://docs.python.org/3/library/constants.html#None], score on the estimator is used.


	study (Study | None) – Study corresponds to the optimization task. If None [https://docs.python.org/3/library/constants.html#None], a new
study is created.


	subsample (float [https://docs.python.org/3/library/functions.html#float] | int [https://docs.python.org/3/library/functions.html#int]) – Proportion of samples that are used during hyperparameter search.


	If int, then draw subsample samples.


	If float, then draw subsample * X.shape[0] samples.







	timeout (float [https://docs.python.org/3/library/functions.html#float] | None) – Time limit in seconds for the search of appropriate models. If
None [https://docs.python.org/3/library/constants.html#None], the study is executed without time limitation. If
n_trials is also set to None [https://docs.python.org/3/library/constants.html#None], the study continues to
create trials until it receives a termination signal such as
Ctrl+C or SIGTERM. This trades off runtime vs quality of the
solution.


	verbose (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level. The higher, the more messages.


	callbacks (List [https://docs.python.org/3/library/typing.html#typing.List][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Study, FrozenTrial], None]] | None) – List of callback functions that are invoked at the end of each trial. Each function
must accept two parameters with the following types in this order:
Study and FrozenTrial.


See also

See the tutorial of Callback for Study.optimize for how to use and implement
callback functions.













	
best_estimator_

	Estimator that was chosen by the search. This is present only if
refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
n_splits_

	Number of cross-validation splits.






	
refit_time_

	Time for refitting the best estimator. This is present only if
refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
sample_indices_

	Indices of samples that are used during hyperparameter search.






	
scorer_

	Scorer function.






	
study_

	Actual study.





Examples

import optuna
from sklearn.datasets import load_iris
from sklearn.svm import SVC

clf = SVC(gamma="auto")
param_distributions = {
    "C": optuna.distributions.FloatDistribution(1e-10, 1e10, log=True)
}
optuna_search = optuna.integration.OptunaSearchCV(clf, param_distributions)
X, y = load_iris(return_X_y=True)
optuna_search.fit(X, y)
y_pred = optuna_search.predict(X)






Note

By following the scikit-learn convention for scorers, the direction of optimization is
maximize. See https://scikit-learn.org/stable/modules/model_evaluation.html.
For the minimization problem, please multiply -1.




Note

Added in v0.17.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v0.17.0.



Methods



	fit(X[, y, groups])

	Run fit with all sets of parameters.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	score(X[, y])

	Return the score on the given data.



	set_fit_request(*[, groups])

	Request metadata passed to the fit method.



	set_params(**params)

	Set the parameters of this estimator.






Attributes



	best_index_

	Trial number which corresponds to the best candidate parameter setting.



	best_params_

	Parameters of the best trial in the Study.



	best_score_

	Mean cross-validated score of the best estimator.



	best_trial_

	Best trial in the Study.



	classes_

	Class labels.



	cv_results_

	A dictionary mapping a metric name to a list of Cross-Validation results of all trials.



	decision_function

	Call decision_function on the best estimator.



	inverse_transform

	Call inverse_transform on the best estimator.



	n_trials_

	Actual number of trials.



	predict

	Call predict on the best estimator.



	predict_log_proba

	Call predict_log_proba on the best estimator.



	predict_proba

	Call predict_proba on the best estimator.



	score_samples

	Call score_samples on the best estimator.



	set_user_attr

	Call set_user_attr on the Study.



	transform

	Call transform on the best estimator.



	trials_

	All trials in the Study.



	trials_dataframe

	Call trials_dataframe on the Study.



	user_attrs_

	User attributes in the Study.







	
property best_index_: int [https://docs.python.org/3/library/functions.html#int]

	Trial number which corresponds to the best candidate parameter setting.

Returned value is equivalent to optuna_search.best_trial_.number.






	
property best_params_: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Parameters of the best trial in the Study.






	
property best_score_: float [https://docs.python.org/3/library/functions.html#float]

	Mean cross-validated score of the best estimator.






	
property best_trial_: FrozenTrial

	Best trial in the Study.






	
property classes_: List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series]

	Class labels.






	
property cv_results_: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	A dictionary mapping a metric name to a list of
Cross-Validation results of all trials.






	
property decision_function: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call decision_function on the best estimator.

This is available only if the underlying estimator supports
decision_function and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
fit(X, y=None, groups=None, **fit_params)

	Run fit with all sets of parameters.


	Parameters:

	
	X (List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]) – Training data.


	y (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix] | None) – Target variable.


	groups (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | None) – Group labels for the samples used while splitting the dataset
into train/validation set.


	**fit_params (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Parameters passed to fit on the estimator.






	Returns:

	self.



	Return type:

	OptunaSearchCV










	
get_metadata_routing()

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	routing – A MetadataRequest encapsulating
routing information.



	Return type:

	MetadataRequest










	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters:

	deep (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.



	Returns:

	params – Parameter names mapped to their values.



	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
property inverse_transform: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call inverse_transform on the best estimator.

This is available only if the underlying estimator supports
inverse_transform and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
property n_trials_: int [https://docs.python.org/3/library/functions.html#int]

	Actual number of trials.






	
property predict: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call predict on the best estimator.

This is available only if the underlying estimator supports predict
and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
property predict_log_proba: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call predict_log_proba on the best estimator.

This is available only if the underlying estimator supports
predict_log_proba and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
property predict_proba: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call predict_proba on the best estimator.

This is available only if the underlying estimator supports
predict_proba and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
score(X, y=None)

	Return the score on the given data.


	Parameters:

	
	X (List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]) – Data.


	y (List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series] | List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix] | None) – Target variable.






	Returns:

	Scaler score.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
property score_samples: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | Series [https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series]]

	Call score_samples on the best estimator.

This is available only if the underlying estimator supports
score_samples and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
set_fit_request(*, groups='$UNCHANGED$')

	Request metadata passed to the fit method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to fit.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	groups (str [https://docs.python.org/3/library/stdtypes.html#str], True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for groups parameter in fit.


	self (OptunaSearchCV) – 






	Returns:

	self – The updated object.



	Return type:

	object [https://docs.python.org/3/library/functions.html#object]










	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	**params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Estimator parameters.



	Returns:

	self – Estimator instance.



	Return type:

	estimator instance










	
property set_user_attr: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], None [https://docs.python.org/3/library/constants.html#None]]

	Call set_user_attr on the Study.






	
property transform: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]] | ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] | DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] | spmatrix [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix]]

	Call transform on the best estimator.

This is available only if the underlying estimator supports
transform and refit is set to True [https://docs.python.org/3/library/constants.html#True].






	
property trials_: List [https://docs.python.org/3/library/typing.html#typing.List][FrozenTrial]

	All trials in the Study.






	
property trials_dataframe: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]]

	Call trials_dataframe on the Study.






	
property user_attrs_: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	User attributes in the Study.
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optuna.integration.SkoptSampler


	
class optuna.integration.SkoptSampler(independent_sampler=None, warn_independent_sampling=True, skopt_kwargs=None, n_startup_trials=1, *, consider_pruned_trials=False, seed=None)

	Sampler using Scikit-Optimize as the backend.

The use of SkoptSampler is highly not recommended, as the
development of Scikit-Optimize has been inactive and we have identified compatibility
issues with newer NumPy versions.


	Parameters:

	
	independent_sampler (BaseSampler | None) – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for SkoptSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.


See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.






	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.




	skopt_kwargs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Keyword arguments passed to the constructor of
skopt.Optimizer [https://scikit-optimize.github.io/#skopt.Optimizer]
class.

Note that dimensions argument in skopt_kwargs will be ignored
because it is added by SkoptSampler automatically.




	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The independent sampling is used until the given number of trials finish in the
same study.


	consider_pruned_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], the PRUNED trials are considered for sampling.


Note

Added in v2.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.0.0.




Note

As the number of trials \(n\) increases, each sampling takes longer and longer
on a scale of \(O(n^3)\). And, if this is True [https://docs.python.org/3/library/constants.html#True], the number of trials
will increase. So, it is suggested to set this flag False [https://docs.python.org/3/library/constants.html#False] when each
evaluation of the objective function is relatively faster than each sampling. On
the other hand, it is suggested to set this flag True [https://docs.python.org/3/library/constants.html#True] when each evaluation
of the objective function is relatively slower than each sampling.






	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.









Warning

Deprecated in v3.4.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.4.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.integration.TensorBoardCallback


	
class optuna.integration.TensorBoardCallback(dirname, metric_name)

	Callback to track Optuna trials with TensorBoard.

This callback adds relevant information that is tracked by Optuna to TensorBoard.

See the example [https://github.com/optuna/optuna-examples/blob/main/tensorboard/tensorboard_simple.py].


	Parameters:

	
	dirname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory to store TensorBoard logs.


	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the metric. Since the metric itself is just a number,
metric_name can be used to give it a name. So you know later
if it was roc-auc or accuracy.









Note

Added in v2.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.
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optuna.integration.XGBoostPruningCallback


	
class optuna.integration.XGBoostPruningCallback(trial, observation_key)

	Callback for XGBoost to prune unpromising trials.

See the example [https://github.com/optuna/optuna-examples/blob/main/xgboost/xgboost_integration.py]
if you want to add a pruning callback which observes validation accuracy of
a XGBoost model.


	Parameters:

	
	trial (Trial) – A Trial corresponding to the current evaluation of the
objective function.


	observation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – An evaluation metric for pruning, e.g., validation-error and
validation-merror. When using the Scikit-Learn API, the index number of
eval_set must be included in the observation_key, e.g.,
validation_0-error and validation_0-merror. Please refer to eval_metric
in XGBoost reference [https://xgboost.readthedocs.io/en/latest/parameter.html]
for further details.
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optuna.logging

The logging module implements logging using the Python logging package. Library users may be especially interested in setting verbosity levels using set_verbosity() to one of optuna.logging.CRITICAL (aka optuna.logging.FATAL), optuna.logging.ERROR, optuna.logging.WARNING (aka optuna.logging.WARN), optuna.logging.INFO, or optuna.logging.DEBUG.



	optuna.logging.get_verbosity

	Return the current level for the Optuna's root logger.



	optuna.logging.set_verbosity

	Set the level for the Optuna's root logger.



	optuna.logging.disable_default_handler

	Disable the default handler of the Optuna's root logger.



	optuna.logging.enable_default_handler

	Enable the default handler of the Optuna's root logger.



	optuna.logging.disable_propagation

	Disable propagation of the library log outputs.



	optuna.logging.enable_propagation

	Enable propagation of the library log outputs.
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optuna.logging.get_verbosity


	
optuna.logging.get_verbosity()

	Return the current level for the Optuna’s root logger.

Example

Get the default verbosity level.

import optuna

# The default verbosity level of Optuna is `optuna.logging.INFO`.
print(optuna.logging.get_verbosity())
# 20
print(optuna.logging.INFO)
# 20

# There are logs of the INFO level.
study = optuna.create_study()
study.optimize(objective, n_trials=5)
# [I 2021-10-31 05:35:17,232] A new study created ...
# [I 2021-10-31 05:35:17,238] Trial 0 finished with value: ...
# [I 2021-10-31 05:35:17,245] Trial 1 finished with value: ...
# ...






	Returns:

	Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]






Note

Optuna has following logging levels:


	optuna.logging.CRITICAL, optuna.logging.FATAL


	optuna.logging.ERROR


	optuna.logging.WARNING, optuna.logging.WARN


	optuna.logging.INFO


	optuna.logging.DEBUG
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optuna.logging.set_verbosity


	
optuna.logging.set_verbosity(verbosity)

	Set the level for the Optuna’s root logger.

Example

Set the logging level optuna.logging.WARNING.

import optuna

# There are INFO level logs.
study = optuna.create_study()
study.optimize(objective, n_trials=10)
# [I 2021-10-31 02:59:35,088] Trial 0 finished with value: 16.0 ...
# [I 2021-10-31 02:59:35,091] Trial 1 finished with value: 1.0 ...
# [I 2021-10-31 02:59:35,096] Trial 2 finished with value: 1.0 ...

# Setting the logging level WARNING, the INFO logs are suppressed.
optuna.logging.set_verbosity(optuna.logging.WARNING)
study.optimize(objective, n_trials=10)






	Parameters:

	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.



	Return type:

	None






Note

Optuna has following logging levels:


	optuna.logging.CRITICAL, optuna.logging.FATAL


	optuna.logging.ERROR


	optuna.logging.WARNING, optuna.logging.WARN


	optuna.logging.INFO


	optuna.logging.DEBUG
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optuna.logging.disable_default_handler


	
optuna.logging.disable_default_handler()

	Disable the default handler of the Optuna’s root logger.

Example

Stop and then resume logging to sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr].

import optuna

study = optuna.create_study()

# There are no logs in sys.stderr.
optuna.logging.disable_default_handler()
study.optimize(objective, n_trials=10)

# There are logs in sys.stderr.
optuna.logging.enable_default_handler()
study.optimize(objective, n_trials=10)
# [I 2020-02-23 17:00:54,314] Trial 10 finished with value: ...
# [I 2020-02-23 17:00:54,356] Trial 11 finished with value: ...
# ...






	Return type:

	None
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optuna.logging.enable_default_handler


	
optuna.logging.enable_default_handler()

	Enable the default handler of the Optuna’s root logger.

Please refer to the example shown in disable_default_handler().


	Return type:

	None
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optuna.logging.disable_propagation


	
optuna.logging.disable_propagation()

	Disable propagation of the library log outputs.

Note that log propagation is disabled by default. You only need to use this function
to stop log propagation when you use enable_propagation().

Example

Stop propagating logs to the root logger on the second optimize call.

import optuna
import logging

optuna.logging.disable_default_handler()  # Disable the default handler.
logger = logging.getLogger()

logger.setLevel(logging.INFO)  # Setup the root logger.
logger.addHandler(logging.FileHandler("foo.log", mode="w"))

optuna.logging.enable_propagation()  # Propagate logs to the root logger.

study = optuna.create_study()

logger.info("Logs from first optimize call")  # The logs are saved in the logs file.
study.optimize(objective, n_trials=10)

optuna.logging.disable_propagation()  # Stop propogating logs to the root logger.

logger.info("Logs from second optimize call")
# The new logs for second optimize call are not saved.
study.optimize(objective, n_trials=10)

with open("foo.log") as f:
    assert f.readline().startswith("A new study created")
    assert f.readline() == "Logs from first optimize call\n"
    # Check for logs after second optimize call.
    assert f.read().split("Logs from second optimize call\n")[-1] == ""






	Return type:

	None
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optuna.logging.enable_propagation


	
optuna.logging.enable_propagation()

	Enable propagation of the library log outputs.

Please disable the Optuna’s default handler to prevent double logging if the root logger has
been configured.

Example

Propagate all log output to the root logger in order to save them to the file.

import optuna
import logging

logger = logging.getLogger()

logger.setLevel(logging.INFO)  # Setup the root logger.
logger.addHandler(logging.FileHandler("foo.log", mode="w"))

optuna.logging.enable_propagation()  # Propagate logs to the root logger.
optuna.logging.disable_default_handler()  # Stop showing logs in sys.stderr.

study = optuna.create_study()

logger.info("Start optimization.")
study.optimize(objective, n_trials=10)

with open("foo.log") as f:
    assert f.readline().startswith("A new study created")
    assert f.readline() == "Start optimization.\n"






	Return type:

	None
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optuna.pruners

The pruners module defines a BasePruner class characterized by an abstract prune() method, which, for a given trial and its associated study, returns a boolean value representing whether the trial should be pruned. This determination is made based on stored intermediate values of the objective function, as previously reported for the trial using optuna.trial.Trial.report(). The remaining classes in this module represent child classes, inheriting from BasePruner, which implement different pruning strategies.


See also

Efficient Optimization Algorithms tutorial explains the concept of the pruner classes and a minimal example.




See also

User-Defined Pruner tutorial could be helpful if you want to implement your own pruner classes.





	optuna.pruners.BasePruner

	Base class for pruners.



	optuna.pruners.MedianPruner

	Pruner using the median stopping rule.



	optuna.pruners.NopPruner

	Pruner which never prunes trials.



	optuna.pruners.PatientPruner

	Pruner which wraps another pruner with tolerance.



	optuna.pruners.PercentilePruner

	Pruner to keep the specified percentile of the trials.



	optuna.pruners.SuccessiveHalvingPruner

	Pruner using Asynchronous Successive Halving Algorithm.



	optuna.pruners.HyperbandPruner

	Pruner using Hyperband.



	optuna.pruners.ThresholdPruner

	Pruner to detect outlying metrics of the trials.
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optuna.pruners.BasePruner


	
class optuna.pruners.BasePruner

	Base class for pruners.

Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
abstract prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.MedianPruner


	
class optuna.pruners.MedianPruner(n_startup_trials=5, n_warmup_steps=0, interval_steps=1, *, n_min_trials=1)

	Pruner using the median stopping rule.

Prune if the trial’s best intermediate result is worse than median of intermediate results of
previous trials at the same step.

Example

We minimize an objective function with the median stopping rule.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.MedianPruner(
        n_startup_trials=5, n_warmup_steps=30, interval_steps=10
    ),
)
study.optimize(objective, n_trials=20)






	Parameters:

	
	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – Pruning is disabled until the given number of trials finish in the same study.


	n_warmup_steps (int [https://docs.python.org/3/library/functions.html#int]) – Pruning is disabled until the trial exceeds the given number of step. Note that
this feature assumes that step starts at zero.


	interval_steps (int [https://docs.python.org/3/library/functions.html#int]) – Interval in number of steps between the pruning checks, offset by the warmup steps.
If no value has been reported at the time of a pruning check, that particular check
will be postponed until a value is reported.


	n_min_trials (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of reported trial results at a step to judge whether to prune.
If the number of reported intermediate values from all trials at the current step
is less than n_min_trials, the trial will not be pruned. This can be used to ensure
that a minimum number of trials are run to completion without being pruned.








Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.NopPruner


	
class optuna.pruners.NopPruner

	Pruner which never prunes trials.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            assert False, "should_prune() should always return False with this pruner."
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize", pruner=optuna.pruners.NopPruner())
study.optimize(objective, n_trials=20)





Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.PatientPruner


	
class optuna.pruners.PatientPruner(wrapped_pruner, patience, min_delta=0.0)

	Pruner which wraps another pruner with tolerance.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.PatientPruner(optuna.pruners.MedianPruner(), patience=1),
)
study.optimize(objective, n_trials=20)






	Parameters:

	
	wrapped_pruner (BasePruner | None) – Wrapped pruner to perform pruning when PatientPruner allows a
trial to be pruned. If it is None [https://docs.python.org/3/library/constants.html#None], this pruner is equivalent to
early-stopping taken the intermediate values in the individual trial.


	patience (int [https://docs.python.org/3/library/functions.html#int]) – Pruning is disabled until the objective doesn’t improve for
patience consecutive steps.


	min_delta (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance value to check whether or not the objective improves.
This value should be non-negative.









Note

Added in v2.8.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.



Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.PercentilePruner


	
class optuna.pruners.PercentilePruner(percentile, n_startup_trials=5, n_warmup_steps=0, interval_steps=1, *, n_min_trials=1)

	Pruner to keep the specified percentile of the trials.

Prune if the best intermediate value is in the bottom percentile among trials at the same step.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.PercentilePruner(
        25.0, n_startup_trials=5, n_warmup_steps=30, interval_steps=10
    ),
)
study.optimize(objective, n_trials=20)






	Parameters:

	
	percentile (float [https://docs.python.org/3/library/functions.html#float]) – Percentile which must be between 0 and 100 inclusive
(e.g., When given 25.0, top of 25th percentile trials are kept).


	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – Pruning is disabled until the given number of trials finish in the same study.


	n_warmup_steps (int [https://docs.python.org/3/library/functions.html#int]) – Pruning is disabled until the trial exceeds the given number of step. Note that
this feature assumes that step starts at zero.


	interval_steps (int [https://docs.python.org/3/library/functions.html#int]) – Interval in number of steps between the pruning checks, offset by the warmup steps.
If no value has been reported at the time of a pruning check, that particular check
will be postponed until a value is reported. Value must be at least 1.


	n_min_trials (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of reported trial results at a step to judge whether to prune.
If the number of reported intermediate values from all trials at the current step
is less than n_min_trials, the trial will not be pruned. This can be used to ensure
that a minimum number of trials are run to completion without being pruned.








Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.SuccessiveHalvingPruner


	
class optuna.pruners.SuccessiveHalvingPruner(min_resource='auto', reduction_factor=4, min_early_stopping_rate=0, bootstrap_count=0)

	Pruner using Asynchronous Successive Halving Algorithm.

Successive Halving [https://arxiv.org/abs/1502.07943] is a bandit-based algorithm to
identify the best one among multiple configurations. This class implements an asynchronous
version of Successive Halving. Please refer to the paper of
Asynchronous Successive Halving [http://arxiv.org/abs/1810.05934] for detailed descriptions.

Note that, this class does not take care of the parameter for the maximum
resource, referred to as \(R\) in the paper. The maximum resource allocated to a trial is
typically limited inside the objective function (e.g., step number in simple_pruning.py [https://github.com/optuna/optuna-examples/blob/main/simple_pruning.py],
EPOCH number in chainer_integration.py [https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py#L73]).


See also

Please refer to report().



Example

We minimize an objective function with SuccessiveHalvingPruner.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)
    n_train_iter = 100

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(
    direction="maximize", pruner=optuna.pruners.SuccessiveHalvingPruner()
)
study.optimize(objective, n_trials=20)






	Parameters:

	
	min_resource (str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]) – A parameter for specifying the minimum resource allocated to a trial
(in the paper [http://arxiv.org/abs/1810.05934] this parameter is
referred to as \(r\)).
This parameter defaults to ‘auto’ where the value is determined based on a heuristic
that looks at the number of required steps for the first trial to complete.

A trial is never pruned until it executes
\(\mathsf{min}\_\mathsf{resource} \times
\mathsf{reduction}\_\mathsf{factor}^{
\mathsf{min}\_\mathsf{early}\_\mathsf{stopping}\_\mathsf{rate}}\)
steps (i.e., the completion point of the first rung). When the trial completes
the first rung, it will be promoted to the next rung only
if the value of the trial is placed in the top
\({1 \over \mathsf{reduction}\_\mathsf{factor}}\) fraction of
the all trials that already have reached the point (otherwise it will be pruned there).
If the trial won the competition, it runs until the next completion point (i.e.,
\(\mathsf{min}\_\mathsf{resource} \times
\mathsf{reduction}\_\mathsf{factor}^{
(\mathsf{min}\_\mathsf{early}\_\mathsf{stopping}\_\mathsf{rate}
+ \mathsf{rung})}\) steps)
and repeats the same procedure.


Note

If the step of the last intermediate value may change with each trial, please
manually specify the minimum possible step to min_resource.






	reduction_factor (int [https://docs.python.org/3/library/functions.html#int]) – A parameter for specifying reduction factor of promotable trials
(in the paper [http://arxiv.org/abs/1810.05934] this parameter is
referred to as \(\eta\)).  At the completion point of each rung,
about \({1 \over \mathsf{reduction}\_\mathsf{factor}}\)
trials will be promoted.




	min_early_stopping_rate (int [https://docs.python.org/3/library/functions.html#int]) – A parameter for specifying the minimum early-stopping rate
(in the paper [http://arxiv.org/abs/1810.05934] this parameter is
referred to as \(s\)).




	bootstrap_count (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of trials that need to complete a rung before any trial
is considered for promotion into the next rung.








Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.HyperbandPruner


	
class optuna.pruners.HyperbandPruner(min_resource=1, max_resource='auto', reduction_factor=3, bootstrap_count=0)

	Pruner using Hyperband.

As SuccessiveHalving (SHA) requires the number of configurations
\(n\) as its hyperparameter.  For a given finite budget \(B\),
all the configurations have the resources of \(B \over n\) on average.
As you can see, there will be a trade-off of \(B\) and \(B \over n\).
Hyperband [http://www.jmlr.org/papers/volume18/16-558/16-558.pdf] attacks this trade-off
by trying different \(n\) values for a fixed budget.


Note


	In the Hyperband paper, the counterpart of RandomSampler
is used.


	Optuna uses TPESampler by default.


	The benchmark result [https://github.com/optuna/optuna/pull/828#issuecomment-575457360]
shows that optuna.pruners.HyperbandPruner supports both samplers.







Note

If you use HyperbandPruner with TPESampler,
it’s recommended to consider setting larger n_trials or timeout to make full use of
the characteristics of TPESampler
because TPESampler uses some (by default, \(10\))
Trials for its startup.

As Hyperband runs multiple SuccessiveHalvingPruner and collects
trials based on the current Trial‘s bracket ID, each bracket
needs to observe more than \(10\) Trials
for TPESampler to adapt its search space.

Thus, for example, if HyperbandPruner has \(4\) pruners in it,
at least \(4 \times 10\) trials are consumed for startup.




Note

Hyperband has several SuccessiveHalvingPruners. Each
SuccessiveHalvingPruner is referred to as “bracket” in the
original paper. The number of brackets is an important factor to control the early
stopping behavior of Hyperband and is automatically determined by min_resource,
max_resource and reduction_factor as
\(\mathrm{The\ number\ of\ brackets} =
\mathrm{floor}(\log_{\texttt{reduction}\_\texttt{factor}}
(\frac{\texttt{max}\_\texttt{resource}}{\texttt{min}\_\texttt{resource}})) + 1\).
Please set reduction_factor so that the number of brackets is not too large (about 4 –
6 in most use cases). Please see Section 3.6 of the original paper [http://www.jmlr.org/papers/volume18/16-558/16-558.pdf] for the detail.



Example

We minimize an objective function with Hyperband pruning algorithm.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)
n_train_iter = 100


def objective(trial):
    alpha = trial.suggest_float("alpha", 0.0, 1.0)
    clf = SGDClassifier(alpha=alpha)

    for step in range(n_train_iter):
        clf.partial_fit(X_train, y_train, classes=classes)

        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step)

        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.HyperbandPruner(
        min_resource=1, max_resource=n_train_iter, reduction_factor=3
    ),
)
study.optimize(objective, n_trials=20)






	Parameters:

	
	min_resource (int [https://docs.python.org/3/library/functions.html#int]) – A parameter for specifying the minimum resource allocated to a trial noted as \(r\)
in the paper. A smaller \(r\) will give a result faster, but a larger
\(r\) will give a better guarantee of successful judging between configurations.
See the details for SuccessiveHalvingPruner.


	max_resource (str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]) – A parameter for specifying the maximum resource allocated to a trial. \(R\) in the
paper corresponds to max_resource / min_resource. This value represents and should
match the maximum iteration steps (e.g., the number of epochs for neural networks).
When this argument is “auto”, the maximum resource is estimated according to the
completed trials. The default value of this argument is “auto”.


Note

With “auto”, the maximum resource will be the largest step reported by
report() in the first, or one of the first if trained in
parallel, completed trial. No trials will be pruned until the maximum resource is
determined.




Note

If the step of the last intermediate value may change with each trial, please
manually specify the maximum possible step to max_resource.






	reduction_factor (int [https://docs.python.org/3/library/functions.html#int]) – A parameter for specifying reduction factor of promotable trials noted as
\(\eta\) in the paper.
See the details for SuccessiveHalvingPruner.


	bootstrap_count (int [https://docs.python.org/3/library/functions.html#int]) – Parameter specifying the number of trials required in a rung before any trial can be
promoted. Incompatible with max_resource is "auto".
See the details for SuccessiveHalvingPruner.








Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.pruners.ThresholdPruner


	
class optuna.pruners.ThresholdPruner(lower=None, upper=None, n_warmup_steps=0, interval_steps=1)

	Pruner to detect outlying metrics of the trials.

Prune if a metric exceeds upper threshold,
falls behind lower threshold or reaches nan.

Example

from optuna import create_study
from optuna.pruners import ThresholdPruner
from optuna import TrialPruned


def objective_for_upper(trial):
    for step, y in enumerate(ys_for_upper):
        trial.report(y, step)

        if trial.should_prune():
            raise TrialPruned()
    return ys_for_upper[-1]


def objective_for_lower(trial):
    for step, y in enumerate(ys_for_lower):
        trial.report(y, step)

        if trial.should_prune():
            raise TrialPruned()
    return ys_for_lower[-1]


ys_for_upper = [0.0, 0.1, 0.2, 0.5, 1.2]
ys_for_lower = [100.0, 90.0, 0.1, 0.0, -1]

study = create_study(pruner=ThresholdPruner(upper=1.0))
study.optimize(objective_for_upper, n_trials=10)

study = create_study(pruner=ThresholdPruner(lower=0.0))
study.optimize(objective_for_lower, n_trials=10)






	Parameters:

	
	lower (float [https://docs.python.org/3/library/functions.html#float] | None) – A minimum value which determines whether pruner prunes or not.
If an intermediate value is smaller than lower, it prunes.


	upper (float [https://docs.python.org/3/library/functions.html#float] | None) – A maximum value which determines whether pruner prunes or not.
If an intermediate value is larger than upper, it prunes.


	n_warmup_steps (int [https://docs.python.org/3/library/functions.html#int]) – Pruning is disabled if the step is less than the given number of warmup steps.


	interval_steps (int [https://docs.python.org/3/library/functions.html#int]) – Interval in number of steps between the pruning checks, offset by the warmup steps.
If no value has been reported at the time of a pruning check, that particular check
will be postponed until a value is reported. Value must be at least 1.








Methods



	prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.







	
prune(study, trial)

	Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead,
optuna.trial.Trial.report() and optuna.trial.Trial.should_prune() provide
user interfaces to implement pruning mechanism in an objective function.


	Parameters:

	
	study (Study) – Study object of the target study.


	trial (FrozenTrial) – FrozenTrial object of the target trial.
Take a copy before modifying this object.






	Returns:

	A boolean value representing whether the trial should be pruned.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.samplers

The samplers module defines a base class for parameter sampling as described extensively in BaseSampler. The remaining classes in this module represent child classes, deriving from BaseSampler, which implement different sampling strategies.


See also

Efficient Optimization Algorithms tutorial explains the overview of the sampler classes.




See also

User-Defined Sampler tutorial could be helpful if you want to implement your own sampler classes.





	
	RandomSampler

	GridSampler

	TPESampler

	CmaEsSampler

	NSGAIISampler

	QMCSampler

	BoTorchSampler

	BruteForceSampler





	Float parameters

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\) (\(\color{red}\times\) for infinite domain)



	Integer parameters

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)



	Categorical parameters

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)



	Pruning

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{red}\times\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)



	Multivariate optimization

	\(\blacktriangle\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)



	Conditional search space

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\blacktriangle\)

	\(\blacktriangle\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)



	Multi-objective optimization

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{red}\times\)

	\(\color{green}\checkmark\) (\(\blacktriangle\) for single-objective)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)



	Batch optimization

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)



	Distributed optimization

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\color{green}\checkmark\)

	\(\blacktriangle\)

	\(\color{green}\checkmark\)



	Constrained optimization

	\(\color{red}\times\)

	\(\color{red}\times\)

	\(\color{green}\checkmark\)

	\(\color{red}\times\)

	\(\color{green}\checkmark\)

	\(\color{red}\times\)

	\(\color{green}\checkmark\)

	\(\color{red}\times\)



	Time complexity (per trial) (*)

	\(O(d)\)

	\(O(dn)\)

	\(O(dn \log n)\)

	\(O(d^3)\)

	\(O(mp^2)\) (***)

	\(O(dn)\)

	\(O(n^3)\)

	\(O(d)\)



	Recommended budgets (#trials)
(**)

	as many as one likes

	number of combinations

	100 – 1000

	1000 – 10000

	100 – 10000

	as many as one likes

	10 – 100

	number of combinations







Note

\(\color{green}\checkmark\): Supports this feature.
\(\blacktriangle\): Works, but inefficiently.
\(\color{red}\times\): Causes an error, or has no interface.


(*): We assumes that \(d\) is the dimension of the search space, \(n\) is the number of finished trials, \(m\) is the number of objectives, and \(p\) is the population size (algorithm specific parameter).
This table shows the time complexity of the sampling algorithms. We may omit other terms that depend on the implementation in Optuna, including \(O(d)\) to call the sampling methods and \(O(n)\) to collect the completed trials.
This means that, for example, the actual time complexity of RandomSampler is \(O(d+n+d) = O(d+n)\).
From another perspective, with the exception of NSGAIISampler, all time complexity is written for single-objective optimization.

(**): The budget depends on the number of parameters and the number of objectives.

(***): This time complexity assumes that the number of population size \(p\) and the number of parallelization are regular.
This means that the number of parallelization should not exceed the number of population size \(p\).







Note

For float, integer, or categorical parameters, see Pythonic Search Space tutorial.

For pruning, see Efficient Optimization Algorithms tutorial.

For multivariate optimization, see BaseSampler. The multivariate optimization is implemented as sample_relative() in Optuna. Please check the concrete documents of samplers for more details.

For conditional search space, see Pythonic Search Space tutorial and TPESampler. The group option of TPESampler allows TPESampler to handle the conditional search space.

For multi-objective optimization, see Multi-objective Optimization with Optuna tutorial.

For batch optimization, see Batch Optimization tutorial. Note that the constant_liar option of TPESampler allows TPESampler to handle the batch optimization.

For distributed optimization, see Easy Parallelization tutorial. Note that the constant_liar option of TPESampler allows TPESampler to handle the distributed optimization.

For constrained optimization, see an example [https://github.com/optuna/optuna-examples/blob/main/multi_objective/botorch_simple.py].





	optuna.samplers.BaseSampler

	Base class for samplers.



	optuna.samplers.GridSampler

	Sampler using grid search.



	optuna.samplers.RandomSampler

	Sampler using random sampling.



	optuna.samplers.TPESampler

	Sampler using TPE (Tree-structured Parzen Estimator) algorithm.



	optuna.samplers.CmaEsSampler

	A sampler using cmaes [https://github.com/CyberAgentAILab/cmaes] as the backend.



	optuna.samplers.PartialFixedSampler

	Sampler with partially fixed parameters.



	optuna.samplers.NSGAIISampler

	Multi-objective sampler using the NSGA-II algorithm.



	optuna.samplers.NSGAIIISampler

	Multi-objective sampler using the NSGA-III algorithm.



	optuna.samplers.MOTPESampler

	Multi-objective sampler using the MOTPE algorithm.



	optuna.samplers.QMCSampler

	A Quasi Monte Carlo Sampler that generates low-discrepancy sequences.



	optuna.samplers.BruteForceSampler

	Sampler using brute force.



	optuna.samplers.IntersectionSearchSpace

	A class to calculate the intersection search space of a Study.



	optuna.samplers.intersection_search_space

	Return the intersection search space of the Study.







Note

The following optuna.samplers.nsgaii module defines crossover operations used by NSGAIISampler.





	optuna.samplers.nsgaii
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optuna.samplers.BaseSampler


	
class optuna.samplers.BaseSampler

	Base class for samplers.

Optuna combines two types of sampling strategies, which are called relative sampling and
independent sampling.

The relative sampling determines values of multiple parameters simultaneously so that
sampling algorithms can use relationship between parameters (e.g., correlation).
Target parameters of the relative sampling are described in a relative search space, which
is determined by infer_relative_search_space().

The independent sampling determines a value of a single parameter without considering any
relationship between parameters. Target parameters of the independent sampling are the
parameters not described in the relative search space.

More specifically, parameters are sampled by the following procedure.
At the beginning of a trial, infer_relative_search_space()
is called to determine the relative search space for the trial.
During the execution of the objective function,
sample_relative() is called only once
when sampling the parameters belonging to the relative search space for the first time.
sample_independent() is used to sample
parameters that don’t belong to the relative search space.

The following figure depicts the lifetime of a trial and how the above three methods are
called in the trial.

[image: ../../../_images/sampling-sequence.png]






Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
abstract infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
abstract sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
abstract sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.GridSampler


	
class optuna.samplers.GridSampler(search_space, seed=None)

	Sampler using grid search.

With GridSampler, the trials suggest all combinations of parameters
in the given search space during the study.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_int("y", -100, 100)
    return x**2 + y**2


search_space = {"x": [-50, 0, 50], "y": [-99, 0, 99]}
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space))
study.optimize(objective)






Note

GridSampler automatically stops the optimization if all
combinations in the passed search_space have already been evaluated, internally
invoking the stop() method.




Note

GridSampler does not take care of a parameter’s quantization
specified by discrete suggest methods but just samples one of values specified in the
search space. E.g., in the following code snippet, either of -0.5 or 0.5 is
sampled as x instead of an integer point.

import optuna


def objective(trial):
    # The following suggest method specifies integer points between -5 and 5.
    x = trial.suggest_float("x", -5, 5, step=1)
    return x**2


# Non-int points are specified in the grid.
search_space = {"x": [-0.5, 0.5]}
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space))
study.optimize(objective, n_trials=2)








Note

A parameter configuration in the grid is not considered finished until its trial is
finished. Therefore, during distributed optimization where trials run concurrently,
different workers will occasionally suggest the same parameter configuration.
The total number of actual trials may therefore exceed the size of the grid.




Note

All parameters must be specified when using GridSampler with
enqueue_trial().




	Parameters:

	
	search_space (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][None | bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A dictionary whose key and value are a parameter name and the corresponding candidates
of values, respectively.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – A seed to fix the order of trials as the grid is randomly shuffled. Please note that
it is not recommended using this option in distributed optimization settings since
this option cannot ensure the order of trials and may increase the number of duplicate
suggestions during distributed optimization.








Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.RandomSampler


	
class optuna.samplers.RandomSampler(seed=None)

	Sampler using random sampling.

This sampler is based on independent sampling.
See also BaseSampler for more details of ‘independent sampling’.

Example

import optuna
from optuna.samplers import RandomSampler


def objective(trial):
    x = trial.suggest_float("x", -5, 5)
    return x**2


study = optuna.create_study(sampler=RandomSampler())
study.optimize(objective, n_trials=10)






	Parameters:

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.





Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.TPESampler


	
class optuna.samplers.TPESampler(consider_prior=True, prior_weight=1.0, consider_magic_clip=True, consider_endpoints=False, n_startup_trials=10, n_ei_candidates=24, gamma=<function default_gamma>, weights=<function default_weights>, seed=None, *, multivariate=False, group=False, warn_independent_sampling=True, constant_liar=False, constraints_func=None, categorical_distance_func=None)

	Sampler using TPE (Tree-structured Parzen Estimator) algorithm.

This sampler is based on independent sampling.
See also BaseSampler for more details of ‘independent sampling’.

On each trial, for each parameter, TPE fits one Gaussian Mixture Model (GMM) l(x) to
the set of parameter values associated with the best objective values, and another GMM
g(x) to the remaining parameter values. It chooses the parameter value x that
maximizes the ratio l(x)/g(x).

For further information about TPE algorithm, please refer to the following papers:


	Algorithms for Hyper-Parameter Optimization [https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]


	Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures [http://proceedings.mlr.press/v28/bergstra13.pdf]


	Multiobjective tree-structured parzen estimator for computationally expensive optimization
problems [https://dl.acm.org/doi/10.1145/3377930.3389817]


	Multiobjective Tree-Structured Parzen Estimator [https://doi.org/10.1613/jair.1.13188]




Example

import optuna
from optuna.samplers import TPESampler


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return x**2


study = optuna.create_study(sampler=TPESampler())
study.optimize(objective, n_trials=10)






	Parameters:

	
	consider_prior (bool [https://docs.python.org/3/library/functions.html#bool]) – Enhance the stability of Parzen estimator by imposing a Gaussian prior when
True [https://docs.python.org/3/library/constants.html#True]. The prior is only effective if the sampling distribution is
either FloatDistribution,
or IntDistribution.


	prior_weight (float [https://docs.python.org/3/library/functions.html#float]) – The weight of the prior. This argument is used in
FloatDistribution,
IntDistribution, and
CategoricalDistribution.


	consider_magic_clip (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable a heuristic to limit the smallest variances of Gaussians used in
the Parzen estimator.


	consider_endpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – Take endpoints of domains into account when calculating variances of Gaussians
in Parzen estimator. See the original paper for details on the heuristics
to calculate the variances.


	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The random sampling is used instead of the TPE algorithm until the given number
of trials finish in the same study.


	n_ei_candidates (int [https://docs.python.org/3/library/functions.html#int]) – Number of candidate samples used to calculate the expected improvement.


	gamma (Callable[[int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]) – A function that takes the number of finished trials and returns the number
of trials to form a density function for samples with low grains.
See the original paper for more details.


	weights (Callable[[int [https://docs.python.org/3/library/functions.html#int]], np.ndarray]) – A function that takes the number of finished trials and returns a weight for them.
See Making a Science of Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures [http://proceedings.mlr.press/v28/bergstra13.pdf]
for more details.


Note

In the multi-objective case, this argument is only used to compute the weights of
bad trials, i.e., trials to construct g(x) in the paper [https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]
). The weights of good trials, i.e., trials to construct l(x), are computed by a
rule based on the hypervolume contribution proposed in the paper of MOTPE [https://dl.acm.org/doi/10.1145/3377930.3389817].






	seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Seed for random number generator.


	multivariate (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], the multivariate TPE is used when suggesting parameters.
The multivariate TPE is reported to outperform the independent TPE. See BOHB: Robust
and Efficient Hyperparameter Optimization at Scale [http://proceedings.mlr.press/v80/falkner18a.html] for more details.


Note

Added in v2.2.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.2.0.






	group (bool [https://docs.python.org/3/library/functions.html#bool]) – If this and multivariate are True [https://docs.python.org/3/library/constants.html#True], the multivariate TPE with the group
decomposed search space is used when suggesting parameters.
The sampling algorithm decomposes the search space based on past trials and samples
from the joint distribution in each decomposed subspace.
The decomposed subspaces are a partition of the whole search space. Each subspace
is a maximal subset of the whole search space, which satisfies the following:
for a trial in completed trials, the intersection of the subspace and the search space
of the trial becomes subspace itself or an empty set.
Sampling from the joint distribution on the subspace is realized by multivariate TPE.
If group is True [https://docs.python.org/3/library/constants.html#True], multivariate must be True [https://docs.python.org/3/library/constants.html#True] as well.


Note

Added in v2.8.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.8.0.



Example:

import optuna


def objective(trial):
    x = trial.suggest_categorical("x", ["A", "B"])
    if x == "A":
        return trial.suggest_float("y", -10, 10)
    else:
        return trial.suggest_int("z", -10, 10)


sampler = optuna.samplers.TPESampler(multivariate=True, group=True)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)








	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True] and multivariate=True, a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.
If multivariate=False, this flag has no effect.


	constant_liar (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], penalize running trials to avoid suggesting parameter configurations
nearby.


Note

Abnormally terminated trials often leave behind a record with a state of
RUNNING in the storage.
Such “zombie” trial parameters will be avoided by the constant liar algorithm
during subsequent sampling.
When using an RDBStorage, it is possible to enable the
heartbeat_interval to change the records for abnormally terminated trials to
FAIL.




Note

It is recommended to set this value to True [https://docs.python.org/3/library/constants.html#True] during distributed
optimization to avoid having multiple workers evaluating similar parameter
configurations. In particular, if each objective function evaluation is costly
and the durations of the running states are significant, and/or the number of
workers is high.




Note

This feature can be used for only single-objective optimization; this argument is
ignored for multi-objective optimization.




Note

Added in v2.8.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.8.0.






	constraints_func (Optional[Callable[[FrozenTrial], Sequence[float [https://docs.python.org/3/library/functions.html#float]]]]) – An optional function that computes the objective constraints. It must take a
FrozenTrial and return the constraints. The return value must
be a sequence of float [https://docs.python.org/3/library/functions.html#float] s. A value strictly larger than 0 means that a
constraints is violated. A value equal to or smaller than 0 is considered feasible.
If constraints_func returns more than one value for a trial, that trial is
considered feasible if and only if all values are equal to 0 or smaller.

The constraints_func will be evaluated after each successful trial.
The function won’t be called when trials fail or they are pruned, but this behavior is
subject to change in the future releases.


Note

Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.






	categorical_distance_func (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[CategoricalChoiceType, CategoricalChoiceType], float [https://docs.python.org/3/library/functions.html#float]]]]) – A dictionary of distance functions for categorical parameters. The key is the name of
the categorical parameter and the value is a distance function that takes two
CategoricalChoiceType s and returns a float [https://docs.python.org/3/library/functions.html#float]
value. The distance function must return a non-negative value.

While categorical choices are handled equally by default, this option allows users to
specify prior knowledge on the structure of categorical parameters. When specified,
categorical choices closer to current best choices are more likely to be sampled.


Note

Added in v3.4.0 as an experimental feature. The interface may change in newer
versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.4.0.












Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	hyperopt_parameters()

	Return the the default parameters of hyperopt (v0.1.2).



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
static hyperopt_parameters()

	Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned
by this method.

Example

Create a TPESampler instance with the default
parameters of hyperopt [https://github.com/hyperopt/hyperopt/tree/0.1.2].

import optuna
from optuna.samplers import TPESampler


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return x**2


sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)






	Returns:

	A dictionary containing the default parameters of hyperopt.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.CmaEsSampler


	
class optuna.samplers.CmaEsSampler(x0=None, sigma0=None, n_startup_trials=1, independent_sampler=None, warn_independent_sampling=True, seed=None, *, consider_pruned_trials=False, restart_strategy=None, popsize=None, inc_popsize=2, use_separable_cma=False, with_margin=False, lr_adapt=False, source_trials=None)

	A sampler using cmaes [https://github.com/CyberAgentAILab/cmaes] as the backend.

Example

Optimize a simple quadratic function by using CmaEsSampler.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    y = trial.suggest_int("y", -1, 1)
    return x**2 + y


sampler = optuna.samplers.CmaEsSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=20)





Please note that this sampler does not support CategoricalDistribution.
However, FloatDistribution with step,
(suggest_float()) and
IntDistribution (suggest_int())
are supported.

If your search space contains categorical parameters, I recommend you
to use TPESampler instead.
Furthermore, there is room for performance improvements in parallel
optimization settings. This sampler cannot use some trials for updating
the parameters of multivariate normal distribution.

For further information about CMA-ES algorithm, please refer to the following papers:


	N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016. [https://arxiv.org/abs/1604.00772]


	A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population
size. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005),
pages 1769–1776. IEEE Press, 2005. [http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf]


	N. Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed.
GECCO Workshop, 2009. [https://dl.acm.org/doi/10.1145/1570256.1570333]


	Raymond Ros, Nikolaus Hansen. A Simple Modification in CMA-ES Achieving Linear Time and
Space Complexity. 10th International Conference on Parallel Problem Solving From Nature,
Sep 2008, Dortmund, Germany. inria-00287367. [https://hal.inria.fr/inria-00287367/document]


	Masahiro Nomura, Shuhei Watanabe, Youhei Akimoto, Yoshihiko Ozaki, Masaki Onishi.
Warm Starting CMA-ES for Hyperparameter Optimization, AAAI. 2021. [https://arxiv.org/abs/2012.06932]


	R. Hamano, S. Saito, M. Nomura, S. Shirakawa. CMA-ES with Margin: Lower-Bounding Marginal
Probability for Mixed-Integer Black-Box Optimization, GECCO. 2022. [https://arxiv.org/abs/2205.13482]


	M. Nomura, Y. Akimoto, I. Ono. CMA-ES with Learning Rate Adaptation: Can CMA-ES with
Default Population Size Solve Multimodal and Noisy Problems?, GECCO. 2023. [https://arxiv.org/abs/2304.03473]





See also

You can also use optuna.integration.PyCmaSampler which is a sampler using cma
library as the backend.




	Parameters:

	
	x0 (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – A dictionary of an initial parameter values for CMA-ES. By default, the mean of low
and high for each distribution is used. Note that x0 is sampled uniformly
within the search space domain for each restart if you specify restart_strategy
argument.


	sigma0 (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – Initial standard deviation of CMA-ES. By default, sigma0 is set to
min_range / 6, where min_range denotes the minimum range of the distributions
in the search space.


	seed (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – A random seed for CMA-ES.


	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The independent sampling is used instead of the CMA-ES algorithm until the given number
of trials finish in the same study.


	independent_sampler (Optional[BaseSampler]) – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler.
The search space for CmaEsSampler is determined by
intersection_search_space().

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.


See also

optuna.samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.






	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled
via an independent sampler, so no warning messages are emitted in this case.




	restart_strategy (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Strategy for restarting CMA-ES optimization when converges to a local minimum.
If None [https://docs.python.org/3/library/constants.html#None] is given, CMA-ES will not restart (default).
If ‘ipop’ is given, CMA-ES will restart with increasing population size.
if ‘bipop’ is given, CMA-ES will restart with the population size
increased or decreased.
Please see also inc_popsize parameter.


Note

Added in v2.1.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.1.0.






	popsize (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – A population size of CMA-ES. When restart_strategy = 'ipop'
or restart_strategy = 'bipop' is specified,
this is used as the initial population size.


	inc_popsize (int [https://docs.python.org/3/library/functions.html#int]) – Multiplier for increasing population size before each restart.
This argument will be used when restart_strategy = 'ipop'
or restart_strategy = 'bipop' is specified.


	consider_pruned_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], the PRUNED trials are considered for sampling.


Note

Added in v2.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.0.0.




Note

It is suggested to set this flag False [https://docs.python.org/3/library/constants.html#False] when the
MedianPruner is used. On the other hand, it is suggested
to set this flag True [https://docs.python.org/3/library/constants.html#True] when the HyperbandPruner is
used. Please see the benchmark result [https://github.com/optuna/optuna/pull/1229] for the details.






	use_separable_cma (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], the covariance matrix is constrained to be diagonal.
Due to reduce the model complexity, the learning rate for the covariance matrix
is increased. Consequently, this algorithm outperforms CMA-ES on separable functions.


Note

Added in v2.6.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.6.0.






	with_margin (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], CMA-ES with margin is used. This algorithm prevents samples in
each discrete distribution (FloatDistribution with
step and IntDistribution) from being fixed to a single
point.
Currently, this option cannot be used with use_separable_cma=True.


Note

Added in v3.1.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v3.1.0.






	lr_adapt (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], CMA-ES with learning rate adaptation is used.
This algorithm focuses on working well on multimodal and/or noisy problems
with default settings.
Currently, this option cannot be used with use_separable_cma=True or
with_margin=True.


Note

Added in v3.3.0 or later, as an experimental feature.
The interface may change in newer versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v3.3.0.






	source_trials (Optional[List[FrozenTrial]]) – This option is for Warm Starting CMA-ES, a method to transfer prior knowledge on
similar HPO tasks through the initialization of CMA-ES. This method estimates a
promising distribution from source_trials and generates the parameter of
multivariate gaussian distribution. Please note that it is prohibited to use
x0, sigma0, or use_separable_cma argument together.


Note

Added in v2.6.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.6.0.












Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.PartialFixedSampler


	
class optuna.samplers.PartialFixedSampler(fixed_params, base_sampler)

	Sampler with partially fixed parameters.

Example

After several steps of optimization, you can fix the value of y and re-optimize it.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    y = trial.suggest_int("y", -1, 1)
    return x**2 + y


study = optuna.create_study()
study.optimize(objective, n_trials=10)

best_params = study.best_params
fixed_params = {"y": best_params["y"]}
partial_sampler = optuna.samplers.PartialFixedSampler(fixed_params, study.sampler)

study.sampler = partial_sampler
study.optimize(objective, n_trials=10)






	Parameters:

	
	fixed_params (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A dictionary of parameters to be fixed.


	base_sampler (BaseSampler) – A sampler which samples unfixed parameters.









Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.NSGAIISampler


	
class optuna.samplers.NSGAIISampler(*, population_size=50, mutation_prob=None, crossover=None, crossover_prob=0.9, swapping_prob=0.5, seed=None, constraints_func=None, elite_population_selection_strategy=None, child_generation_strategy=None, after_trial_strategy=None)

	Multi-objective sampler using the NSGA-II algorithm.

NSGA-II stands for “Nondominated Sorting Genetic Algorithm II”,
which is a well known, fast and elitist multi-objective genetic algorithm.

For further information about NSGA-II, please refer to the following paper:


	A fast and elitist multiobjective genetic algorithm: NSGA-II [https://ieeexplore.ieee.org/document/996017]





	Parameters:

	
	population_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of individuals (trials) in a generation.
population_size must be greater than or equal to crossover.n_parents.
For UNDXCrossover and
SPXCrossover, n_parents=3, and for the other
algorithms, n_parents=2.


	mutation_prob (float [https://docs.python.org/3/library/functions.html#float] | None) – Probability of mutating each parameter when creating a new individual.
If None [https://docs.python.org/3/library/constants.html#None] is specified, the value 1.0 / len(parent_trial.params) is used
where parent_trial is the parent trial of the target individual.


	crossover (BaseCrossover | None) – Crossover to be applied when creating child individuals.
The available crossovers are listed here:
https://optuna.readthedocs.io/en/stable/reference/samplers/nsgaii.html.

UniformCrossover is always applied to parameters
sampled from CategoricalDistribution, and by
default for parameters sampled from other distributions unless this argument
is specified.

For more information on each of the crossover method, please refer to
specific crossover documentation.




	crossover_prob (float [https://docs.python.org/3/library/functions.html#float]) – Probability that a crossover (parameters swapping between parents) will occur
when creating a new individual.


	swapping_prob (float [https://docs.python.org/3/library/functions.html#float]) – Probability of swapping each parameter of the parents during crossover.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.


	constraints_func (Callable[[FrozenTrial], Sequence[float [https://docs.python.org/3/library/functions.html#float]]] | None) – An optional function that computes the objective constraints. It must take a
FrozenTrial and return the constraints. The return value must
be a sequence of float [https://docs.python.org/3/library/functions.html#float] s. A value strictly larger than 0 means that a
constraints is violated. A value equal to or smaller than 0 is considered feasible.
If constraints_func returns more than one value for a trial, that trial is
considered feasible if and only if all values are equal to 0 or smaller.

The constraints_func will be evaluated after each successful trial.
The function won’t be called when trials fail or they are pruned, but this behavior is
subject to change in the future releases.

The constraints are handled by the constrained domination. A trial x is said to
constrained-dominate a trial y, if any of the following conditions is true:


	Trial x is feasible and trial y is not.


	Trial x and y are both infeasible, but trial x has a smaller overall violation.


	Trial x and y are feasible and trial x dominates trial y.





Note

Added in v2.5.0 as an experimental feature. The interface may change in newer
versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v2.5.0.






	elite_population_selection_strategy (Callable[[Study, list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]], list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]] | None) – The selection strategy for determining the individuals to survive from the current
population pool. Default to None [https://docs.python.org/3/library/constants.html#None].


Note

The arguments elite_population_selection_strategy was added in v3.3.0 as an
experimental feature. The interface may change in newer versions without prior
notice.
See https://github.com/optuna/optuna/releases/tag/v3.3.0.






	child_generation_strategy (Callable[[Study, dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution], list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]] | None) – The strategy for generating child parameters from parent trials. Defaults to
None [https://docs.python.org/3/library/constants.html#None].


Note

The arguments child_generation_strategy was added in v3.3.0 as an experimental
feature. The interface may change in newer versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.3.0.






	after_trial_strategy (Callable[[Study, FrozenTrial, TrialState, Sequence[float [https://docs.python.org/3/library/functions.html#float]] | None], None] | None) – A set of procedure to be conducted after each trial. Defaults to None [https://docs.python.org/3/library/constants.html#None].


Note

The arguments after_trial_strategy was added in v3.3.0 as an experimental
feature. The interface may change in newer versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.3.0.












Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.NSGAIIISampler


	
class optuna.samplers.NSGAIIISampler(*, population_size=50, mutation_prob=None, crossover=None, crossover_prob=0.9, swapping_prob=0.5, seed=None, constraints_func=None, reference_points=None, dividing_parameter=3, child_generation_strategy=None, after_trial_strategy=None)

	Multi-objective sampler using the NSGA-III algorithm.

NSGA-III stands for “Nondominated Sorting Genetic Algorithm III”,
which is a modified version of NSGA-II for many objective optimization problem.

For further information about NSGA-III, please refer to the following papers:


	An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based
Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints [https://doi.org/10.1109/TEVC.2013.2281535]


	An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based
Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive
Approach [https://doi.org/10.1109/TEVC.2013.2281534]





	Parameters:

	
	reference_points (np.ndarray | None) – A 2 dimension numpy.ndarray with objective dimension columns. Represents
a list of reference points which is used to determine who to survive.
After non-dominated sort, who out of borderline front are going to survived is
determined according to how sparse the closest reference point of each individual is.
In the default setting the algorithm uses uniformly spread points to diversify the
result. It is also possible to reflect your preferences by giving an arbitrary set of
target points since the algorithm prioritizes individuals around reference points.


	dividing_parameter (int [https://docs.python.org/3/library/functions.html#int]) – A parameter to determine the density of default reference points. This parameter
determines how many divisions are made between reference points on each axis. The
smaller this value is, the less reference points you have. The default value is 3.
Note that this parameter is not used when reference_points is not None [https://docs.python.org/3/library/constants.html#None].


	population_size (int [https://docs.python.org/3/library/functions.html#int]) – 


	mutation_prob (float [https://docs.python.org/3/library/functions.html#float] | None) – 


	crossover (BaseCrossover | None) – 


	crossover_prob (float [https://docs.python.org/3/library/functions.html#float]) – 


	swapping_prob (float [https://docs.python.org/3/library/functions.html#float]) – 


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – 


	constraints_func (Callable[[FrozenTrial], Sequence[float [https://docs.python.org/3/library/functions.html#float]]] | None) – 


	child_generation_strategy (Callable[[Study, dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution], list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]] | None) – 


	after_trial_strategy (Callable[[Study, FrozenTrial, TrialState, Sequence[float [https://docs.python.org/3/library/functions.html#float]] | None], None] | None) – 









Note

Other parameters than reference_points and dividing_parameter are the same as
NSGAIISampler.




Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.MOTPESampler


	
class optuna.samplers.MOTPESampler(*, consider_prior=True, prior_weight=1.0, consider_magic_clip=True, consider_endpoints=True, n_startup_trials=10, n_ehvi_candidates=24, gamma=<function default_gamma>, weights_above=<function _default_weights_above>, seed=None)

	Multi-objective sampler using the MOTPE algorithm.

This sampler is a multiobjective version of TPESampler.

For further information about MOTPE algorithm, please refer to the following paper:


	Multiobjective tree-structured parzen estimator for computationally expensive optimization
problems [https://dl.acm.org/doi/abs/10.1145/3377930.3389817]


	Multiobjective Tree-Structured Parzen Estimator [https://doi.org/10.1613/jair.1.13188]





	Parameters:

	
	consider_prior (bool [https://docs.python.org/3/library/functions.html#bool]) – Enhance the stability of Parzen estimator by imposing a Gaussian prior when
True [https://docs.python.org/3/library/constants.html#True]. The prior is only effective if the sampling distribution is
either FloatDistribution,
or IntDistribution.


	prior_weight (float [https://docs.python.org/3/library/functions.html#float]) – The weight of the prior. This argument is used in
FloatDistribution,
IntDistribution, and
CategoricalDistribution.


	consider_magic_clip (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable a heuristic to limit the smallest variances of Gaussians used in
the Parzen estimator.


	consider_endpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – Take endpoints of domains into account when calculating variances of Gaussians
in Parzen estimator. See the original paper for details on the heuristics
to calculate the variances.


	n_startup_trials (int [https://docs.python.org/3/library/functions.html#int]) – The random sampling is used instead of the MOTPE algorithm until the given number
of trials finish in the same study. 11 * number of variables - 1 is recommended in the
original paper.


	n_ehvi_candidates (int [https://docs.python.org/3/library/functions.html#int]) – Number of candidate samples used to calculate the expected hypervolume improvement.


	gamma (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]) – A function that takes the number of finished trials and returns the number of trials to
form a density function for samples with low grains. See the original paper for more
details.


	weights_above (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A function that takes the number of finished trials and returns a weight for them. As
default, weights are automatically calculated by the MOTPE’s default strategy.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – Seed for random number generator.









Note

Initialization with Latin hypercube sampling may improve optimization performance.
However, the current implementation only supports initialization with random sampling.



Example

import optuna

seed = 128
num_variables = 2
n_startup_trials = 11 * num_variables - 1


def objective(trial):
    x = []
    for i in range(1, num_variables + 1):
        x.append(trial.suggest_float(f"x{i}", 0.0, 2.0 * i))
    return x


sampler = optuna.samplers.MOTPESampler(
    n_startup_trials=n_startup_trials, n_ehvi_candidates=24, seed=seed
)
study = optuna.create_study(directions=["minimize"] * num_variables, sampler=sampler)
study.optimize(objective, n_trials=n_startup_trials + 10)






Warning

Deprecated in v2.9.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v2.9.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	hyperopt_parameters()

	Return the the default parameters of hyperopt (v0.1.2).



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
static hyperopt_parameters()

	Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned
by this method.

Example

Create a TPESampler instance with the default
parameters of hyperopt [https://github.com/hyperopt/hyperopt/tree/0.1.2].

import optuna
from optuna.samplers import TPESampler


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return x**2


sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)






	Returns:

	A dictionary containing the default parameters of hyperopt.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.QMCSampler


	
class optuna.samplers.QMCSampler(*, qmc_type='sobol', scramble=False, seed=None, independent_sampler=None, warn_asynchronous_seeding=True, warn_independent_sampling=True)

	A Quasi Monte Carlo Sampler that generates low-discrepancy sequences.

Quasi Monte Carlo (QMC) sequences are designed to have lower discrepancies than
standard random sequences. They are known to perform better than the standard
random sequences in hyperparameter optimization.

For further information about the use of QMC sequences for hyperparameter optimization,
please refer to the following paper:


	Bergstra, James, and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research 13.2, 2012. [https://jmlr.org/papers/v13/bergstra12a.html]




We use the QMC implementations in Scipy. For the details of the QMC algorithm,
see the Scipy API references on scipy.stats.qmc [https://scipy.github.io/devdocs/reference/stats.qmc.html].


Note

The search space of the sampler is determined by either previous trials in the study or
the first trial that this sampler samples.

If there are previous trials in the study, QMCSampler infers its
search space using the trial which was created first in the study.

Otherwise (if the study has no previous trials), QMCSampler
samples the first trial using its independent_sampler and then infers the search space
in the second trial.

As mentioned above, the search space of the QMCSampler is
determined by the first trial of the study. Once the search space is determined, it cannot
be changed afterwards.




	Parameters:

	
	qmc_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of QMC sequence to be sampled. This must be one of
“halton” and “sobol”. Default is “sobol”.


Note

Sobol’ sequence is designed to have low-discrepancy property when the number of
samples is \(n=2^m\) for each positive integer \(m\). When it is possible
to pre-specify the number of trials suggested by QMCSampler, it is recommended
that the number of trials should be set as power of two.






	scramble (bool [https://docs.python.org/3/library/functions.html#bool]) – If this option is True [https://docs.python.org/3/library/constants.html#True], scrambling (randomization) is applied to the QMC
sequences.


	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – A seed for QMCSampler. This argument is used only when scramble is True [https://docs.python.org/3/library/constants.html#True].
If this is None [https://docs.python.org/3/library/constants.html#None], the seed is initialized randomly. Default is None [https://docs.python.org/3/library/constants.html#None].


Note

When using multiple QMCSampler’s in parallel and/or
distributed optimization, all the samplers must share the same seed when the
scrambling is enabled. Otherwise, the low-discrepancy property of the samples
will be degraded.






	independent_sampler (BaseSampler | None) – A BaseSampler instance that is used for independent
sampling. The first trial of the study and the parameters not contained in the
relative search space are sampled by this sampler.

If None [https://docs.python.org/3/library/constants.html#None] is specified, RandomSampler is used
as the default.


See also

samplers module provides built-in independent samplers
such as RandomSampler and
TPESampler.






	warn_independent_sampling (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are sampled via an
independent sampler in most cases, so no warning messages are emitted in such cases.




	warn_asynchronous_seeding (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True], a warning message is emitted when the scrambling
(randomization) is applied to the QMC sequence and the random seed of the sampler is
not set manually.


Note

When using parallel and/or distributed optimization without manually
setting the seed, the seed is set randomly for each instances of
QMCSampler for different workers, which ends up
asynchronous seeding for multiple samplers used in the optimization.




See also

See parameter seed in QMCSampler.












Example

Optimize a simple quadratic function by using QMCSampler.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    y = trial.suggest_int("y", -1, 1)
    return x**2 + y


sampler = optuna.samplers.QMCSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=8)






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.BruteForceSampler


	
class optuna.samplers.BruteForceSampler(seed=None)

	Sampler using brute force.

This sampler performs exhaustive search on the defined search space.

Example

import optuna


def objective(trial):
    c = trial.suggest_categorical("c", ["float", "int"])
    if c == "float":
        return trial.suggest_float("x", 1, 3, step=0.5)
    elif c == "int":
        a = trial.suggest_int("a", 1, 3)
        b = trial.suggest_int("b", a, 3)
        return a + b


study = optuna.create_study(sampler=optuna.samplers.BruteForceSampler())
study.optimize(objective)






Note

The defined search space must be finite. Therefore, when using
FloatDistribution or
suggest_float(), step=None is not allowed.




Note

The sampler may fail to try the entire search space in when the suggestion ranges or
parameters are changed in the same Study.




	Parameters:

	seed (int [https://docs.python.org/3/library/functions.html#int] | None) – A seed to fix the order of trials as the search order randomly shuffled. Please note
that it is not recommended using this option in distributed optimization settings since
this option cannot ensure the order of trials and may increase the number of duplicate
suggestions during distributed optimization.






Note

Added in v3.1.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.



Methods



	after_trial(study, trial, state, values)

	Trial post-processing.



	before_trial(study, trial)

	Trial pre-processing.



	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.



	reseed_rng()

	Reseed sampler's random number generator.



	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.



	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.







	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.


Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	state (TrialState) – Resulting trial state.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Resulting trial values. Guaranteed to not be None [https://docs.python.org/3/library/constants.html#None] if trial succeeded.






	Return type:

	None










	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.


Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.






	Return type:

	None










	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.


	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().








	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.


	Return type:

	None










	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sampled parameter.


	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.






	Returns:

	A parameter value.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.


Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.




	Parameters:

	
	study (Study) – Target study object.


	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.


	search_space (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – The search space returned by
infer_relative_search_space().






	Returns:

	A dictionary containing the parameter names and the values.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]
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optuna.samplers.IntersectionSearchSpace


	
class optuna.samplers.IntersectionSearchSpace(include_pruned=False)

	A class to calculate the intersection search space of a Study.

Intersection search space contains the intersection of parameter distributions that have been
suggested in the completed trials of the study so far.
If there are multiple parameters that have the same name but different distributions,
neither is included in the resulting search space
(i.e., the parameters with dynamic value ranges are excluded).

Note that an instance of this class is supposed to be used for only one study.
If different studies are passed to calculate(),
a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.


	Parameters:

	include_pruned (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether pruned trials should be included in the search space.






Warning

Deprecated in v3.2.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Please use optuna.search_space.IntersectionSearchSpace instead.



Methods



	calculate(study[, ordered_dict])

	Returns the intersection search space of the Study.







	
calculate(study, ordered_dict=False)

	Returns the intersection search space of the Study.


	Parameters:

	
	study (Study) – A study with completed trials. The same study must be passed for one instance
of this class through its lifetime.


	ordered_dict (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean flag determining the return type.
If False [https://docs.python.org/3/library/constants.html#False], the returned object will be a dict [https://docs.python.org/3/library/stdtypes.html#dict].
If True [https://docs.python.org/3/library/constants.html#True], the returned object will be a dict [https://docs.python.org/3/library/stdtypes.html#dict] sorted by keys, i.e.
parameter names.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]
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optuna.samplers.intersection_search_space


	
optuna.samplers.intersection_search_space(study, ordered_dict=False, include_pruned=False)

	Return the intersection search space of the Study.

Intersection search space contains the intersection of parameter distributions that have been
suggested in the completed trials of the study so far.
If there are multiple parameters that have the same name but different distributions,
neither is included in the resulting search space
(i.e., the parameters with dynamic value ranges are excluded).


Note

IntersectionSearchSpace provides the same functionality with
a much faster way. Please consider using it if you want to reduce execution time
as much as possible.




	Parameters:

	
	study (Study) – A study with completed trials.


	ordered_dict (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean flag determining the return type.
If False [https://docs.python.org/3/library/constants.html#False], the returned object will be a dict [https://docs.python.org/3/library/stdtypes.html#dict].
If True [https://docs.python.org/3/library/constants.html#True], the returned object will be a dict [https://docs.python.org/3/library/stdtypes.html#dict] sorted by keys, i.e.
parameter names.


	include_pruned (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether pruned trials should be included in the search space.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]






Warning

Deprecated in v3.2.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Please use optuna.search_space.intersection_search_space instead.
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optuna.samplers.nsgaii

The nsgaii module defines crossover operations used by NSGAIISampler.



	optuna.samplers.nsgaii.BaseCrossover

	Base class for crossovers.



	optuna.samplers.nsgaii.UniformCrossover

	Uniform Crossover operation used by NSGAIISampler.



	optuna.samplers.nsgaii.BLXAlphaCrossover

	Blend Crossover operation used by NSGAIISampler.



	optuna.samplers.nsgaii.SPXCrossover

	Simplex Crossover operation used by NSGAIISampler.



	optuna.samplers.nsgaii.SBXCrossover

	Simulated Binary Crossover operation used by NSGAIISampler.



	optuna.samplers.nsgaii.VSBXCrossover

	Modified Simulated Binary Crossover operation used by NSGAIISampler.



	optuna.samplers.nsgaii.UNDXCrossover

	Unimodal Normal Distribution Crossover used by NSGAIISampler.
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optuna.samplers.nsgaii.BaseCrossover


	
class optuna.samplers.nsgaii.BaseCrossover

	Base class for crossovers.

A crossover operation is used by NSGAIISampler
to create new parameter combination from parameters of n parent individuals.


Note

Concrete implementations of this class are expected to only accept parameters
from numerical distributions. At the moment, only crossover operation for categorical
parameters (uniform crossover) is built-in into NSGAIISampler.



Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	Number of parent individuals required to perform crossover.







	
abstract crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
abstract property n_parents: int [https://docs.python.org/3/library/functions.html#int]

	Number of parent individuals required to perform crossover.
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class optuna.samplers.nsgaii.UniformCrossover(swapping_prob=0.5)

	Uniform Crossover operation used by NSGAIISampler.

Select each parameter with equal probability from the two parent individuals.
For further information about uniform crossover, please refer to the following paper:


	Gilbert Syswerda. 1989. Uniform Crossover in Genetic Algorithms.
In Proceedings of the 3rd International Conference on Genetic Algorithms.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2-9. [https://www.researchgate.net/publication/201976488_Uniform_Crossover_in_Genetic_Algorithms]





	Parameters:

	swapping_prob (float [https://docs.python.org/3/library/functions.html#float]) – Probability of swapping each parameter of the parents during crossover.





Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	







	
crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
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class optuna.samplers.nsgaii.BLXAlphaCrossover(alpha=0.5)

	Blend Crossover operation used by NSGAIISampler.

Uniformly samples child individuals from the hyper-rectangles created
by the two parent individuals. For further information about BLX-alpha crossover,
please refer to the following paper:


	Eshelman, L. and J. D. Schaffer.
Real-Coded Genetic Algorithms and Interval-Schemata. FOGA (1992). [https://www.sciencedirect.com/science/article/abs/pii/B9780080948324500180]





	Parameters:

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Parametrizes blend operation.






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	







	
crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
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class optuna.samplers.nsgaii.SPXCrossover(epsilon=None)

	Simplex Crossover operation used by NSGAIISampler.

Uniformly samples child individuals from within a single simplex
that is similar to the simplex produced by the parent individual.
For further information about SPX crossover, please refer to the following paper:


	Shigeyoshi Tsutsui and Shigeyoshi Tsutsui and David E. Goldberg and
David E. Goldberg and Kumara Sastry and Kumara Sastry
Progress Toward Linkage Learning in Real-Coded GAs with Simplex Crossover.
IlliGAL Report. 2000. [https://www.researchgate.net/publication/2388486_Progress_Toward_Linkage_Learning_in_Real-Coded_GAs_with_Simplex_Crossover]





	Parameters:

	epsilon (float [https://docs.python.org/3/library/functions.html#float] | None) – Expansion rate. If not specified, defaults to sqrt(len(search_space) + 2).






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	







	
crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
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class optuna.samplers.nsgaii.SBXCrossover(eta=None)

	Simulated Binary Crossover operation used by NSGAIISampler.

Generates a child from two parent individuals
according to the polynomial probability distribution.


	Deb, K. and R. Agrawal.
“Simulated Binary Crossover for Continuous Search Space.”
Complex Syst. 9 (1995): n. pag. [https://www.complex-systems.com/abstracts/v09_i02_a02/]





	Parameters:

	eta (float [https://docs.python.org/3/library/functions.html#float] | None) – Distribution index. A small value of eta allows distant solutions
to be selected as children solutions. If not specified, takes default
value of 2 for single objective functions and 20 for multi objective.






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	







	
crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
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optuna.samplers.nsgaii.VSBXCrossover


	
class optuna.samplers.nsgaii.VSBXCrossover(eta=None)

	Modified Simulated Binary Crossover operation used by
NSGAIISampler.

vSBX generates child individuals without excluding any region of the parameter space,
while maintaining the excellent properties of SBX.


	Pedro J. Ballester, Jonathan N. Carter.
Real-Parameter Genetic Algorithms for Finding Multiple Optimal Solutions
in Multi-modal Optimization. GECCO 2003: 706-717 [https://link.springer.com/chapter/10.1007/3-540-45105-6_86]





	Parameters:

	eta (float [https://docs.python.org/3/library/functions.html#float] | None) – Distribution index. A small value of eta allows distant solutions
to be selected as children solutions. If not specified, takes default
value of 2 for single objective functions and 20 for multi objective.






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	







	
crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
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class optuna.samplers.nsgaii.UNDXCrossover(sigma_xi=0.5, sigma_eta=None)

	Unimodal Normal Distribution Crossover used by NSGAIISampler.

Generates child individuals from the three parents
using a multivariate normal distribution.


	H. Kita, I. Ono and S. Kobayashi,
Multi-parental extension of the unimodal normal distribution crossover
for real-coded genetic algorithms,
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), 1999, pp. 1581-1588 Vol. 2 [https://ieeexplore.ieee.org/document/782672]





	Parameters:

	
	sigma_xi (float [https://docs.python.org/3/library/functions.html#float]) – Parametrizes normal distribution from which xi is drawn.


	sigma_eta (float [https://docs.python.org/3/library/functions.html#float] | None) – Parametrizes normal distribution from which etas are drawn.
If not specified, defaults to 0.35 / sqrt(len(search_space)).









Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.



Methods



	crossover(parents_params, rng, study, ...)

	Perform crossover of selected parent individuals.






Attributes



	n_parents

	







	
crossover(parents_params, rng, study, search_space_bounds)

	Perform crossover of selected parent individuals.

This method is called in sample_relative().


	Parameters:

	
	parents_params (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions num_parents x num_parameters.
Represents a parameter space for each parent individual. This space is
continuous for numerical parameters.


	rng (RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]) – An instance of numpy.random.RandomState.


	study (Study) – Target study object.


	search_space_bounds (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A numpy.ndarray with dimensions len_search_space x 2 representing
numerical distribution bounds constructed from transformed search space.






	Returns:

	A 1-dimensional numpy.ndarray containing new parameter combination.



	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
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The search_space module provides functionality for controlling search space of parameters.



	optuna.search_space.IntersectionSearchSpace

	A class to calculate the intersection search space of a Study.



	optuna.search_space.intersection_search_space

	Return the intersection search space of the given trials.
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class optuna.search_space.IntersectionSearchSpace(include_pruned=False)

	A class to calculate the intersection search space of a Study.

Intersection search space contains the intersection of parameter distributions that have been
suggested in the completed trials of the study so far.
If there are multiple parameters that have the same name but different distributions,
neither is included in the resulting search space
(i.e., the parameters with dynamic value ranges are excluded).

Note that an instance of this class is supposed to be used for only one study.
If different studies are passed to
calculate(),
a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.


	Parameters:

	include_pruned (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether pruned trials should be included in the search space.





Methods



	calculate(study)

	Returns the intersection search space of the Study.







	
calculate(study)

	Returns the intersection search space of the Study.


	Parameters:

	study (Study) – A study with completed trials. The same study must be passed for one instance
of this class through its lifetime.



	Returns:

	A dictionary containing the parameter names and parameter’s distributions sorted by
parameter names.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]
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optuna.search_space.intersection_search_space(trials, include_pruned=False)

	Return the intersection search space of the given trials.

Intersection search space contains the intersection of parameter distributions that have been
suggested in the completed trials of the study so far.
If there are multiple parameters that have the same name but different distributions,
neither is included in the resulting search space
(i.e., the parameters with dynamic value ranges are excluded).


Note

IntersectionSearchSpace provides the same functionality with
a much faster way. Please consider using it if you want to reduce execution time
as much as possible.




	Parameters:

	
	trials (list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]) – A list of trials.


	include_pruned (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether pruned trials should be included in the search space.






	Returns:

	A dictionary containing the parameter names and parameter’s distributions sorted by
parameter names.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]
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The storages module defines a BaseStorage class which abstracts a backend database and provides library-internal interfaces to the read/write histories of the studies and trials. Library users who wish to use storage solutions other than the default in-memory storage should use one of the child classes of BaseStorage documented below.



	optuna.storages.RDBStorage

	Storage class for RDB backend.



	optuna.storages.RetryFailedTrialCallback

	Retry a failed trial up to a maximum number of times.



	optuna.storages.fail_stale_trials

	Fail stale trials and run their failure callbacks.



	optuna.storages.JournalStorage

	Storage class for Journal storage backend.



	optuna.storages.JournalFileStorage

	File storage class for Journal log backend.



	optuna.storages.JournalFileSymlinkLock

	Lock class for synchronizing processes for NFSv2 or later.



	optuna.storages.JournalFileOpenLock

	Lock class for synchronizing processes for NFSv3 or later.



	optuna.storages.JournalRedisStorage

	Redis storage class for Journal log backend.
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class optuna.storages.RDBStorage(url, engine_kwargs=None, skip_compatibility_check=False, *, heartbeat_interval=None, grace_period=None, failed_trial_callback=None, skip_table_creation=False)

	Storage class for RDB backend.

Note that library users can instantiate this class, but the attributes
provided by this class are not supposed to be directly accessed by them.

Example

Create an RDBStorage instance with customized
pool_size and timeout settings.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    return x**2


storage = optuna.storages.RDBStorage(
    url="sqlite:///:memory:",
    engine_kwargs={"pool_size": 20, "connect_args": {"timeout": 10}},
)

study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=10)






	Parameters:

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL of the storage.


	engine_kwargs (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – A dictionary of keyword arguments that is passed to
sqlalchemy.engine.create_engine [https://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine] function.


	skip_compatibility_check (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to skip schema compatibility check if set to True [https://docs.python.org/3/library/constants.html#True].


	heartbeat_interval (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Interval to record the heartbeat. It is recorded every interval seconds.
heartbeat_interval must be None [https://docs.python.org/3/library/constants.html#None] or a positive integer.


Note

The heartbeat is supposed to be used with optimize().
If you use ask() and
tell() instead, it will not work.






	grace_period (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Grace period before a running trial is failed from the last heartbeat.
grace_period must be None [https://docs.python.org/3/library/constants.html#None] or a positive integer.
If it is None [https://docs.python.org/3/library/constants.html#None], the grace period will be 2 * heartbeat_interval.


	failed_trial_callback (Optional[Callable[['optuna.study.Study', FrozenTrial], None]]) – A callback function that is invoked after failing each stale trial.
The function must accept two parameters with the following types in this order:
Study and FrozenTrial.


Note

The procedure to fail existing stale trials is called just before asking the
study for a new trial.






	skip_table_creation (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to skip table creation if set to True [https://docs.python.org/3/library/constants.html#True].









Note

If you use MySQL, pool_pre_ping [https://docs.sqlalchemy.org/en/13/core/engines.html#sqlalchemy.create_engine.params.pool_pre_ping] will be set to True [https://docs.python.org/3/library/constants.html#True] by default to prevent
connection timeout. You can turn it off with engine_kwargs['pool_pre_ping']=False, but
it is recommended to keep the setting if execution time of your objective function is
longer than the wait_timeout of your MySQL configuration.




Note

We would never recommend SQLite3 for parallel optimization.
Please see the FAQ How can I solve the error that occurs when performing parallel optimization with SQLite3? for details.




Note

Mainly in a cluster environment, running trials are often killed unexpectedly.
If you want to detect a failure of trials, please use the heartbeat
mechanism. Set heartbeat_interval, grace_period, and failed_trial_callback
appropriately according to your use case. For more details, please refer to the
tutorial and Example page [https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_checkpoint.py].




See also

You can use RetryFailedTrialCallback to automatically retry
failed trials detected by heartbeat.



Methods



	check_trial_is_updatable(trial_id, trial_state)

	Check whether a trial state is updatable.



	create_new_study(directions[, study_name])

	Create a new study from a name.



	create_new_trial(study_id[, template_trial])

	Create and add a new trial to a study.



	delete_study(study_id)

	Delete a study.



	get_all_studies()

	Read a list of FrozenStudy objects.



	get_all_trials(study_id[, deepcopy, states])

	Read all trials in a study.



	get_all_versions()

	Return the schema version list.



	get_best_trial(study_id)

	Return the trial with the best value in a study.



	get_current_version()

	Return the schema version currently used by this storage.



	get_failed_trial_callback()

	Get the failed trial callback function.



	get_head_version()

	Return the latest schema version.



	get_heartbeat_interval()

	Get the heartbeat interval if it is set.



	get_n_trials(study_id[, state])

	Count the number of trials in a study.



	get_study_directions(study_id)

	Read whether a study maximizes or minimizes an objective.



	get_study_id_from_name(study_name)

	Read the ID of a study.



	get_study_name_from_id(study_id)

	Read the study name of a study.



	get_study_system_attrs(study_id)

	Read the optuna-internal attributes of a study.



	get_study_user_attrs(study_id)

	Read the user-defined attributes of a study.



	get_trial(trial_id)

	Read a trial.



	get_trial_id_from_study_id_trial_number(...)

	Read the trial ID of a trial.



	get_trial_number_from_id(trial_id)

	Read the trial number of a trial.



	get_trial_param(trial_id, param_name)

	Read the parameter of a trial.



	get_trial_params(trial_id)

	Read the parameter dictionary of a trial.



	get_trial_system_attrs(trial_id)

	Read the optuna-internal attributes of a trial.



	get_trial_user_attrs(trial_id)

	Read the user-defined attributes of a trial.



	record_heartbeat(trial_id)

	Record the heartbeat of the trial.



	remove_session()

	Removes the current session.



	set_study_system_attr(study_id, key, value)

	Register an optuna-internal attribute to a study.



	set_study_user_attr(study_id, key, value)

	Register a user-defined attribute to a study.



	set_trial_intermediate_value(trial_id, step, ...)

	Report an intermediate value of an objective function.



	set_trial_param(trial_id, param_name, ...)

	Set a parameter to a trial.



	set_trial_state_values(trial_id, state[, values])

	Update the state and values of a trial.



	set_trial_system_attr(trial_id, key, value)

	Set an optuna-internal attribute to a trial.



	set_trial_user_attr(trial_id, key, value)

	Set a user-defined attribute to a trial.



	upgrade()

	Upgrade the storage schema.







	
check_trial_is_updatable(trial_id, trial_state)

	Check whether a trial state is updatable.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.
Only used for an error message.


	trial_state (TrialState) – Trial state to check.






	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.



	Return type:

	None










	
create_new_study(directions, study_name=None)

	Create a new study from a name.

If no name is specified, the storage class generates a name.
The returned study ID is unique among all current and deleted studies.


	Parameters:

	
	directions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][StudyDirection]) – A sequence of direction whose element is either
MAXIMIZE or
MINIMIZE.


	study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Name of the new study to create.






	Returns:

	ID of the created study.



	Raises:

	optuna.exceptions.DuplicatedStudyError – If a study with the same study_name already exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
create_new_trial(study_id, template_trial=None)

	Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	template_trial (FrozenTrial | None) – Template FrozenTrial with default user-attributes,
system-attributes, intermediate-values, and a state.






	Returns:

	ID of the created trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
delete_study(study_id)

	Delete a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	None










	
get_all_studies()

	Read a list of FrozenStudy objects.


	Returns:

	A list of FrozenStudy objects, sorted by study_id.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][FrozenStudy]










	
get_all_trials(study_id, deepcopy=True, states=None)

	Read all trials in a study.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	deepcopy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to copy the list of trials before returning.
Set to True [https://docs.python.org/3/library/constants.html#True] if you intend to update the list or elements of the list.


	states (Container [https://docs.python.org/3/library/typing.html#typing.Container][TrialState] | None) – Trial states to filter on. If None [https://docs.python.org/3/library/constants.html#None], include all states.






	Returns:

	List of trials in the study, sorted by trial_id.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][FrozenTrial]










	
get_all_versions()

	Return the schema version list.


	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
get_best_trial(study_id)

	Return the trial with the best value in a study.

This method is valid only during single-objective optimization.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	The trial with the best objective value among all finished trials in the study.



	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the study has more than one direction.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If no trials have been completed.






	Return type:

	FrozenTrial










	
get_current_version()

	Return the schema version currently used by this storage.


	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_failed_trial_callback()

	Get the failed trial callback function.


	Returns:

	The failed trial callback function if it is set, otherwise None [https://docs.python.org/3/library/constants.html#None].



	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Study, FrozenTrial], None] | None










	
get_head_version()

	Return the latest schema version.


	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_heartbeat_interval()

	Get the heartbeat interval if it is set.


	Returns:

	The heartbeat interval if it is set, otherwise None [https://docs.python.org/3/library/constants.html#None].



	Return type:

	int [https://docs.python.org/3/library/functions.html#int] | None










	
get_n_trials(study_id, state=None)

	Count the number of trials in a study.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	state (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TrialState, ...] | TrialState | None) – Trial states to filter on. If None [https://docs.python.org/3/library/constants.html#None], include all states.






	Returns:

	Number of trials in the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_study_directions(study_id)

	Read whether a study maximizes or minimizes an objective.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of a study.



	Returns:

	Optimization directions list of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][StudyDirection]










	
get_study_id_from_name(study_name)

	Read the ID of a study.


	Parameters:

	study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the study.



	Returns:

	ID of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_name exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_study_name_from_id(study_id)

	Read the study name of a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	Name of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_study_system_attrs(study_id)

	Read the optuna-internal attributes of a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	Dictionary with the optuna-internal attributes of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_study_user_attrs(study_id)

	Read the user-defined attributes of a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	Dictionary with the user attributes of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_trial(trial_id)

	Read a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Trial with a matching trial ID.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	FrozenTrial










	
get_trial_id_from_study_id_trial_number(study_id, trial_number)

	Read the trial ID of a trial.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	trial_number (int [https://docs.python.org/3/library/functions.html#int]) – Number of the trial.






	Returns:

	ID of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching study_id and trial_number exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_trial_number_from_id(trial_id)

	Read the trial number of a trial.


Note

The trial number is only unique within a study, and is sequential.




	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Number of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_trial_param(trial_id, param_name)

	Read the parameter of a trial.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.






	Returns:

	Internal representation of the parameter.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.
    If no such parameter exists.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
get_trial_params(trial_id)

	Read the parameter dictionary of a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Dictionary of a parameters. Keys are parameter names and values are internal
representations of the parameter values.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_trial_system_attrs(trial_id)

	Read the optuna-internal attributes of a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Dictionary with the optuna-internal attributes of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_trial_user_attrs(trial_id)

	Read the user-defined attributes of a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Dictionary with the user-defined attributes of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
record_heartbeat(trial_id)

	Record the heartbeat of the trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Return type:

	None










	
remove_session()

	Removes the current session.

A session is stored in SQLAlchemy’s ThreadLocalRegistry for each thread. This method
closes and removes the session which is associated to the current thread. Particularly,
under multi-thread use cases, it is important to call this method from each thread.
Otherwise, all sessions and their associated DB connections are destructed by a thread
that occasionally invoked the garbage collector. By default, it is not allowed to touch
a SQLite connection from threads other than the thread that created the connection.
Therefore, we need to explicitly close the connection from each thread.


	Return type:

	None










	
set_study_system_attr(study_id, key, value)

	Register an optuna-internal attribute to a study.

This method overwrites any existing attribute.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], JSONSerializable] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][JSONSerializable] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None) – Attribute value. It should be JSON serializable.






	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	None










	
set_study_user_attr(study_id, key, value)

	Register a user-defined attribute to a study.

This method overwrites any existing attribute.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Attribute value. It should be JSON serializable.






	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	None










	
set_trial_intermediate_value(trial_id, step, intermediate_value)

	Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	step (int [https://docs.python.org/3/library/functions.html#int]) – Step of the trial (e.g., the epoch when training a neural network).


	intermediate_value (float [https://docs.python.org/3/library/functions.html#float]) – Intermediate value corresponding to the step.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
set_trial_param(trial_id, param_name, param_value_internal, distribution)

	Set a parameter to a trial.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.


	param_value_internal (float [https://docs.python.org/3/library/functions.html#float]) – Internal representation of the parameter value.


	distribution (BaseDistribution) – Sampled distribution of the parameter.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
set_trial_state_values(trial_id, state, values=None)

	Update the state and values of a trial.

Set return values of an objective function to values argument.
If values argument is not None [https://docs.python.org/3/library/constants.html#None], this method overwrites any existing trial values.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	state (TrialState) – New state of the trial.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Values of the objective function.






	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the state is successfully updated.
False [https://docs.python.org/3/library/constants.html#False] if the state is kept the same.
The latter happens when this method tries to update the state of
RUNNING trial to
RUNNING.



	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
set_trial_system_attr(trial_id, key, value)

	Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], JSONSerializable] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][JSONSerializable] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None) – Attribute value. It should be JSON serializable.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
set_trial_user_attr(trial_id, key, value)

	Set a user-defined attribute to a trial.

This method overwrites any existing attribute.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Attribute value. It should be JSON serializable.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
upgrade()

	Upgrade the storage schema.


	Return type:

	None
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class optuna.storages.RetryFailedTrialCallback(max_retry=None, inherit_intermediate_values=False)

	Retry a failed trial up to a maximum number of times.

When a trial fails, this callback can be used with a class in optuna.storages to
recreate the trial in TrialState.WAITING to queue up the trial to be run again.

The failed trial can be identified by the
retried_trial_number() function.
Even if repetitive failure occurs (a retried trial fails again),
this method returns the number of the original trial.
To get a full list including the numbers of the retried trials as well as their original trial,
call the retry_history() function.

This callback is helpful in environments where trials may fail due to external conditions,
such as being preempted by other processes.

Usage:


import optuna
from optuna.storages import RetryFailedTrialCallback

storage = optuna.storages.RDBStorage(
    url="sqlite:///:memory:",
    heartbeat_interval=60,
    grace_period=120,
    failed_trial_callback=RetryFailedTrialCallback(max_retry=3),
)

study = optuna.create_study(
    storage=storage,
)









See also

See RDBStorage.




	Parameters:

	
	max_retry (int [https://docs.python.org/3/library/functions.html#int] | None) – The max number of times a trial can be retried. Must be set to None [https://docs.python.org/3/library/constants.html#None] or an
integer. If set to the default value of None [https://docs.python.org/3/library/constants.html#None] will retry indefinitely.
If set to an integer, will only retry that many times.


	inherit_intermediate_values (bool [https://docs.python.org/3/library/functions.html#bool]) – Option to inherit trial.intermediate_values reported by
optuna.trial.Trial.report() from the failed trial. Default is False [https://docs.python.org/3/library/constants.html#False].









Note

Added in v2.8.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.



Methods



	retried_trial_number(trial)

	Return the number of the original trial being retried.



	retry_history(trial)

	Return the list of retried trial numbers with respect to the specified trial.







	
static retried_trial_number(trial)

	Return the number of the original trial being retried.


	Parameters:

	trial (FrozenTrial) – The trial object.



	Returns:

	The number of the first failed trial. If not retry of a previous trial,
returns None [https://docs.python.org/3/library/constants.html#None].



	Return type:

	int [https://docs.python.org/3/library/functions.html#int] | None






Note

Added in v2.8.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.








	
static retry_history(trial)

	Return the list of retried trial numbers with respect to the specified trial.


	Parameters:

	trial (FrozenTrial) – The trial object.



	Returns:

	A list of trial numbers in ascending order of the series of retried trials.
The first item of the list indicates the original trial which is identical
to the retried_trial_number(),
and the last item is the one right before the specified trial in the retry series.
If the specified trial is not a retry of any trial, returns an empty list.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]






Note

Added in v3.0.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.
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optuna.storages.fail_stale_trials(study)

	Fail stale trials and run their failure callbacks.

The running trials whose heartbeat has not been updated for a long time will be failed,
that is, those states will be changed to FAIL.


See also

See RDBStorage.




	Parameters:

	study (Study) – Study holding the trials to check.



	Return type:

	None






Note

Added in v2.9.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.9.0.
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class optuna.storages.JournalStorage(log_storage)

	Storage class for Journal storage backend.

Note that library users can instantiate this class, but the attributes
provided by this class are not supposed to be directly accessed by them.

Journal storage writes a record of every operation to the database as it is executed and
at the same time, keeps a latest snapshot of the database in-memory. If the database crashes
for any reason, the storage can re-establish the contents in memory by replaying the
operations stored from the beginning.

Journal storage has several benefits over the conventional value logging storages.


	The number of IOs can be reduced because of larger granularity of logs.


	Journal storage has simpler backend API than value logging storage.


	Journal storage keeps a snapshot in-memory so no need to add more cache.




Example

import optuna


def objective(trial):
    ...


storage = optuna.storages.JournalStorage(
    optuna.storages.JournalFileStorage("./journal.log"),
)

study = optuna.create_study(storage=storage)
study.optimize(objective)





In a Windows environment, an error message “A required privilege is not held by the
client” may appear. In this case, you can solve the problem with creating storage
by specifying JournalFileOpenLock as follows.

file_path = "./journal.log"
lock_obj = optuna.storages.JournalFileOpenLock(file_path)

storage = optuna.storages.JournalStorage(
    optuna.storages.JournalFileStorage(file_path, lock_obj=lock_obj),
)






Note

Added in v3.1.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.



Methods



	check_trial_is_updatable(trial_id, trial_state)

	Check whether a trial state is updatable.



	create_new_study(directions[, study_name])

	Create a new study from a name.



	create_new_trial(study_id[, template_trial])

	Create and add a new trial to a study.



	delete_study(study_id)

	Delete a study.



	get_all_studies()

	Read a list of FrozenStudy objects.



	get_all_trials(study_id[, deepcopy, states])

	Read all trials in a study.



	get_best_trial(study_id)

	Return the trial with the best value in a study.



	get_n_trials(study_id[, state])

	Count the number of trials in a study.



	get_study_directions(study_id)

	Read whether a study maximizes or minimizes an objective.



	get_study_id_from_name(study_name)

	Read the ID of a study.



	get_study_name_from_id(study_id)

	Read the study name of a study.



	get_study_system_attrs(study_id)

	Read the optuna-internal attributes of a study.



	get_study_user_attrs(study_id)

	Read the user-defined attributes of a study.



	get_trial(trial_id)

	Read a trial.



	get_trial_id_from_study_id_trial_number(...)

	Read the trial ID of a trial.



	get_trial_number_from_id(trial_id)

	Read the trial number of a trial.



	get_trial_param(trial_id, param_name)

	Read the parameter of a trial.



	get_trial_params(trial_id)

	Read the parameter dictionary of a trial.



	get_trial_system_attrs(trial_id)

	Read the optuna-internal attributes of a trial.



	get_trial_user_attrs(trial_id)

	Read the user-defined attributes of a trial.



	remove_session()

	Clean up all connections to a database.



	restore_replay_result(snapshot)

	



	set_study_system_attr(study_id, key, value)

	Register an optuna-internal attribute to a study.



	set_study_user_attr(study_id, key, value)

	Register a user-defined attribute to a study.



	set_trial_intermediate_value(trial_id, step, ...)

	Report an intermediate value of an objective function.



	set_trial_param(trial_id, param_name, ...)

	Set a parameter to a trial.



	set_trial_state_values(trial_id, state[, values])

	Update the state and values of a trial.



	set_trial_system_attr(trial_id, key, value)

	Set an optuna-internal attribute to a trial.



	set_trial_user_attr(trial_id, key, value)

	Set a user-defined attribute to a trial.







	Parameters:

	log_storage (BaseJournalLogStorage) – 






	
check_trial_is_updatable(trial_id, trial_state)

	Check whether a trial state is updatable.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.
Only used for an error message.


	trial_state (TrialState) – Trial state to check.






	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.



	Return type:

	None










	
create_new_study(directions, study_name=None)

	Create a new study from a name.

If no name is specified, the storage class generates a name.
The returned study ID is unique among all current and deleted studies.


	Parameters:

	
	directions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][StudyDirection]) – A sequence of direction whose element is either
MAXIMIZE or
MINIMIZE.


	study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Name of the new study to create.






	Returns:

	ID of the created study.



	Raises:

	optuna.exceptions.DuplicatedStudyError – If a study with the same study_name already exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
create_new_trial(study_id, template_trial=None)

	Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	template_trial (FrozenTrial | None) – Template FrozenTrial with default user-attributes,
system-attributes, intermediate-values, and a state.






	Returns:

	ID of the created trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
delete_study(study_id)

	Delete a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	None










	
get_all_studies()

	Read a list of FrozenStudy objects.


	Returns:

	A list of FrozenStudy objects, sorted by study_id.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][FrozenStudy]










	
get_all_trials(study_id, deepcopy=True, states=None)

	Read all trials in a study.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	deepcopy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to copy the list of trials before returning.
Set to True [https://docs.python.org/3/library/constants.html#True] if you intend to update the list or elements of the list.


	states (Container [https://docs.python.org/3/library/typing.html#typing.Container][TrialState] | None) – Trial states to filter on. If None [https://docs.python.org/3/library/constants.html#None], include all states.






	Returns:

	List of trials in the study, sorted by trial_id.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][FrozenTrial]










	
get_best_trial(study_id)

	Return the trial with the best value in a study.

This method is valid only during single-objective optimization.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	The trial with the best objective value among all finished trials in the study.



	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the study has more than one direction.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If no trials have been completed.






	Return type:

	FrozenTrial










	
get_n_trials(study_id, state=None)

	Count the number of trials in a study.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	state (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TrialState, ...] | TrialState | None) – Trial states to filter on. If None [https://docs.python.org/3/library/constants.html#None], include all states.






	Returns:

	Number of trials in the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_study_directions(study_id)

	Read whether a study maximizes or minimizes an objective.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of a study.



	Returns:

	Optimization directions list of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][StudyDirection]










	
get_study_id_from_name(study_name)

	Read the ID of a study.


	Parameters:

	study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the study.



	Returns:

	ID of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_name exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_study_name_from_id(study_id)

	Read the study name of a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	Name of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_study_system_attrs(study_id)

	Read the optuna-internal attributes of a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	Dictionary with the optuna-internal attributes of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_study_user_attrs(study_id)

	Read the user-defined attributes of a study.


	Parameters:

	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.



	Returns:

	Dictionary with the user attributes of the study.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_trial(trial_id)

	Read a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Trial with a matching trial ID.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	FrozenTrial










	
get_trial_id_from_study_id_trial_number(study_id, trial_number)

	Read the trial ID of a trial.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	trial_number (int [https://docs.python.org/3/library/functions.html#int]) – Number of the trial.






	Returns:

	ID of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching study_id and trial_number exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_trial_number_from_id(trial_id)

	Read the trial number of a trial.


Note

The trial number is only unique within a study, and is sequential.




	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Number of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]










	
get_trial_param(trial_id, param_name)

	Read the parameter of a trial.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.






	Returns:

	Internal representation of the parameter.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.
    If no such parameter exists.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
get_trial_params(trial_id)

	Read the parameter dictionary of a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Dictionary of a parameters. Keys are parameter names and values are internal
representations of the parameter values.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_trial_system_attrs(trial_id)

	Read the optuna-internal attributes of a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Dictionary with the optuna-internal attributes of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_trial_user_attrs(trial_id)

	Read the user-defined attributes of a trial.


	Parameters:

	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.



	Returns:

	Dictionary with the user-defined attributes of the trial.



	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.



	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
remove_session()

	Clean up all connections to a database.


	Return type:

	None










	
set_study_system_attr(study_id, key, value)

	Register an optuna-internal attribute to a study.

This method overwrites any existing attribute.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], JSONSerializable] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][JSONSerializable] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], JSONSerializable] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][JSONSerializable] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None) – Attribute value. It should be JSON serializable.






	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	None










	
set_study_user_attr(study_id, key, value)

	Register a user-defined attribute to a study.

This method overwrites any existing attribute.


	Parameters:

	
	study_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the study.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Attribute value. It should be JSON serializable.






	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no study with the matching study_id exists.



	Return type:

	None










	
set_trial_intermediate_value(trial_id, step, intermediate_value)

	Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	step (int [https://docs.python.org/3/library/functions.html#int]) – Step of the trial (e.g., the epoch when training a neural network).


	intermediate_value (float [https://docs.python.org/3/library/functions.html#float]) – Intermediate value corresponding to the step.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
set_trial_param(trial_id, param_name, param_value_internal, distribution)

	Set a parameter to a trial.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	param_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.


	param_value_internal (float [https://docs.python.org/3/library/functions.html#float]) – Internal representation of the parameter value.


	distribution (BaseDistribution) – Sampled distribution of the parameter.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
set_trial_state_values(trial_id, state, values=None)

	Update the state and values of a trial.

Set return values of an objective function to values argument.
If values argument is not None [https://docs.python.org/3/library/constants.html#None], this method overwrites any existing trial values.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	state (TrialState) – New state of the trial.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Values of the objective function.






	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the state is successfully updated.
False [https://docs.python.org/3/library/constants.html#False] if the state is kept the same.
The latter happens when this method tries to update the state of
RUNNING trial to
RUNNING.



	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
set_trial_system_attr(trial_id, key, value)

	Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], JSONSerializable] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][JSONSerializable] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], JSONSerializable] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][JSONSerializable] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | bool [https://docs.python.org/3/library/functions.html#bool] | None) – Attribute value. It should be JSON serializable.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None










	
set_trial_user_attr(trial_id, key, value)

	Set a user-defined attribute to a trial.

This method overwrites any existing attribute.


	Parameters:

	
	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – ID of the trial.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute key.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Attribute value. It should be JSON serializable.






	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no trial with the matching trial_id exists.


	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the trial is already finished.






	Return type:

	None
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class optuna.storages.JournalFileStorage(file_path, lock_obj=None)

	File storage class for Journal log backend.


	Parameters:

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of file to persist the log to.


	lock_obj (JournalFileBaseLock | None) – Lock object for process exclusivity.








Methods



	append_logs(logs)

	Append logs to the backend.



	read_logs(log_number_from)

	Read logs with a log number greater than or equal to log_number_from.







	
append_logs(logs)

	Append logs to the backend.


	Parameters:

	logs (List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – A list that contains json-serializable logs.



	Return type:

	None










	
read_logs(log_number_from)

	Read logs with a log number greater than or equal to log_number_from.

If log_number_from is 0, read all the logs.


	Parameters:

	log_number_from (int [https://docs.python.org/3/library/functions.html#int]) – A non-negative integer value indicating which logs to read.



	Returns:

	Logs with log number greater than or equal to log_number_from.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]
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class optuna.storages.JournalFileSymlinkLock(filepath)

	Lock class for synchronizing processes for NFSv2 or later.

On acquiring the lock, link system call is called to create an exclusive file. The file is
deleted when the lock is released. In NFS environments prior to NFSv3, use this instead of
JournalFileOpenLock


	Parameters:

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the file whose race condition must be protected.





Methods



	acquire()

	Acquire a lock in a blocking way by creating a symbolic link of a file.



	release()

	Release a lock by removing the symbolic link.







	
acquire()

	Acquire a lock in a blocking way by creating a symbolic link of a file.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if it succeeded in creating a symbolic link of self._lock_target_file.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
release()

	Release a lock by removing the symbolic link.


	Return type:

	None
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class optuna.storages.JournalFileOpenLock(filepath)

	Lock class for synchronizing processes for NFSv3 or later.

On acquiring the lock, open system call is called with the O_EXCL option to create an exclusive
file. The file is deleted when the lock is released. This class is only supported when using
NFSv3 or later on kernel 2.6 or later. In prior NFS environments, use
JournalFileSymlinkLock.


	Parameters:

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the file whose race condition must be protected.





Methods



	acquire()

	Acquire a lock in a blocking way by creating a lock file.



	release()

	Release a lock by removing the created file.







	
acquire()

	Acquire a lock in a blocking way by creating a lock file.


	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if it succeeded in creating a self._lock_file



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
release()

	Release a lock by removing the created file.


	Return type:

	None
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class optuna.storages.JournalRedisStorage(url, use_cluster=False, prefix='')

	Redis storage class for Journal log backend.


	Parameters:

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL of the redis storage, password and db are optional.
(ie: redis://localhost:6379)


	use_cluster (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag whether you use the Redis cluster. If this is False [https://docs.python.org/3/library/constants.html#False], it is assumed that
you use the standalone Redis server and ensured that a write operation is atomic. This
provides the consistency of the preserved logs. If this is True [https://docs.python.org/3/library/constants.html#True], it is assumed
that you use the Redis cluster and not ensured that a write operation is atomic. This
means the preserved logs can be inconsistent due to network errors, and may
cause errors.


	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix of the preserved key of logs. This is useful when multiple users work on one
Redis server.









Note

Added in v3.1.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.



Methods



	append_logs(logs)

	Append logs to the backend.



	load_snapshot()

	Load snapshot from the backend.



	read_logs(log_number_from)

	Read logs with a log number greater than or equal to log_number_from.



	save_snapshot(snapshot)

	Save snapshot to the backend.







	
append_logs(logs)

	Append logs to the backend.


	Parameters:

	logs (List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – A list that contains json-serializable logs.



	Return type:

	None










	
load_snapshot()

	Load snapshot from the backend.


	Returns:

	A serialized snapshot (bytes) if found, otherwise None [https://docs.python.org/3/library/constants.html#None].



	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None










	
read_logs(log_number_from)

	Read logs with a log number greater than or equal to log_number_from.

If log_number_from is 0, read all the logs.


	Parameters:

	log_number_from (int [https://docs.python.org/3/library/functions.html#int]) – A non-negative integer value indicating which logs to read.



	Returns:

	Logs with log number greater than or equal to log_number_from.



	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]










	
save_snapshot(snapshot)

	Save snapshot to the backend.


	Parameters:

	snapshot (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A serialized snapshot (bytes)



	Return type:

	None
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optuna.study

The study module implements the Study object and related functions. A public constructor is available for the Study class, but direct use of this constructor is not recommended. Instead, library users should create and load a Study using create_study() and load_study() respectively.



	optuna.study.Study

	A study corresponds to an optimization task, i.e., a set of trials.



	optuna.study.create_study

	Create a new Study.



	optuna.study.load_study

	Load the existing Study that has the specified name.



	optuna.study.delete_study

	Delete a Study object.



	optuna.study.copy_study

	Copy study from one storage to another.



	optuna.study.get_all_study_names

	Get all study names stored in a specified storage.



	optuna.study.get_all_study_summaries

	Get all history of studies stored in a specified storage.



	optuna.study.MaxTrialsCallback

	Set a maximum number of trials before ending the study.



	optuna.study.StudyDirection

	Direction of a Study.



	optuna.study.StudySummary

	Basic attributes and aggregated results of a Study.
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class optuna.study.Study(study_name, storage, sampler=None, pruner=None)

	A study corresponds to an optimization task, i.e., a set of trials.

This object provides interfaces to run a new Trial, access trials’
history, set/get user-defined attributes of the study itself.

Note that the direct use of this constructor is not recommended.
To create and load a study, please refer to the documentation of
create_study() and load_study() respectively.

Methods



	add_trial(trial)

	Add trial to study.



	add_trials(trials)

	Add trials to study.



	ask([fixed_distributions])

	Create a new trial from which hyperparameters can be suggested.



	enqueue_trial(params[, user_attrs, ...])

	Enqueue a trial with given parameter values.



	get_trials([deepcopy, states])

	Return all trials in the study.



	optimize(func[, n_trials, timeout, n_jobs, ...])

	Optimize an objective function.



	set_metric_names(metric_names)

	Set metric names.



	set_system_attr(key, value)

	Set a system attribute to the study.



	set_user_attr(key, value)

	Set a user attribute to the study.



	stop()

	Exit from the current optimization loop after the running trials finish.



	tell(trial[, values, state, skip_if_finished])

	Finish a trial created with ask().



	trials_dataframe([attrs, multi_index])

	Export trials as a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html].






Attributes



	best_params

	Return parameters of the best trial in the study.



	best_trial

	Return the best trial in the study.



	best_trials

	Return trials located at the Pareto front in the study.



	best_value

	Return the best objective value in the study.



	direction

	Return the direction of the study.



	directions

	Return the directions of the study.



	metric_names

	Return metric names.



	system_attrs

	Return system attributes.



	trials

	Return all trials in the study.



	user_attrs

	Return user attributes.







	Parameters:

	
	study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | storages.BaseStorage) – 


	sampler ('samplers.BaseSampler' | None) – 


	pruner (pruners.BasePruner | None) – 









	
add_trial(trial)

	Add trial to study.

The trial is validated before being added.

Example

import optuna
from optuna.distributions import FloatDistribution


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study()
assert len(study.trials) == 0

trial = optuna.trial.create_trial(
    params={"x": 2.0},
    distributions={"x": FloatDistribution(0, 10)},
    value=4.0,
)

study.add_trial(trial)
assert len(study.trials) == 1

study.optimize(objective, n_trials=3)
assert len(study.trials) == 4

other_study = optuna.create_study()

for trial in study.trials:
    other_study.add_trial(trial)
assert len(other_study.trials) == len(study.trials)

other_study.optimize(objective, n_trials=2)
assert len(other_study.trials) == len(study.trials) + 2






See also

This method should in general be used to add already evaluated trials
(trial.state.is_finished() == True). To queue trials for evaluation,
please refer to enqueue_trial().




See also

See create_trial() for how to create trials.




See also

Please refer to Second scenario: Have Optuna utilize already evaluated hyperparameters for the tutorial of specifying
hyperparameters with the evaluated value manually.




	Parameters:

	trial (FrozenTrial) – Trial to add.



	Return type:

	None










	
add_trials(trials)

	Add trials to study.

The trials are validated before being added.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)
assert len(study.trials) == 3

other_study = optuna.create_study()
other_study.add_trials(study.trials)
assert len(other_study.trials) == len(study.trials)

other_study.optimize(objective, n_trials=2)
assert len(other_study.trials) == len(study.trials) + 2






See also

See add_trial() for addition of each trial.




	Parameters:

	trials (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][FrozenTrial]) – Trials to add.



	Return type:

	None










	
ask(fixed_distributions=None)

	Create a new trial from which hyperparameters can be suggested.

This method is part of an alternative to optimize() that allows
controlling the lifetime of a trial outside the scope of func. Each call to this
method should be followed by a call to tell() to finish the
created trial.


See also

The Ask-and-Tell Interface tutorial provides use-cases with examples.



Example

Getting the trial object with the ask() method.

import optuna


study = optuna.create_study()

trial = study.ask()

x = trial.suggest_float("x", -1, 1)

study.tell(trial, x**2)





Example

Passing previously defined distributions to the ask()
method.

import optuna


study = optuna.create_study()

distributions = {
    "optimizer": optuna.distributions.CategoricalDistribution(["adam", "sgd"]),
    "lr": optuna.distributions.FloatDistribution(0.0001, 0.1, log=True),
}

# You can pass the distributions previously defined.
trial = study.ask(fixed_distributions=distributions)

# `optimizer` and `lr` are already suggested and accessible with `trial.params`.
assert "optimizer" in trial.params
assert "lr" in trial.params






	Parameters:

	fixed_distributions (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution] | None) – A dictionary containing the parameter names and parameter’s distributions. Each
parameter in this dictionary is automatically suggested for the returned trial,
even when the suggest method is not explicitly invoked by the user. If this
argument is set to None [https://docs.python.org/3/library/constants.html#None], no parameter is automatically suggested.



	Returns:

	A Trial.



	Return type:

	Trial










	
property best_params: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return parameters of the best trial in the study.


Note

This feature can only be used for single-objective optimization.




	Returns:

	A dictionary containing parameters of the best trial.










	
property best_trial: FrozenTrial

	Return the best trial in the study.


Note

This feature can only be used for single-objective optimization.
If your study is multi-objective,
use best_trials instead.




	Returns:

	A FrozenTrial object of the best trial.






See also

The Re-use the best trial tutorial provides a detailed example of how to use this
method.








	
property best_trials: list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]

	Return trials located at the Pareto front in the study.

A trial is located at the Pareto front if there are no trials that dominate the trial.
It’s called that a trial t0 dominates another trial t1 if
all(v0 <= v1) for v0, v1 in zip(t0.values, t1.values) and
any(v0 < v1) for v0, v1 in zip(t0.values, t1.values) are held.


	Returns:

	A list of FrozenTrial objects.










	
property best_value: float [https://docs.python.org/3/library/functions.html#float]

	Return the best objective value in the study.


Note

This feature can only be used for single-objective optimization.




	Returns:

	A float representing the best objective value.










	
property direction: StudyDirection

	Return the direction of the study.


Note

This feature can only be used for single-objective optimization.
If your study is multi-objective,
use directions instead.




	Returns:

	A StudyDirection object.










	
property directions: list [https://docs.python.org/3/library/stdtypes.html#list][StudyDirection]

	Return the directions of the study.


	Returns:

	A list of StudyDirection objects.










	
enqueue_trial(params, user_attrs=None, skip_if_exists=False)

	Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your
objective function.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study()
study.enqueue_trial({"x": 5})
study.enqueue_trial({"x": 0}, user_attrs={"memo": "optimal"})
study.optimize(objective, n_trials=2)

assert study.trials[0].params == {"x": 5}
assert study.trials[1].params == {"x": 0}
assert study.trials[1].user_attrs == {"memo": "optimal"}






	Parameters:

	
	params (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Parameter values to pass your objective function.


	user_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – A dictionary of user-specific attributes other than params.


	skip_if_exists (bool [https://docs.python.org/3/library/functions.html#bool]) – When True [https://docs.python.org/3/library/constants.html#True], prevents duplicate trials from being enqueued again.


Note

This method might produce duplicated trials if called simultaneously
by multiple processes at the same time with same params dict.










	Return type:

	None






See also

Please refer to First Scenario: Have Optuna evaluate your hyperparameters for the tutorial of specifying
hyperparameters manually.








	
get_trials(deepcopy=True, states=None)

	Return all trials in the study.

The returned trials are ordered by trial number.


See also

See trials for related property.



Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)

trials = study.get_trials()
assert len(trials) == 3






	Parameters:

	
	deepcopy (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to control whether to apply copy.deepcopy() to the trials.
Note that if you set the flag to False [https://docs.python.org/3/library/constants.html#False], you shouldn’t mutate
any fields of the returned trial. Otherwise the internal state of
the study may corrupt and unexpected behavior may happen.


	states (Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container][TrialState] | None) – Trial states to filter on. If None [https://docs.python.org/3/library/constants.html#None], include all states.






	Returns:

	A list of FrozenTrial objects.



	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]










	
property metric_names: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]

	Return metric names.


Note

Use set_metric_names() to set the metric names first.




	Returns:

	A list with names for each dimension of the returned values of the objective function.










	
optimize(func, n_trials=None, timeout=None, n_jobs=1, catch=(), callbacks=None, gc_after_trial=False, show_progress_bar=False)

	Optimize an objective function.

Optimization is done by choosing a suitable set of hyperparameter values from a given
range. Uses a sampler which implements the task of value suggestion based on a specified
distribution. The sampler is specified in create_study() and the
default choice for the sampler is TPE.
See also TPESampler for more details on ‘TPE’.

Optimization will be stopped when receiving a termination signal such as SIGINT and
SIGTERM. Unlike other signals, a trial is automatically and cleanly failed when receiving
SIGINT (Ctrl+C). If n_jobs is greater than one or if another signal than SIGINT
is used, the interrupted trial state won’t be properly updated.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)






	Parameters:

	
	func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Trial], float [https://docs.python.org/3/library/functions.html#float] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]]) – A callable that implements objective function.


	n_trials (int [https://docs.python.org/3/library/functions.html#int] | None) – The number of trials for each process. None [https://docs.python.org/3/library/constants.html#None] represents no limit in terms of
the number of trials. The study continues to create trials until the number of
trials reaches n_trials, timeout period elapses,
stop() is called, or a termination signal such as
SIGTERM or Ctrl+C is received.


See also

optuna.study.MaxTrialsCallback can ensure how many times trials
will be performed across all processes.






	timeout (float [https://docs.python.org/3/library/functions.html#float] | None) – Stop study after the given number of second(s). None [https://docs.python.org/3/library/constants.html#None] represents no limit in
terms of elapsed time. The study continues to create trials until the number of
trials reaches n_trials, timeout period elapses,
stop() is called or, a termination signal such as
SIGTERM or Ctrl+C is received.


	n_jobs (int [https://docs.python.org/3/library/functions.html#int]) – The number of parallel jobs. If this argument is set to -1, the number is
set to CPU count.


Note

n_jobs allows parallelization using threading [https://docs.python.org/3/library/threading.html#module-threading] and may suffer from
Python’s GIL [https://wiki.python.org/moin/GlobalInterpreterLock].
It is recommended to use process-based parallelization
if func is CPU bound.






	catch (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][type [https://docs.python.org/3/library/functions.html#type][Exception [https://docs.python.org/3/library/exceptions.html#Exception]]] | type [https://docs.python.org/3/library/functions.html#type][Exception [https://docs.python.org/3/library/exceptions.html#Exception]]) – A study continues to run even when a trial raises one of the exceptions specified
in this argument. Default is an empty tuple, i.e. the study will stop for any
exception except for TrialPruned.


	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Study, FrozenTrial], None]] | None) – List of callback functions that are invoked at the end of each trial. Each function
must accept two parameters with the following types in this order:
Study and FrozenTrial.


See also

See the tutorial of Callback for Study.optimize for how to use and implement
callback functions.






	gc_after_trial (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to determine whether to automatically run garbage collection after each trial.
Set to True [https://docs.python.org/3/library/constants.html#True] to run the garbage collection, False [https://docs.python.org/3/library/constants.html#False] otherwise.
When it runs, it runs a full collection by internally calling gc.collect() [https://docs.python.org/3/library/gc.html#gc.collect].
If you see an increase in memory consumption over several trials, try setting this
flag to True [https://docs.python.org/3/library/constants.html#True].


See also

How do I avoid running out of memory (OOM) when optimizing studies?






	show_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to show progress bars or not. To disable progress bar, set this False [https://docs.python.org/3/library/constants.html#False].
Currently, progress bar is experimental feature and disabled
when n_trials is None [https://docs.python.org/3/library/constants.html#None], timeout is not None [https://docs.python.org/3/library/constants.html#None], and
n_jobs \(\ne 1\).






	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If nested invocation of this method occurs.



	Return type:

	None










	
set_metric_names(metric_names)

	Set metric names.

This method names each dimension of the returned values of the objective function.
It is particularly useful in multi-objective optimization. The metric names are
mainly referenced by the visualization functions.

Example

import optuna
import pandas


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2, x + 1


study = optuna.create_study(directions=["minimize", "minimize"])
study.set_metric_names(["x**2", "x+1"])
study.optimize(objective, n_trials=3)

df = study.trials_dataframe(multi_index=True)
assert isinstance(df, pandas.DataFrame)
assert list(df.get("values").keys()) == ["x**2", "x+1"]






See also

The names set by this method are used in trials_dataframe()
and plot_pareto_front().




	Parameters:

	metric_names (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of metric names for the objective function.



	Return type:

	None






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.








	
set_system_attr(key, value)

	Set a system attribute to the study.

Note that Optuna internally uses this method to save system messages. Please use
set_user_attr() to set users’ attributes.


	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A key string of the attribute.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A value of the attribute. The value should be JSON serializable.






	Return type:

	None






Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.








	
set_user_attr(key, value)

	Set a user attribute to the study.


See also

See user_attrs for related attribute.




See also

See the recipe on User Attributes.



Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 1)
    y = trial.suggest_float("y", 0, 1)
    return x**2 + y**2


study = optuna.create_study()

study.set_user_attr("objective function", "quadratic function")
study.set_user_attr("dimensions", 2)
study.set_user_attr("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
    "objective function": "quadratic function",
    "dimensions": 2,
    "contributors": ["Akiba", "Sano"],
}






	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A key string of the attribute.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A value of the attribute. The value should be JSON serializable.






	Return type:

	None










	
stop()

	Exit from the current optimization loop after the running trials finish.

This method lets the running optimize() method return
immediately after all trials which the optimize() method
spawned finishes.
This method does not affect any behaviors of parallel or successive study processes.
This method only works when it is called inside an objective function or callback.

Example

import optuna


def objective(trial):
    if trial.number == 4:
        trial.study.stop()
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=10)
assert len(study.trials) == 5






	Return type:

	None










	
property system_attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return system attributes.


	Returns:

	A dictionary containing all system attributes.






Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.








	
tell(trial, values=None, state=None, skip_if_finished=False)

	Finish a trial created with ask().


See also

The Ask-and-Tell Interface tutorial provides use-cases with examples.



Example

import optuna
from optuna.trial import TrialState


def f(x):
    return (x - 2) ** 2


def df(x):
    return 2 * x - 4


study = optuna.create_study()

n_trials = 30

for _ in range(n_trials):
    trial = study.ask()

    lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)

    # Iterative gradient descent objective function.
    x = 3  # Initial value.
    for step in range(128):
        y = f(x)

        trial.report(y, step=step)

        if trial.should_prune():
            # Finish the trial with the pruned state.
            study.tell(trial, state=TrialState.PRUNED)
            break

        gy = df(x)
        x -= gy * lr
    else:
        # Finish the trial with the final value after all iterations.
        study.tell(trial, y)






	Parameters:

	
	trial (Trial | int [https://docs.python.org/3/library/functions.html#int]) – A Trial object or a trial number.


	values (float [https://docs.python.org/3/library/functions.html#float] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Optional objective value or a sequence of such values in case the study is used
for multi-objective optimization. Argument must be provided if state is
COMPLETE and should be None [https://docs.python.org/3/library/constants.html#None] if state
is FAIL or
PRUNED.


	state (TrialState | None) – State to be reported. Must be None [https://docs.python.org/3/library/constants.html#None],
COMPLETE,
FAIL or
PRUNED.
If state is None [https://docs.python.org/3/library/constants.html#None],
it will be updated to COMPLETE
or FAIL depending on whether
validation for values reported succeed or not.


	skip_if_finished (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to control whether exception should be raised when values for already
finished trial are told. If True [https://docs.python.org/3/library/constants.html#True], tell is skipped without any error
when the trial is already finished.






	Returns:

	A FrozenTrial representing the resulting trial.
A returned trial is deep copied thus user can modify it as needed.



	Return type:

	FrozenTrial










	
property trials: list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]

	Return all trials in the study.

The returned trials are ordered by trial number.

This is a short form of self.get_trials(deepcopy=True, states=None).


	Returns:

	A list of FrozenTrial objects.


See also

See get_trials() for related method.














	
trials_dataframe(attrs=('number', 'value', 'datetime_start', 'datetime_complete', 'duration', 'params', 'user_attrs', 'system_attrs', 'state'), multi_index=False)

	Export trials as a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html].

The DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] provides various features to analyze studies. It is also useful to draw a
histogram of objective values and to export trials as a CSV file.
If there are no trials, an empty DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] is returned.

Example

import optuna
import pandas


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)

# Create a dataframe from the study.
df = study.trials_dataframe()
assert isinstance(df, pandas.DataFrame)
assert df.shape[0] == 3  # n_trials.






	Parameters:

	
	attrs (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]) – Specifies field names of FrozenTrial to include them to a
DataFrame of trials.


	multi_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether the returned DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] employs MultiIndex [https://pandas.pydata.org/pandas-docs/stable/advanced.html] or not. Columns that
are hierarchical by nature such as (params, x) will be flattened to
params_x when set to False [https://docs.python.org/3/library/constants.html#False].






	Returns:

	A pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] of trials in the Study.



	Return type:

	pd.DataFrame






Note

If value is in attrs during multi-objective optimization, it is implicitly
replaced with values.




Note

If set_metric_names() is called, the value or values
is implicitly replaced with the dictionary with the objective name as key and the
objective value as value.








	
property user_attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return user attributes.


See also

See set_user_attr() for related method.



Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 1)
    y = trial.suggest_float("y", 0, 1)
    return x**2 + y**2


study = optuna.create_study()

study.set_user_attr("objective function", "quadratic function")
study.set_user_attr("dimensions", 2)
study.set_user_attr("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
    "objective function": "quadratic function",
    "dimensions": 2,
    "contributors": ["Akiba", "Sano"],
}






	Returns:

	A dictionary containing all user attributes.
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optuna.study.create_study


	
optuna.study.create_study(*, storage=None, sampler=None, pruner=None, study_name=None, direction=None, load_if_exists=False, directions=None)

	Create a new Study.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)






	Parameters:

	
	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | storages.BaseStorage | None) – Database URL. If this argument is set to None, in-memory storage is used, and the
Study will not be persistent.


Note


When a database URL is passed, Optuna internally uses SQLAlchemy [https://www.sqlalchemy.org/] to handle
the database. Please refer to SQLAlchemy’s document [https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] for further details.
If you want to specify non-default options to SQLAlchemy Engine [https://docs.sqlalchemy.org/en/latest/core/engines.html], you can
instantiate RDBStorage with your desired options and
pass it to the storage argument instead of a URL.









	sampler ('samplers.BaseSampler' | None) – A sampler object that implements background algorithm for value suggestion.
If None [https://docs.python.org/3/library/constants.html#None] is specified, TPESampler is used during
single-objective optimization and NSGAIISampler during
multi-objective optimization. See also samplers.


	pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of unpromising trials. If None [https://docs.python.org/3/library/constants.html#None]
is specified, MedianPruner is used as the default. See
also pruners.


	study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Study’s name. If this argument is set to None, a unique name is generated
automatically.


	direction (str [https://docs.python.org/3/library/stdtypes.html#str] | StudyDirection | None) – Direction of optimization. Set minimize for minimization and maximize for
maximization. You can also pass the corresponding StudyDirection
object. direction and directions must not be specified at the same time.


Note

If none of direction and directions are specified, the direction of the study
is set to “minimize”.






	load_if_exists (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to control the behavior to handle a conflict of study names.
In the case where a study named study_name already exists in the storage,
a DuplicatedStudyError is raised if load_if_exists is
set to False [https://docs.python.org/3/library/constants.html#False].
Otherwise, the creation of the study is skipped, and the existing one is returned.


	directions (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str] | StudyDirection] | None) – A sequence of directions during multi-objective optimization.
direction and directions must not be specified at the same time.






	Returns:

	A Study object.



	Return type:

	Study






See also

optuna.create_study() is an alias of optuna.study.create_study().




See also

The Saving/Resuming Study with RDB Backend tutorial provides concrete examples to save and resume optimization using
RDB.
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optuna.study.load_study(*, study_name, storage, sampler=None, pruner=None)

	Load the existing Study that has the specified name.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 10)
    return x**2


study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study")
study.optimize(objective, n_trials=3)

loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.db")
assert len(loaded_study.trials) == len(study.trials)






	Parameters:

	
	study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Study’s name. Each study has a unique name as an identifier. If None [https://docs.python.org/3/library/constants.html#None], checks
whether the storage contains a single study, and if so loads that study.
study_name is required if there are multiple studies in the storage.


	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | storages.BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.


	sampler ('samplers.BaseSampler' | None) – A sampler object that implements background algorithm for value suggestion.
If None [https://docs.python.org/3/library/constants.html#None] is specified, TPESampler is used
as the default. See also samplers.


	pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of unpromising trials.
If None [https://docs.python.org/3/library/constants.html#None] is specified, MedianPruner is used
as the default. See also pruners.






	Return type:

	Study






See also

optuna.load_study() is an alias of optuna.study.load_study().
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optuna.study.delete_study(*, study_name, storage)

	Delete a Study object.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

optuna.delete_study(study_name="example-study", storage="sqlite:///example.db")






	Parameters:

	
	study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Study’s name.


	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.






	Return type:

	None






See also

optuna.delete_study() is an alias of optuna.study.delete_study().










            

          

      

      

    

  

  
    
    

    optuna.study.copy_study
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.study.copy_study


	
optuna.study.copy_study(*, from_study_name, from_storage, to_storage, to_study_name=None)

	Copy study from one storage to another.

The direction(s) of the objective(s) in the study, trials, user attributes and system
attributes are copied.


Note

copy_study() copies a study even if the optimization is working on.
It means users will get a copied study that contains a trial that is not finished.



Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(
    study_name="example-study",
    storage="sqlite:///example.db",
)
study.optimize(objective, n_trials=3)

optuna.copy_study(
    from_study_name="example-study",
    from_storage="sqlite:///example.db",
    to_storage="sqlite:///example_copy.db",
)

study = optuna.load_study(
    study_name=None,
    storage="sqlite:///example_copy.db",
)






	Parameters:

	
	from_study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of study.


	from_storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Source database URL such as sqlite:///example.db. Please see also the
documentation of create_study() for further details.


	to_storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Destination database URL.


	to_study_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Name of the created study. If omitted, from_study_name is used.






	Raises:

	DuplicatedStudyError – If a study with a conflicting name already exists in the destination storage.



	Return type:

	None
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optuna.study.get_all_study_names(storage)

	Get all study names stored in a specified storage.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

study_names = optuna.study.get_all_study_names(storage="sqlite:///example.db")
assert len(study_names) == 1

assert study_names[0] == "example-study"






	Parameters:

	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.



	Returns:

	List of all study names in the storage.



	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]






See also

optuna.get_all_study_names() is an alias of
optuna.study.get_all_study_names().
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optuna.study.get_all_study_summaries(storage, include_best_trial=True)

	Get all history of studies stored in a specified storage.

Example

import optuna


def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2


study = optuna.create_study(study_name="example-study", storage="sqlite:///example.db")
study.optimize(objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries(storage="sqlite:///example.db")
assert len(study_summaries) == 1

study_summary = study_summaries[0]
assert study_summary.study_name == "example-study"






	Parameters:

	
	storage (str [https://docs.python.org/3/library/stdtypes.html#str] | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.


	include_best_trial (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the best trials if exist. It potentially increases the number of queries and
may take longer to fetch summaries depending on the storage.






	Returns:

	List of study history summarized as StudySummary objects.



	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][StudySummary]






See also

optuna.get_all_study_summaries() is an alias of
optuna.study.get_all_study_summaries().
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class optuna.study.MaxTrialsCallback(n_trials, states=(TrialState.COMPLETE,))

	Set a maximum number of trials before ending the study.

While the n_trials argument of optuna.study.Study.optimize() sets the number of
trials that will be run, you may want to continue running until you have a certain number of
successfully completed trials or stop the study when you have a certain number of trials that
fail. This MaxTrialsCallback class allows you to set a maximum number of trials for a
particular TrialState before stopping the study.

Example

import optuna
from optuna.study import MaxTrialsCallback
from optuna.trial import TrialState


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    return x**2


study = optuna.create_study()
study.optimize(
    objective,
    callbacks=[MaxTrialsCallback(10, states=(TrialState.COMPLETE,))],
)






	Parameters:

	
	n_trials (int [https://docs.python.org/3/library/functions.html#int]) – The max number of trials. Must be set to an integer.


	states (Container [https://docs.python.org/3/library/typing.html#typing.Container][TrialState] | None) – Tuple of the TrialState to be counted
towards the max trials limit. Default value is (TrialState.COMPLETE,).
If None [https://docs.python.org/3/library/constants.html#None], count all states.
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class optuna.study.StudyDirection(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Direction of a Study.


	
NOT_SET

	Direction has not been set.






	
MINIMIZE

	Study minimizes the objective function.






	
MAXIMIZE

	Study maximizes the objective function.





Methods



	as_integer_ratio()

	Return integer ratio.



	bit_count()

	Number of ones in the binary representation of the absolute value of self.



	bit_length()

	Number of bits necessary to represent self in binary.



	conjugate

	Returns self, the complex conjugate of any int.



	from_bytes([byteorder, signed])

	Return the integer represented by the given array of bytes.



	to_bytes([length, byteorder, signed])

	Return an array of bytes representing an integer.






Attributes



	NOT_SET

	



	MINIMIZE

	



	MAXIMIZE

	



	denominator

	the denominator of a rational number in lowest terms



	imag

	the imaginary part of a complex number



	numerator

	the numerator of a rational number in lowest terms



	real

	the real part of a complex number







	
as_integer_ratio()

	Return integer ratio.

Return a pair of integers, whose ratio is exactly equal to the original int
and with a positive denominator.

>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)










	
bit_count()

	Number of ones in the binary representation of the absolute value of self.

Also known as the population count.

>>> bin(13)
'0b1101'
>>> (13).bit_count()
3










	
bit_length()

	Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6










	
conjugate()

	Returns self, the complex conjugate of any int.






	
denominator

	the denominator of a rational number in lowest terms






	
from_bytes(byteorder='big', *, signed=False)

	Return the integer represented by the given array of bytes.


	bytes
	Holds the array of bytes to convert.  The argument must either
support the buffer protocol or be an iterable object producing bytes.
Bytes and bytearray are examples of built-in objects that support the
buffer protocol.



	byteorder
	The byte order used to represent the integer.  If byteorder is ‘big’,
the most significant byte is at the beginning of the byte array.  If
byteorder is ‘little’, the most significant byte is at the end of the
byte array.  To request the native byte order of the host system, use
`sys.byteorder’ as the byte order value.  Default is to use ‘big’.



	signed
	Indicates whether two’s complement is used to represent the integer.










	
imag

	the imaginary part of a complex number






	
numerator

	the numerator of a rational number in lowest terms






	
real

	the real part of a complex number






	
to_bytes(length=1, byteorder='big', *, signed=False)

	Return an array of bytes representing an integer.


	length
	Length of bytes object to use.  An OverflowError is raised if the
integer is not representable with the given number of bytes.  Default
is length 1.



	byteorder
	The byte order used to represent the integer.  If byteorder is ‘big’,
the most significant byte is at the beginning of the byte array.  If
byteorder is ‘little’, the most significant byte is at the end of the
byte array.  To request the native byte order of the host system, use
`sys.byteorder’ as the byte order value.  Default is to use ‘big’.



	signed
	Determines whether two’s complement is used to represent the integer.
If signed is False and a negative integer is given, an OverflowError
is raised.
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class optuna.study.StudySummary(study_name, direction, best_trial, user_attrs, system_attrs, n_trials, datetime_start, study_id, *, directions=None)

	Basic attributes and aggregated results of a Study.

See also optuna.study.get_all_study_summaries().


	Parameters:

	
	study_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	direction (StudyDirection | None) – 


	best_trial (FrozenTrial | None) – 


	user_attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – 


	system_attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – 


	n_trials (int [https://docs.python.org/3/library/functions.html#int]) – 


	datetime_start (datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None) – 


	study_id (int [https://docs.python.org/3/library/functions.html#int]) – 


	directions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][StudyDirection] | None) – 









	
study_name

	Name of the Study.






	
direction

	StudyDirection of the Study.


Note

This attribute is only available during single-objective optimization.








	
directions

	A sequence of StudyDirection objects.






	
best_trial

	optuna.trial.FrozenTrial with best objective value in the
Study.






	
user_attrs

	Dictionary that contains the attributes of the Study set with
optuna.study.Study.set_user_attr().






	
system_attrs

	Dictionary that contains the attributes of the Study internally
set by Optuna.


Warning

Deprecated in v3.1.0. system_attrs argument will be removed in the future.
The removal of this feature is currently scheduled for v5.0.0,
but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.








	
n_trials

	The number of trials ran in the Study.






	
datetime_start

	Datetime where the Study started.





Attributes



	direction

	



	directions

	



	system_attrs
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optuna.terminator

The terminator module implements a mechanism for automatically terminating the optimization process, accompanied by a callback class for the termination and evaluators for the estimated room for improvement in the optimization and statistical error of the objective function. The terminator stops the optimization process when the estimated potential improvement is smaller than the statistical error.



	optuna.terminator.BaseTerminator

	Base class for terminators.



	optuna.terminator.Terminator

	Automatic stopping mechanism for Optuna studies.



	optuna.terminator.BaseImprovementEvaluator

	Base class for improvement evaluators.



	optuna.terminator.RegretBoundEvaluator

	An error evaluator for upper bound on the regret with high-probability confidence.



	optuna.terminator.BestValueStagnationEvaluator

	Evaluates the stagnation period of the best value in an optimization process.



	optuna.terminator.BaseErrorEvaluator

	Base class for error evaluators.



	optuna.terminator.CrossValidationErrorEvaluator

	An error evaluator for objective functions based on cross-validation.



	optuna.terminator.StaticErrorEvaluator

	An error evaluator that always returns a constant value.



	optuna.terminator.TerminatorCallback

	A callback that terminates the optimization using Terminator.



	optuna.terminator.report_cross_validation_scores

	A function to report cross-validation scores of a trial.
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class optuna.terminator.BaseTerminator

	Base class for terminators.

Methods



	should_terminate(study)
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class optuna.terminator.Terminator(improvement_evaluator=None, error_evaluator=None, min_n_trials=20)

	Automatic stopping mechanism for Optuna studies.

This class implements an automatic stopping mechanism for Optuna studies, aiming to prevent
unnecessary computation. The study is terminated when the statistical error, e.g.
cross-validation error, exceeds the room left for optimization.

For further information about the algorithm, please refer to the following paper:


	A. Makarova et al. Automatic termination for hyperparameter optimization. [https://arxiv.org/abs/2104.08166]





	Parameters:

	
	improvement_evaluator (BaseImprovementEvaluator | None) – An evaluator object for assessing the room left for optimization. Defaults to a
RegretBoundEvaluator object.


	error_evaluator (BaseErrorEvaluator | None) – An evaluator for calculating the statistical error, e.g. cross-validation error.
Defaults to a CrossValidationErrorEvaluator
object.


	min_n_trials (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of trials before termination is considered. Defaults to 20.






	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If min_n_trials is not a positive integer.





Example

import logging
import sys

from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

import optuna
from optuna.terminator import Terminator
from optuna.terminator import report_cross_validation_scores


study = optuna.create_study(direction="maximize")
terminator = Terminator()
min_n_trials = 20

while True:
    trial = study.ask()

    X, y = load_wine(return_X_y=True)

    clf = RandomForestClassifier(
        max_depth=trial.suggest_int("max_depth", 2, 32),
        min_samples_split=trial.suggest_float("min_samples_split", 0, 1),
        criterion=trial.suggest_categorical("criterion", ("gini", "entropy")),
    )

    scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
    report_cross_validation_scores(trial, scores)

    value = scores.mean()
    logging.info(f"Trial #{trial.number} finished with value {value}.")
    study.tell(trial, value)

    if trial.number > min_n_trials and terminator.should_terminate(study):
        logging.info("Terminated by Optuna Terminator!")
        break






See also

Please refer to TerminatorCallback for how to use
the terminator mechanism with the optimize() method.




Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.



Methods



	should_terminate(study)

	Judge whether the study should be terminated based on the reported values.







	
should_terminate(study)

	Judge whether the study should be terminated based on the reported values.


	Parameters:

	study (Study) – 



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.terminator.BaseImprovementEvaluator


	
class optuna.terminator.BaseImprovementEvaluator(*args, **kwargs)

	Base class for improvement evaluators.


Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.



Methods



	evaluate(trials, study_direction)
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optuna.terminator.RegretBoundEvaluator


	
class optuna.terminator.RegretBoundEvaluator(gp=None, top_trials_ratio=0.5, min_n_trials=20, min_lcb_n_additional_samples=2000)

	An error evaluator for upper bound on the regret with high-probability confidence.

This evaluator evaluates the regret of current best solution, which defined as the difference
between the objective value of the best solution and of the global optimum. To be specific,
this evaluator calculates the upper bound on the regret based on the fact that empirical
estimator of the objective function is bounded by lower and upper confidence bounds with
high probability under the Gaussian process model assumption.


	Parameters:

	
	gp (BaseGaussianProcess | None) – A Gaussian process model on which evaluation base. If not specified, the default
Gaussian process model is used.


	top_trials_ratio (float [https://docs.python.org/3/library/functions.html#float]) – A ratio of top trials to be considered when estimating the regret. Default to 0.5.


	min_n_trials (int [https://docs.python.org/3/library/functions.html#int]) – A minimum number of complete trials to estimate the regret. Default to 20.


	min_lcb_n_additional_samples (int [https://docs.python.org/3/library/functions.html#int]) – A minimum number of additional samples to estimate the lower confidence bound.
Default to 2000.









Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.



Methods



	evaluate(trials, study_direction)

	



	get_preprocessing([add_random_inputs])

	













            

          

      

      

    

  

  
    
    

    optuna.terminator.BestValueStagnationEvaluator
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.terminator.BestValueStagnationEvaluator


	
class optuna.terminator.BestValueStagnationEvaluator(max_stagnation_trials=30)

	Evaluates the stagnation period of the best value in an optimization process.

This class is initialized with a maximum stagnation period (max_stagnation_trials)
and is designed to evaluate the remaining trials before reaching this maximum period
of allowed stagnation. If this remaining trials reach zero, the trial terminates.
Therefore, the default error evaluator is instantiated by StaticErrorEvaluator(const=0).


	Parameters:

	max_stagnation_trials (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of trials allowed for stagnation.






Note

Added in v3.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.4.0.



Methods



	evaluate(trials, study_direction)
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optuna.terminator.BaseErrorEvaluator


	
class optuna.terminator.BaseErrorEvaluator

	Base class for error evaluators.

Methods



	evaluate(trials, study_direction)
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optuna.terminator.CrossValidationErrorEvaluator


	
class optuna.terminator.CrossValidationErrorEvaluator(*args, **kwargs)

	An error evaluator for objective functions based on cross-validation.

This evaluator evaluates the objective function’s statistical error, which comes from the
randomness of dataset. This evaluator assumes that the objective function is the average of
the cross-validation and uses the scaled variance of the cross-validation scores in the best
trial at the moment as the statistical error.


Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.



Methods



	evaluate(trials, study_direction)

	Evaluate the statistical error of the objective function based on cross-validation.







	
evaluate(trials, study_direction)

	Evaluate the statistical error of the objective function based on cross-validation.


	Parameters:

	
	trials (list [https://docs.python.org/3/library/stdtypes.html#list][FrozenTrial]) – A list of trials to consider. The best trial in trials is used to compute the
statistical error.


	study_direction (StudyDirection) – The direction of the study.






	Returns:

	A float representing the statistical error of the objective function.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.terminator.StaticErrorEvaluator


	
class optuna.terminator.StaticErrorEvaluator(constant)

	An error evaluator that always returns a constant value.

This evaluator can be used to terminate the optimization when the evaluated improvement
potential is below the fixed threshold.


	Parameters:

	constant (float [https://docs.python.org/3/library/functions.html#float]) – A user-specified constant value to always return as an error estimate.






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.



Methods



	evaluate(trials, study_direction)
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optuna.terminator.TerminatorCallback


	
class optuna.terminator.TerminatorCallback(terminator=None)

	A callback that terminates the optimization using Terminator.

This class implements a callback which wraps Terminator
so that it can be used with the optimize() method.


	Parameters:

	terminator (BaseTerminator | None) – A terminator object which determines whether to terminate the optimization by
assessing the room for optimization and statistical error. Defaults to a
Terminator object with default
improvement_evaluator and error_evaluator.





Example

from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

import optuna
from optuna.terminator import TerminatorCallback
from optuna.terminator import report_cross_validation_scores


def objective(trial):
    X, y = load_wine(return_X_y=True)

    clf = RandomForestClassifier(
        max_depth=trial.suggest_int("max_depth", 2, 32),
        min_samples_split=trial.suggest_float("min_samples_split", 0, 1),
        criterion=trial.suggest_categorical("criterion", ("gini", "entropy")),
    )

    scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
    report_cross_validation_scores(trial, scores)
    return scores.mean()


study = optuna.create_study(direction="maximize")
terminator = TerminatorCallback()
study.optimize(objective, n_trials=50, callbacks=[terminator])






See also

Please refer to Terminator for the details of
the terminator mechanism.




Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.
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optuna.terminator.report_cross_validation_scores


	
optuna.terminator.report_cross_validation_scores(trial, scores)

	A function to report cross-validation scores of a trial.

This function should be called within the objective function to report the cross-validation
scores. The reported scores are used to evaluate the statistical error for termination
judgement.


	Parameters:

	
	trial (Trial) – A Trial object to report the cross-validation scores.


	scores (list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]]) – The cross-validation scores of the trial.






	Return type:

	None






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.
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optuna.trial

The trial module contains Trial related classes and functions.

A Trial instance represents a process of evaluating an objective function. This instance is passed to an objective function and provides interfaces to get parameter suggestion, manage the trial’s state, and set/get user-defined attributes of the trial, so that Optuna users can define a custom objective function through the interfaces. Basically, Optuna users only use it in their custom objective functions.



	optuna.trial.Trial

	A trial is a process of evaluating an objective function.



	optuna.trial.FixedTrial

	A trial class which suggests a fixed value for each parameter.



	optuna.trial.FrozenTrial

	Status and results of a Trial.



	optuna.trial.TrialState

	State of a Trial.



	optuna.trial.create_trial

	Create a new FrozenTrial.
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optuna.trial.Trial


	
class optuna.trial.Trial(study, trial_id)

	A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter
suggestion, manage the trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended.
This object is seamlessly instantiated and passed to the objective function behind
the optuna.study.Study.optimize() method; hence library users do not care about
instantiation of this object.


	Parameters:

	
	study (optuna.study.Study) – A Study object.


	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – A trial ID that is automatically generated.








Methods



	report(value, step)

	Report an objective function value for a given step.



	set_system_attr(key, value)

	Set system attributes to the trial.



	set_user_attr(key, value)

	Set user attributes to the trial.



	should_prune()

	Suggest whether the trial should be pruned or not.



	suggest_categorical()

	Suggest a value for the categorical parameter.



	suggest_discrete_uniform(name, low, high, q)

	Suggest a value for the discrete parameter.



	suggest_float(name, low, high, *[, step, log])

	Suggest a value for the floating point parameter.



	suggest_int(name, low, high[, step, log])

	Suggest a value for the integer parameter.



	suggest_loguniform(name, low, high)

	Suggest a value for the continuous parameter.



	suggest_uniform(name, low, high)

	Suggest a value for the continuous parameter.






Attributes



	datetime_start

	Return start datetime.



	distributions

	Return distributions of parameters to be optimized.



	number

	Return trial's number which is consecutive and unique in a study.



	params

	Return parameters to be optimized.



	relative_params

	



	system_attrs

	Return system attributes.



	user_attrs

	Return user attributes.







	
property datetime_start: datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None]

	Return start datetime.


	Returns:

	Datetime where the Trial started.










	
property distributions: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]

	Return distributions of parameters to be optimized.


	Returns:

	A dictionary containing all distributions.










	
property number: int [https://docs.python.org/3/library/functions.html#int]

	Return trial’s number which is consecutive and unique in a study.


	Returns:

	A trial number.










	
property params: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return parameters to be optimized.


	Returns:

	A dictionary containing all parameters.










	
report(value, step)

	Report an objective function value for a given step.

The reported values are used by the pruners to determine whether this trial should be
pruned.


See also

Please refer to BasePruner.




Note

The reported value is converted to float type by applying float()
function internally. Thus, it accepts all float-like types (e.g., numpy.float32).
If the conversion fails, a TypeError is raised.




Note

If this method is called multiple times at the same step in a trial,
the reported value only the first time is stored and the reported values
from the second time are ignored.




Note

report() does not support multi-objective
optimization.



Example

Report intermediate scores of SGDClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html] training.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)


def objective(trial):
    clf = SGDClassifier(random_state=0)
    for step in range(100):
        clf.partial_fit(X_train, y_train, np.unique(y))
        intermediate_value = clf.score(X_valid, y_valid)
        trial.report(intermediate_value, step=step)
        if trial.should_prune():
            raise optuna.TrialPruned()

    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)






	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – A value returned from the objective function.


	step (int [https://docs.python.org/3/library/functions.html#int]) – Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example,
MedianPruner simply checks if step is less than
n_warmup_steps as the warmup mechanism.
step must be a positive integer.






	Return type:

	None










	
set_system_attr(key, value)

	Set system attributes to the trial.

Note that Optuna internally uses this method to save system messages such as failure
reason of trials. Please use set_user_attr() to set users’
attributes.


	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A key string of the attribute.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A value of the attribute. The value should be JSON serializable.






	Return type:

	None






Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.








	
set_user_attr(key, value)

	Set user attributes to the trial.

The user attributes in the trial can be access via optuna.trial.Trial.user_attrs().


See also

See the recipe on User Attributes.



Example

Save fixed hyperparameters of neural network training.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)


def objective(trial):
    trial.set_user_attr("BATCHSIZE", 128)
    momentum = trial.suggest_float("momentum", 0, 1.0)
    clf = MLPClassifier(
        hidden_layer_sizes=(100, 50),
        batch_size=trial.user_attrs["BATCHSIZE"],
        momentum=momentum,
        solver="sgd",
        random_state=0,
    )
    clf.fit(X_train, y_train)

    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
assert "BATCHSIZE" in study.best_trial.user_attrs.keys()
assert study.best_trial.user_attrs["BATCHSIZE"] == 128






	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – A key string of the attribute.


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – A value of the attribute. The value should be JSON serializable.






	Return type:

	None










	
should_prune()

	Suggest whether the trial should be pruned or not.

The suggestion is made by a pruning algorithm associated with the trial and is based on
previously reported values. The algorithm can be specified when constructing a
Study.


Note

If no values have been reported, the algorithm cannot make meaningful suggestions.
Similarly, if this method is called multiple times with the exact same set of reported
values, the suggestions will be the same.




See also

Please refer to the example code in optuna.trial.Trial.report().




Note

should_prune() does not support multi-objective
optimization.




	Returns:

	A boolean value. If True [https://docs.python.org/3/library/constants.html#True], the trial should be pruned according to the
configured pruning algorithm. Otherwise, the trial should continue.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
suggest_categorical(name: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][None [https://docs.python.org/3/library/constants.html#None]]) → None [https://docs.python.org/3/library/constants.html#None]

	
suggest_categorical(name: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][bool [https://docs.python.org/3/library/functions.html#bool]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	
suggest_categorical(name: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][int [https://docs.python.org/3/library/functions.html#int]]) → int [https://docs.python.org/3/library/functions.html#int]

	
suggest_categorical(name: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]) → float [https://docs.python.org/3/library/functions.html#float]

	
suggest_categorical(name: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	
suggest_categorical(name: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][None [https://docs.python.org/3/library/constants.html#None] | bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None] | bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] | str [https://docs.python.org/3/library/stdtypes.html#str]

	Suggest a value for the categorical parameter.

The value is sampled from choices.

Example

Suggest a kernel function of SVC [https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html].

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)


def objective(trial):
    kernel = trial.suggest_categorical("kernel", ["linear", "poly", "rbf"])
    clf = SVC(kernel=kernel, gamma="scale", random_state=0)
    clf.fit(X_train, y_train)
    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)






	Parameters:

	
	name – A parameter name.


	choices – Parameter value candidates.









See also

CategoricalDistribution.




	Returns:

	A suggested value.






See also

Pythonic Search Space tutorial describes more details and flexible usages.








	
suggest_discrete_uniform(name, low, high, q)

	Suggest a value for the discrete parameter.

The value is sampled from the range \([\mathsf{low}, \mathsf{high}]\),
and the step of discretization is \(q\). More specifically,
this method returns one of the values in the sequence
\(\mathsf{low}, \mathsf{low} + q, \mathsf{low} + 2 q, \dots,
\mathsf{low} + k q \le \mathsf{high}\),
where \(k\) denotes an integer. Note that \(high\) may be changed due to round-off
errors if \(q\) is not an integer. Please check warning messages to find the changed
values.


	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A parameter name.


	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower endpoint of the range of suggested values. low is included in the range.


	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper endpoint of the range of suggested values. high is included in the range.


	q (float [https://docs.python.org/3/library/functions.html#float]) – A step of discretization.






	Returns:

	A suggested float value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, step=…) instead.








	
suggest_float(name, low, high, *, step=None, log=False)

	Suggest a value for the floating point parameter.

Example

Suggest a momentum, learning rate and scaling factor of learning rate
for neural network training.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)


def objective(trial):
    momentum = trial.suggest_float("momentum", 0.0, 1.0)
    learning_rate_init = trial.suggest_float(
        "learning_rate_init", 1e-5, 1e-3, log=True
    )
    power_t = trial.suggest_float("power_t", 0.2, 0.8, step=0.1)
    clf = MLPClassifier(
        hidden_layer_sizes=(100, 50),
        momentum=momentum,
        learning_rate_init=learning_rate_init,
        solver="sgd",
        random_state=0,
        power_t=power_t,
    )
    clf.fit(X_train, y_train)

    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)






	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A parameter name.


	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower endpoint of the range of suggested values. low is included in the range.
low must be less than or equal to high. If log is True [https://docs.python.org/3/library/constants.html#True],
low must be larger than 0.


	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper endpoint of the range of suggested values. high is included in the range.
high must be greater than or equal to low.


	step (float [https://docs.python.org/3/library/functions.html#float] | None) – A step of discretization.


Note

The step and log arguments cannot be used at the same time. To set
the step argument to a float number, set the log argument to
False [https://docs.python.org/3/library/constants.html#False].






	log (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to sample the value from the log domain or not.
If log is true, the value is sampled from the range in the log domain.
Otherwise, the value is sampled from the range in the linear domain.


Note

The step and log arguments cannot be used at the same time. To set
the log argument to True [https://docs.python.org/3/library/constants.html#True], set the step argument to None [https://docs.python.org/3/library/constants.html#None].










	Returns:

	A suggested float value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]






See also

Pythonic Search Space tutorial describes more details and flexible usages.








	
suggest_int(name, low, high, step=1, log=False)

	Suggest a value for the integer parameter.

The value is sampled from the integers in \([\mathsf{low}, \mathsf{high}]\).

Example

Suggest the number of trees in RandomForestClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html].

import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)


def objective(trial):
    n_estimators = trial.suggest_int("n_estimators", 50, 400)
    clf = RandomForestClassifier(n_estimators=n_estimators, random_state=0)
    clf.fit(X_train, y_train)
    return clf.score(X_valid, y_valid)


study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)






	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A parameter name.


	low (int [https://docs.python.org/3/library/functions.html#int]) – Lower endpoint of the range of suggested values. low is included in the range.
low must be less than or equal to high. If log is True [https://docs.python.org/3/library/constants.html#True],
low must be larger than 0.


	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper endpoint of the range of suggested values. high is included in the range.
high must be greater than or equal to low.


	step (int [https://docs.python.org/3/library/functions.html#int]) – A step of discretization.


Note

Note that \(\mathsf{high}\) is modified if the range is not divisible by
\(\mathsf{step}\). Please check the warning messages to find the changed
values.




Note

The method returns one of the values in the sequence
\(\mathsf{low}, \mathsf{low} + \mathsf{step}, \mathsf{low} + 2 *
\mathsf{step}, \dots, \mathsf{low} + k * \mathsf{step} \le
\mathsf{high}\), where \(k\) denotes an integer.




Note

The step != 1 and log arguments cannot be used at the same time.
To set the step argument \(\mathsf{step} \ge 2\), set the
log argument to False [https://docs.python.org/3/library/constants.html#False].






	log (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to sample the value from the log domain or not.


Note

If log is true, at first, the range of suggested values is divided into
grid points of width 1. The range of suggested values is then converted to
a log domain, from which a value is sampled. The uniformly sampled
value is re-converted to the original domain and rounded to the nearest grid
point that we just split, and the suggested value is determined.
For example, if low = 2 and high = 8, then the range of suggested values is
[2, 3, 4, 5, 6, 7, 8] and lower values tend to be more sampled than higher
values.




Note

The step != 1 and log arguments cannot be used at the same time.
To set the log argument to True [https://docs.python.org/3/library/constants.html#True], set the step argument to 1.










	Return type:

	int [https://docs.python.org/3/library/functions.html#int]






See also

Pythonic Search Space tutorial describes more details and flexible usages.








	
suggest_loguniform(name, low, high)

	Suggest a value for the continuous parameter.

The value is sampled from the range \([\mathsf{low}, \mathsf{high})\)
in the log domain. When \(\mathsf{low} = \mathsf{high}\), the value of
\(\mathsf{low}\) will be returned.


	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A parameter name.


	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower endpoint of the range of suggested values. low is included in the range.


	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper endpoint of the range of suggested values. high is included in the range.






	Returns:

	A suggested float value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, log=True) instead.








	
suggest_uniform(name, low, high)

	Suggest a value for the continuous parameter.

The value is sampled from the range \([\mathsf{low}, \mathsf{high})\)
in the linear domain. When \(\mathsf{low} = \mathsf{high}\), the value of
\(\mathsf{low}\) will be returned.


	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A parameter name.


	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower endpoint of the range of suggested values. low is included in the range.


	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper endpoint of the range of suggested values. high is included in the range.






	Returns:

	A suggested float value.



	Return type:

	float [https://docs.python.org/3/library/functions.html#float]






Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float instead.








	
property system_attrs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return system attributes.


	Returns:

	A dictionary containing all system attributes.






Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.








	
property user_attrs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return user attributes.


	Returns:

	A dictionary containing all user attributes.
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optuna.trial.FixedTrial


	
class optuna.trial.FixedTrial(params, number=0)

	A trial class which suggests a fixed value for each parameter.

This object has the same methods as Trial, and it suggests pre-defined
parameter values. The parameter values can be determined at the construction of the
FixedTrial object. In contrast to Trial,
FixedTrial does not depend on Study, and it is
useful for deploying optimization results.

Example

Evaluate an objective function with parameter values given by a user.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x**2 + y


assert objective(optuna.trial.FixedTrial({"x": 1, "y": 0})) == 1






Note

Please refer to Trial for details of methods and properties.




	Parameters:

	
	params (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A dictionary containing all parameters.


	number (int [https://docs.python.org/3/library/functions.html#int]) – A trial number. Defaults to 0.








Methods



	report(value, step)

	



	set_system_attr(key, value)

	



	set_user_attr(key, value)

	



	should_prune()

	



	suggest_categorical()

	



	suggest_discrete_uniform(name, low, high, q)

	



	suggest_float(name, low, high, *[, step, log])

	



	suggest_int(name, low, high[, step, log])

	



	suggest_loguniform(name, low, high)

	



	suggest_uniform(name, low, high)

	






Attributes



	datetime_start

	



	distributions

	



	number

	



	params

	



	system_attrs

	



	user_attrs

	







	
set_system_attr(key, value)

	
Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.




	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	None










	
suggest_discrete_uniform(name, low, high, q)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, step=…) instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 


	q (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
suggest_loguniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, log=True) instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
suggest_uniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.trial.FrozenTrial


	
class optuna.trial.FrozenTrial(number, state, value, datetime_start, datetime_complete, params, distributions, user_attrs, system_attrs, intermediate_values, trial_id, *, values=None)

	Status and results of a Trial.

An object of this class has the same methods as Trial, but is not
associated with, nor has any references to a Study.

It is therefore not possible to make persistent changes to a storage from this object by
itself, for instance by using set_user_attr().

It will suggest the parameter values stored in params and will not sample values from
any distributions.

It can be passed to objective functions (see optimize()) and is
useful for deploying optimization results.

Example

Re-evaluate an objective function with parameter values optimized study.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)
    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)

assert objective(study.best_trial) == study.best_value






Note

Instances are mutable, despite the name.
For instance, set_user_attr() will update user attributes
of objects in-place.

Example:


Overwritten attributes.

import copy
import datetime

import optuna


def objective(trial):
    x = trial.suggest_float("x", -1, 1)

    # this user attribute always differs
    trial.set_user_attr("evaluation time", datetime.datetime.now())

    return x**2


study = optuna.create_study()
study.optimize(objective, n_trials=3)

best_trial = study.best_trial
best_trial_copy = copy.deepcopy(best_trial)

# re-evaluate
objective(best_trial)

# the user attribute is overwritten by re-evaluation
assert best_trial.user_attrs != best_trial_copy.user_attrs











Note

Please refer to Trial for details of methods and properties.




	Parameters:

	
	number (int [https://docs.python.org/3/library/functions.html#int]) – 


	state (TrialState) – 


	value (float [https://docs.python.org/3/library/functions.html#float] | None) – 


	datetime_start (datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None) – 


	datetime_complete (datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None) – 


	params (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – 


	distributions (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution]) – 


	user_attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – 


	system_attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – 


	intermediate_values (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) – 


	trial_id (int [https://docs.python.org/3/library/functions.html#int]) – 


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – 









	
number

	Unique and consecutive number of Trial for each
Study. Note that this field uses zero-based numbering.






	
state

	TrialState of the Trial.






	
value

	Objective value of the Trial.
value and values must not be specified at the same time.






	
values

	Sequence of objective values of the Trial.
The length is greater than 1 if the problem is multi-objective optimization.
value and values must not be specified at the same time.






	
datetime_start

	Datetime where the Trial started.






	
datetime_complete

	Datetime where the Trial finished.






	
params

	Dictionary that contains suggested parameters.






	
distributions

	Dictionary that contains the distributions of params.






	
user_attrs

	Dictionary that contains the attributes of the Trial set with
optuna.trial.Trial.set_user_attr().






	
system_attrs

	Dictionary that contains the attributes of the Trial set with
optuna.trial.Trial.set_system_attr().






	
intermediate_values

	Intermediate objective values set with optuna.trial.Trial.report().





Methods



	report(value, step)

	Interface of report function.



	set_system_attr(key, value)

	



	set_user_attr(key, value)

	



	should_prune()

	Suggest whether the trial should be pruned or not.



	suggest_categorical()

	



	suggest_discrete_uniform(name, low, high, q)

	



	suggest_float(name, low, high, *[, step, log])

	



	suggest_int(name, low, high[, step, log])

	



	suggest_loguniform(name, low, high)

	



	suggest_uniform(name, low, high)

	






Attributes



	datetime_start

	



	distributions

	



	duration

	Return the elapsed time taken to complete the trial.



	last_step

	Return the maximum step of intermediate_values in the trial.



	number

	



	params

	



	system_attrs

	



	user_attrs

	



	value

	



	values

	







	
property duration: timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] | None [https://docs.python.org/3/library/constants.html#None]

	Return the elapsed time taken to complete the trial.


	Returns:

	The duration.










	
property last_step: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Return the maximum step of intermediate_values in the trial.


	Returns:

	The maximum step of intermediates.










	
report(value, step)

	Interface of report function.

Since FrozenTrial is not pruned,
this report function does nothing.


See also

Please refer to should_prune().




	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – A value returned from the objective function.


	step (int [https://docs.python.org/3/library/functions.html#int]) – Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example,
MedianPruner simply checks if step is less than
n_warmup_steps as the warmup mechanism.






	Return type:

	None










	
set_system_attr(key, value)

	
Warning

Deprecated in v3.1.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.1.0.




	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	None










	
should_prune()

	Suggest whether the trial should be pruned or not.

The suggestion is always False [https://docs.python.org/3/library/constants.html#False] regardless of a pruning algorithm.


Note

FrozenTrial only samples one combination of parameters.




	Returns:

	False [https://docs.python.org/3/library/constants.html#False].



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
suggest_discrete_uniform(name, low, high, q)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, step=…) instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 


	q (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
suggest_loguniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float(…, log=True) instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
suggest_uniform(name, low, high)

	
Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v6.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Use suggest_float instead.




	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	low (float [https://docs.python.org/3/library/functions.html#float]) – 


	high (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]
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optuna.trial.TrialState


	
class optuna.trial.TrialState(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	State of a Trial.


	
RUNNING

	The Trial is running.






	
WAITING

	The Trial is waiting and unfinished.






	
COMPLETE

	The Trial has been finished without any error.






	
PRUNED

	The Trial has been pruned with
TrialPruned.






	
FAIL

	The Trial has failed due to an uncaught error.





Methods



	is_finished()

	Return a bool value to represent whether the trial state is unfinished or not.



	as_integer_ratio()

	Return integer ratio.



	bit_count()

	Number of ones in the binary representation of the absolute value of self.



	bit_length()

	Number of bits necessary to represent self in binary.



	conjugate

	Returns self, the complex conjugate of any int.



	from_bytes([byteorder, signed])

	Return the integer represented by the given array of bytes.



	to_bytes([length, byteorder, signed])

	Return an array of bytes representing an integer.






Attributes



	RUNNING

	



	COMPLETE

	



	PRUNED

	



	FAIL

	



	WAITING

	



	denominator

	the denominator of a rational number in lowest terms



	imag

	the imaginary part of a complex number



	numerator

	the numerator of a rational number in lowest terms



	real

	the real part of a complex number







	
as_integer_ratio()

	Return integer ratio.

Return a pair of integers, whose ratio is exactly equal to the original int
and with a positive denominator.

>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)










	
bit_count()

	Number of ones in the binary representation of the absolute value of self.

Also known as the population count.

>>> bin(13)
'0b1101'
>>> (13).bit_count()
3










	
bit_length()

	Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6










	
conjugate()

	Returns self, the complex conjugate of any int.






	
denominator

	the denominator of a rational number in lowest terms






	
from_bytes(byteorder='big', *, signed=False)

	Return the integer represented by the given array of bytes.


	bytes
	Holds the array of bytes to convert.  The argument must either
support the buffer protocol or be an iterable object producing bytes.
Bytes and bytearray are examples of built-in objects that support the
buffer protocol.



	byteorder
	The byte order used to represent the integer.  If byteorder is ‘big’,
the most significant byte is at the beginning of the byte array.  If
byteorder is ‘little’, the most significant byte is at the end of the
byte array.  To request the native byte order of the host system, use
`sys.byteorder’ as the byte order value.  Default is to use ‘big’.



	signed
	Indicates whether two’s complement is used to represent the integer.










	
imag

	the imaginary part of a complex number






	
is_finished()

	Return a bool value to represent whether the trial state is unfinished or not.

The unfinished state is either RUNNING or WAITING.


	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
numerator

	the numerator of a rational number in lowest terms






	
real

	the real part of a complex number






	
to_bytes(length=1, byteorder='big', *, signed=False)

	Return an array of bytes representing an integer.


	length
	Length of bytes object to use.  An OverflowError is raised if the
integer is not representable with the given number of bytes.  Default
is length 1.



	byteorder
	The byte order used to represent the integer.  If byteorder is ‘big’,
the most significant byte is at the beginning of the byte array.  If
byteorder is ‘little’, the most significant byte is at the end of the
byte array.  To request the native byte order of the host system, use
`sys.byteorder’ as the byte order value.  Default is to use ‘big’.



	signed
	Determines whether two’s complement is used to represent the integer.
If signed is False and a negative integer is given, an OverflowError
is raised.
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optuna.trial.create_trial


	
optuna.trial.create_trial(*, state=TrialState.COMPLETE, value=None, values=None, params=None, distributions=None, user_attrs=None, system_attrs=None, intermediate_values=None)

	Create a new FrozenTrial.

Example

import optuna
from optuna.distributions import CategoricalDistribution
from optuna.distributions import FloatDistribution

trial = optuna.trial.create_trial(
    params={"x": 1.0, "y": 0},
    distributions={
        "x": FloatDistribution(0, 10),
        "y": CategoricalDistribution([-1, 0, 1]),
    },
    value=5.0,
)

assert isinstance(trial, optuna.trial.FrozenTrial)
assert trial.value == 5.0
assert trial.params == {"x": 1.0, "y": 0}






See also

See add_trial() for how this function can be used to create a
study from existing trials.




Note

Please note that this is a low-level API. In general, trials that are passed to objective
functions are created inside optimize().




Note

When state is TrialState.COMPLETE, the following parameters are
required:


	params


	distributions


	value or values







	Parameters:

	
	state (TrialState) – Trial state.


	value (float [https://docs.python.org/3/library/functions.html#float] | None) – Trial objective value. Must be specified if state is TrialState.COMPLETE.
value and values must not be specified at the same time.


	values (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]] | None) – Sequence of the trial objective values. The length is greater than 1 if the problem is
multi-objective optimization.
Must be specified if state is TrialState.COMPLETE.
value and values must not be specified at the same time.


	params (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Dictionary with suggested parameters of the trial.


	distributions (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], BaseDistribution] | None) – Dictionary with parameter distributions of the trial.


	user_attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Dictionary with user attributes.


	system_attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None) – Dictionary with system attributes. Should not have to be used for most users.


	intermediate_values (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]] | None) – Dictionary with intermediate objective values of the trial.






	Returns:

	Created trial.



	Return type:

	FrozenTrial
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optuna.visualization

The visualization module provides utility functions for plotting the optimization process using plotly and matplotlib. Plotting functions generally take a Study object and optional parameters are passed as a list to the params argument.


Note

In the optuna.visualization module, the following functions use plotly to create figures, but JupyterLab [https://github.com/jupyterlab/jupyterlab] cannot
render them by default. Please follow this installation guide [https://github.com/plotly/plotly.py#jupyterlab-support] to show figures in
JupyterLab [https://github.com/jupyterlab/jupyterlab].




Note

The plot_param_importances() requires the Python package of scikit-learn [https://github.com/scikit-learn/scikit-learn].





	optuna.visualization.plot_contour

	Plot the parameter relationship as contour plot in a study.



	optuna.visualization.plot_edf

	Plot the objective value EDF (empirical distribution function) of a study.



	optuna.visualization.plot_hypervolume_history

	Plot hypervolume history of all trials in a study.



	optuna.visualization.plot_intermediate_values

	Plot intermediate values of all trials in a study.



	optuna.visualization.plot_optimization_history

	Plot optimization history of all trials in a study.



	optuna.visualization.plot_parallel_coordinate

	Plot the high-dimensional parameter relationships in a study.



	optuna.visualization.plot_param_importances

	Plot hyperparameter importances.



	optuna.visualization.plot_pareto_front

	Plot the Pareto front of a study.



	optuna.visualization.plot_rank

	Plot parameter relations as scatter plots with colors indicating ranks of target value.



	optuna.visualization.plot_slice

	Plot the parameter relationship as slice plot in a study.



	optuna.visualization.plot_terminator_improvement

	Plot the potentials for future objective improvement.



	optuna.visualization.plot_timeline

	Plot the timeline of a study.



	optuna.visualization.is_available

	Returns whether visualization with plotly is available or not.







Note

The following optuna.visualization.matplotlib module uses Matplotlib as a backend.





	optuna.visualization.matplotlib






See also

The Quick Visualization for Hyperparameter Optimization Analysis tutorial provides use-cases with examples.
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optuna.visualization.plot_contour


	
optuna.visualization.plot_contour(study, params=None, *, target=None, target_name='Objective Value')

	Plot the parameter relationship as contour plot in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

fig = optuna.visualization.plot_contour(study, params=["x", "y"])
fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the color bar.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure






Note

The colormap is reversed when the target argument isn’t None [https://docs.python.org/3/library/constants.html#None] or direction
of Study is minimize.
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optuna.visualization.plot_edf


	
optuna.visualization.plot_edf(study, *, target=None, target_name='Objective Value')

	Plot the objective value EDF (empirical distribution function) of a study.

Note that only the complete trials are considered when plotting the EDF.


Note

EDF is useful to analyze and improve search spaces.
For instance, you can see a practical use case of EDF in the paper
Designing Network Design Spaces [https://arxiv.org/abs/2003.13678].




Note

The plotted EDF assumes that the value of the objective function is in
accordance with the uniform distribution over the objective space.



Example

The following code snippet shows how to plot EDF.

import math

import optuna


def ackley(x, y):
    a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2)))
    b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
    return -a - b + math.e + 20


def objective(trial, low, high):
    x = trial.suggest_float("x", low, high)
    y = trial.suggest_float("y", low, high)
    return ackley(x, y)


sampler = optuna.samplers.RandomSampler(seed=10)

# Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)

# Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)

# Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)

fig = optuna.visualization.plot_edf([study0, study1, study2])
fig.show()






	Parameters:

	
	study (Study | Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][Study]) – A target Study object.
You can pass multiple studies if you want to compare those EDFs.


	target (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure
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optuna.visualization.plot_hypervolume_history


	
optuna.visualization.plot_hypervolume_history(study, reference_point)

	Plot hypervolume history of all trials in a study.

Example

The following code snippet shows how to plot optimization history.

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1


study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

reference_point=[100., 50.]
fig = optuna.visualization.plot_hypervolume_history(study, reference_point)
fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their hypervolumes.
The number of objectives must be 2 or more.


	reference_point (Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][float [https://docs.python.org/3/library/functions.html#float]]) – A reference point to use for hypervolume computation.
The dimension of the reference point must be the same as the number of objectives.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure






Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.
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optuna.visualization.plot_intermediate_values


	
optuna.visualization.plot_intermediate_values(study)

	Plot intermediate values of all trials in a study.

Example

The following code snippet shows how to plot intermediate values.

import optuna


def f(x):
    return (x - 2) ** 2


def df(x):
    return 2 * x - 4


def objective(trial):
    lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)

    x = 3
    for step in range(128):
        y = f(x)

        trial.report(y, step=step)
        if trial.should_prune():
            raise optuna.TrialPruned()

        gy = df(x)
        x -= gy * lr

    return y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)

fig = optuna.visualization.plot_intermediate_values(study)
fig.show()






	Parameters:

	study (Study) – A Study object whose trials are plotted for their intermediate
values.



	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure
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optuna.visualization.plot_optimization_history


	
optuna.visualization.plot_optimization_history(study, *, target=None, target_name='Objective Value', error_bar=False)

	Plot optimization history of all trials in a study.

Example

The following code snippet shows how to plot optimization history.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

fig = optuna.visualization.plot_optimization_history(study)
fig.show()






	Parameters:

	
	study (Study | Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][Study]) – A Study object whose trials are plotted for their target values.
You can pass multiple studies if you want to compare those optimization histories.


	target (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label and the legend.


	error_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to show the error bar.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure
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optuna.visualization.plot_parallel_coordinate


	
optuna.visualization.plot_parallel_coordinate(study, params=None, *, target=None, target_name='Objective Value')

	Plot the high-dimensional parameter relationships in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the high-dimensional parameter relationships.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

fig = optuna.visualization.plot_parallel_coordinate(study, params=["x", "y"])
fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label and the legend.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure






Note

The colormap is reversed when the target argument isn’t None [https://docs.python.org/3/library/constants.html#None] or direction
of Study is minimize.
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optuna.visualization.plot_param_importances


	
optuna.visualization.plot_param_importances(study, evaluator=None, params=None, *, target=None, target_name='Objective Value')

	Plot hyperparameter importances.

Example

The following code snippet shows how to plot hyperparameter importances.

import optuna


def objective(trial):
    x = trial.suggest_int("x", 0, 2)
    y = trial.suggest_float("y", -1.0, 1.0)
    z = trial.suggest_float("z", 0.0, 1.5)
    return x ** 2 + y ** 3 - z ** 4


sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)

fig = optuna.visualization.plot_param_importances(study)
fig.show()






See also

This function visualizes the results of optuna.importance.get_param_importances().




	Parameters:

	
	study (Study) – An optimized study.


	evaluator (BaseImportanceEvaluator | None) – An importance evaluator object that specifies which algorithm to base the importance
assessment on.
Defaults to
FanovaImportanceEvaluator.


Note

FanovaImportanceEvaluator takes over 1 minute
when given a study that contains 1000+ trials. We published
optuna-fast-fanova [https://github.com/optuna/optuna-fast-fanova] library,
that is a Cython accelerated fANOVA implementation.
By using it, you can get hyperparameter importances within a few seconds.






	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – A list of names of parameters to assess.
If None [https://docs.python.org/3/library/constants.html#None], all parameters that are present in all of the completed trials are
assessed.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.
For multi-objective optimization, all objectives will be plotted if target
is None [https://docs.python.org/3/library/constants.html#None].


Note

This argument can be used to specify which objective to plot if study is being
used for multi-objective optimization. For example, to get only the hyperparameter
importance of the first objective, use target=lambda t: t.values[0] for the
target parameter.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the legend. Names set via
set_metric_names() will be used if target is None [https://docs.python.org/3/library/constants.html#None],
overriding this argument.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure
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optuna.visualization.plot_pareto_front


	
optuna.visualization.plot_pareto_front(study, *, target_names=None, include_dominated_trials=True, axis_order=None, constraints_func=None, targets=None)

	Plot the Pareto front of a study.


See also

Please refer to Multi-objective Optimization with Optuna for the tutorial of the Pareto front visualization.



Example

The following code snippet shows how to plot the Pareto front of a study.

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1


study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

fig = optuna.visualization.plot_pareto_front(study)
fig.show()





Example

The following code snippet shows how to plot a 2-dimensional Pareto front
of a 3-dimensional study.
This example is scalable, e.g., for plotting a 2- or 3-dimensional Pareto front
of a 4-dimensional study and so on.

import optuna

def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)
    v0 = 5 * x ** 2 + 3 * y ** 2
    v1 = (x - 10) ** 2 + (y - 10) ** 2
    v2 = x + y

    return v0, v1, v2

study = optuna.create_study(directions=["minimize", "minimize", "minimize"])

study.optimize(objective, n_trials=100)

fig = optuna.visualization.plot_pareto_front(
    study,
    targets=lambda t: (t.values[0], t.values[1]),
    target_names=["Objective 0", "Objective 1"],
)

fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their objective
values. The number of objectives must be either 2 or 3 when targets is None [https://docs.python.org/3/library/constants.html#None].


	target_names (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Objective name list used as the axis titles. If None [https://docs.python.org/3/library/constants.html#None] is specified,
“Objective {objective_index}” is used instead. If targets is specified
for a study that does not contain any completed trial,
target_name must be specified.


	include_dominated_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to include all dominated trial’s objective values.


	axis_order (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] | None) – A list of indices indicating the axis order. If None [https://docs.python.org/3/library/constants.html#None] is specified,
default order is used. axis_order and targets cannot be used at the same time.


Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of
this feature is currently scheduled for v5.0.0, but this schedule is subject to
change. See https://github.com/optuna/optuna/releases/tag/v3.0.0.






	constraints_func (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[FrozenTrial], Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][float [https://docs.python.org/3/library/functions.html#float]]] | None) – An optional function that computes the objective constraints. It must take a
FrozenTrial and return the constraints. The return value must
be a sequence of float [https://docs.python.org/3/library/functions.html#float] s. A value strictly larger than 0 means that a
constraint is violated. A value equal to or smaller than 0 is considered feasible.
This specification is the same as in, for example,
NSGAIISampler.

If given, trials are classified into three categories: feasible and best, feasible but
non-best, and infeasible. Categories are shown in different colors. Here, whether a
trial is best (on Pareto front) or not is determined ignoring all infeasible trials.


Note

Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.






	targets (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[FrozenTrial], Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][float [https://docs.python.org/3/library/functions.html#float]]] | None) – A function that returns targets values to display.
The argument to this function is FrozenTrial.
axis_order and targets cannot be used at the same time.
If study.n_objectives is neither 2 nor 3, targets must be specified.


Note

Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.










	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure
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optuna.visualization.plot_rank


	
optuna.visualization.plot_rank(study, params=None, *, target=None, target_name='Objective Value')

	Plot parameter relations as scatter plots with colors indicating ranks of target value.

Note that trials missing the specified parameters will not be plotted.

Example

The following code snippet shows how to plot the parameter relationship as a rank plot.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])

    c0 = 400 - (x + y)**2
    trial.set_user_attr("constraint", [c0])

    return x ** 2 + y


def constraints(trial):
    return trial.user_attrs["constraint"]


sampler = optuna.samplers.TPESampler(seed=10, constraints_func=constraints)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

fig = optuna.visualization.plot_rank(study, params=["x", "y"])
fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the color bar.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure






Note

This function requires plotly >= 5.0.0.




Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.










            

          

      

      

    

  

  
    
    

    optuna.visualization.plot_slice
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.visualization.plot_slice


	
optuna.visualization.plot_slice(study, params=None, *, target=None, target_name='Objective Value')

	Plot the parameter relationship as slice plot in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

fig = optuna.visualization.plot_slice(study, params=["x", "y"])
fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure
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optuna.visualization.plot_terminator_improvement


	
optuna.visualization.plot_terminator_improvement(study, plot_error=False, improvement_evaluator=None, error_evaluator=None, min_n_trials=20)

	Plot the potentials for future objective improvement.

This function visualizes the objective improvement potentials, evaluated
with improvement_evaluator.
It helps to determine whether we should continue the optimization or not.
You can also plot the error evaluated with
error_evaluator if the plot_error argument is set to True [https://docs.python.org/3/library/constants.html#True].
Note that this function may take some time to compute
the improvement potentials.

Example

The following code snippet shows how to plot improvement potentials,
together with cross-validation errors.

from lightgbm import LGBMClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
import optuna
from optuna.terminator import report_cross_validation_scores
from optuna.visualization import plot_terminator_improvement


def objective(trial):
    X, y = load_wine(return_X_y=True)
    clf = LGBMClassifier(
        reg_alpha=trial.suggest_float("reg_alpha", 1e-8, 10.0, log=True),
        reg_lambda=trial.suggest_float("reg_lambda", 1e-8, 10.0, log=True),
        num_leaves=trial.suggest_int("num_leaves", 2, 256),
        colsample_bytree=trial.suggest_float("colsample_bytree", 0.4, 1.0),
        subsample=trial.suggest_float("subsample", 0.4, 1.0),
        subsample_freq=trial.suggest_int("subsample_freq", 1, 7),
        min_child_samples=trial.suggest_int("min_child_samples", 5, 100),
    )
    scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
    report_cross_validation_scores(trial, scores)
    return scores.mean()


study = optuna.create_study()
study.optimize(objective, n_trials=30)

fig = plot_terminator_improvement(study, plot_error=True)
fig.show()






	Parameters:

	
	study (Study) – A Study object whose trials are plotted
for their improvement.


	plot_error (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to show the error. If it is set to True [https://docs.python.org/3/library/constants.html#True], errors
evaluated by error_evaluator are also plotted as line graph.
Defaults to False [https://docs.python.org/3/library/constants.html#False].


	improvement_evaluator (BaseImprovementEvaluator | None) – An object that evaluates the improvement of the objective function.
Defaults to RegretBoundEvaluator.


	error_evaluator (BaseErrorEvaluator | None) – An object that evaluates the error inherent in the objective function.
Defaults to CrossValidationErrorEvaluator.


	min_n_trials (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of trials before termination is considered.
Terminator improvements for trials below this value are
shown in a lighter color. Defaults to 20.






	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.
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optuna.visualization.plot_timeline


	
optuna.visualization.plot_timeline(study)

	Plot the timeline of a study.

Example

The following code snippet shows how to plot the timeline of a study.
Timeline plot can visualize trials with overlapping execution time
(e.g., in distributed environments).

import time

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 1)
    time.sleep(x * 0.1)
    if x > 0.8:
        raise ValueError()
    if x > 0.4:
        raise optuna.TrialPruned()
    return x ** 2


study = optuna.create_study(direction="minimize")
study.optimize(
    objective, n_trials=50, n_jobs=2, catch=(ValueError,)
)

fig = optuna.visualization.plot_timeline(study)
fig.show()






	Parameters:

	study (Study) – A Study object whose trials are plotted with
their lifetime.



	Returns:

	A plotly.graph_objs.Figure [https://plotly.com/python-api-reference/generated/plotly.graph_objs.Figure.html#id0] object.



	Return type:

	Figure






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.
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optuna.visualization.is_available


	
optuna.visualization.is_available()

	Returns whether visualization with plotly is available or not.


Note

visualization module depends on plotly version 4.0.0 or higher. If a
supported version of plotly isn’t installed in your environment, this function will return
False [https://docs.python.org/3/library/constants.html#False]. In such case, please execute $ pip install -U plotly>=4.0.0 to install
plotly.




	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if visualization with plotly is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]
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optuna.visualization.matplotlib


Note

The following functions use Matplotlib as a backend.





	optuna.visualization.matplotlib.plot_contour

	Plot the parameter relationship as contour plot in a study with Matplotlib.



	optuna.visualization.matplotlib.plot_edf

	Plot the objective value EDF (empirical distribution function) of a study with Matplotlib.



	optuna.visualization.matplotlib.plot_hypervolume_history

	Plot hypervolume history of all trials in a study with Matplotlib.



	optuna.visualization.matplotlib.plot_intermediate_values

	Plot intermediate values of all trials in a study with Matplotlib.



	optuna.visualization.matplotlib.plot_optimization_history

	Plot optimization history of all trials in a study with Matplotlib.



	optuna.visualization.matplotlib.plot_parallel_coordinate

	Plot the high-dimensional parameter relationships in a study with Matplotlib.



	optuna.visualization.matplotlib.plot_param_importances

	Plot hyperparameter importances with Matplotlib.



	optuna.visualization.matplotlib.plot_pareto_front

	Plot the Pareto front of a study.



	optuna.visualization.matplotlib.plot_rank

	Plot parameter relations as scatter plots with colors indicating ranks of target value.



	optuna.visualization.matplotlib.plot_slice

	Plot the parameter relationship as slice plot in a study with Matplotlib.



	optuna.visualization.matplotlib.plot_terminator_improvement

	Plot the potentials for future objective improvement.



	optuna.visualization.matplotlib.plot_timeline

	Plot the timeline of a study.



	optuna.visualization.matplotlib.is_available

	Returns whether visualization with Matplotlib is available or not.
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optuna.visualization.matplotlib.plot_contour


	
optuna.visualization.matplotlib.plot_contour(study, params=None, *, target=None, target_name='Objective Value')

	Plot the parameter relationship as contour plot in a study with Matplotlib.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.


See also

Please refer to optuna.visualization.plot_contour() for an example.




Warning

Output figures of this Matplotlib-based
plot_contour() function would be different from
those of the Plotly-based plot_contour().



Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.matplotlib.plot_contour(study, params=["x", "y"])






[image: ../../../_images/optuna-visualization-matplotlib-plot_contour-1.png]


	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the color bar.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

The colormap is reversed when the target argument isn’t None [https://docs.python.org/3/library/constants.html#None] or direction
of Study is minimize.




Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_edf


	
optuna.visualization.matplotlib.plot_edf(study, *, target=None, target_name='Objective Value')

	Plot the objective value EDF (empirical distribution function) of a study with Matplotlib.

Note that only the complete trials are considered when plotting the EDF.


See also

Please refer to optuna.visualization.plot_edf() for an example,
where this function can be replaced with it.




Note

Please refer to matplotlib.pyplot.legend [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html]
to adjust the style of the generated legend.



Example

The following code snippet shows how to plot EDF.

import math

import optuna


def ackley(x, y):
    a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2)))
    b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
    return -a - b + math.e + 20


def objective(trial, low, high):
    x = trial.suggest_float("x", low, high)
    y = trial.suggest_float("y", low, high)
    return ackley(x, y)


sampler = optuna.samplers.RandomSampler(seed=10)

# Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)

# Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)

# Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)

optuna.visualization.matplotlib.plot_edf([study0, study1, study2])






[image: ../../../_images/optuna-visualization-matplotlib-plot_edf-1.png]


	Parameters:

	
	study (Study | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Study]) – A target Study object.
You can pass multiple studies if you want to compare those EDFs.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_hypervolume_history


	
optuna.visualization.matplotlib.plot_hypervolume_history(study, reference_point)

	Plot hypervolume history of all trials in a study with Matplotlib.

Example

The following code snippet shows how to plot optimization history.

import optuna
import matplotlib.pyplot as plt


def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1


study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

reference_point=[100, 50]
optuna.visualization.matplotlib.plot_hypervolume_history(study, reference_point)
plt.tight_layout()






[image: ../../../_images/optuna-visualization-matplotlib-plot_hypervolume_history-1.png]


Note

You need to adjust the size of the plot by yourself using plt.tight_layout() or
plt.savefig(IMAGE_NAME, bbox_inches='tight').




	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their hypervolumes.
The number of objectives must be 2 or more.


	reference_point (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]) – A reference point to use for hypervolume computation.
The dimension of the reference point must be the same as the number of objectives.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.
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optuna.visualization.matplotlib.plot_intermediate_values


	
optuna.visualization.matplotlib.plot_intermediate_values(study)

	Plot intermediate values of all trials in a study with Matplotlib.


Note

Please refer to matplotlib.pyplot.legend [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html]
to adjust the style of the generated legend.



Example

The following code snippet shows how to plot intermediate values.

import optuna


def f(x):
    return (x - 2) ** 2


def df(x):
    return 2 * x - 4


def objective(trial):
    lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)

    x = 3
    for step in range(128):
        y = f(x)

        trial.report(y, step=step)
        if trial.should_prune():
            raise optuna.TrialPruned()

        gy = df(x)
        x -= gy * lr

    return y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)

optuna.visualization.matplotlib.plot_intermediate_values(study)






[image: ../../../_images/optuna-visualization-matplotlib-plot_intermediate_values-1.png]


See also

Please refer to optuna.visualization.plot_intermediate_values() for an example.




	Parameters:

	study (Study) – A Study object whose trials are plotted for their intermediate
values.



	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_optimization_history


	
optuna.visualization.matplotlib.plot_optimization_history(study, *, target=None, target_name='Objective Value', error_bar=False)

	Plot optimization history of all trials in a study with Matplotlib.


See also

Please refer to optuna.visualization.plot_optimization_history() for an example.



Example

The following code snippet shows how to plot optimization history.

import optuna
import matplotlib.pyplot as plt


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_optimization_history(study)
plt.tight_layout()






[image: ../../../_images/optuna-visualization-matplotlib-plot_optimization_history-1.png]


Note

You need to adjust the size of the plot by yourself using plt.tight_layout() or
plt.savefig(IMAGE_NAME, bbox_inches='tight').




	Parameters:

	
	study (Study | Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][Study]) – A Study object whose trials are plotted for their target values.
You can pass multiple studies if you want to compare those optimization histories.


	target (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label and the legend.


	error_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to show the error bar.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_parallel_coordinate


	
optuna.visualization.matplotlib.plot_parallel_coordinate(study, params=None, *, target=None, target_name='Objective Value')

	Plot the high-dimensional parameter relationships in a study with Matplotlib.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.


See also

Please refer to optuna.visualization.plot_parallel_coordinate() for an example.



Example

The following code snippet shows how to plot the high-dimensional parameter relationships.

import optuna

def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_parallel_coordinate(study, params=["x", "y"])






[image: ../../../_images/optuna-visualization-matplotlib-plot_parallel_coordinate-1.png]


	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label and the legend.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

The colormap is reversed when the target argument isn’t None [https://docs.python.org/3/library/constants.html#None] or direction
of Study is minimize.




Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_param_importances


	
optuna.visualization.matplotlib.plot_param_importances(study, evaluator=None, params=None, *, target=None, target_name='Objective Value')

	Plot hyperparameter importances with Matplotlib.


See also

Please refer to optuna.visualization.plot_param_importances() for an example.



Example

The following code snippet shows how to plot hyperparameter importances.

import optuna


def objective(trial):
    x = trial.suggest_int("x", 0, 2)
    y = trial.suggest_float("y", -1.0, 1.0)
    z = trial.suggest_float("z", 0.0, 1.5)
    return x ** 2 + y ** 3 - z ** 4


sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)

optuna.visualization.matplotlib.plot_param_importances(study)






[image: ../../../_images/optuna-visualization-matplotlib-plot_param_importances-1.png]


	Parameters:

	
	study (Study) – An optimized study.


	evaluator (BaseImportanceEvaluator | None) – An importance evaluator object that specifies which algorithm to base the importance
assessment on.
Defaults to
FanovaImportanceEvaluator.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – A list of names of parameters to assess.
If None [https://docs.python.org/3/library/constants.html#None], all parameters that are present in all of the completed trials are
assessed.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.
For multi-objective optimization, all objectives will be plotted if target
is None [https://docs.python.org/3/library/constants.html#None].


Note

This argument can be used to specify which objective to plot if study is being
used for multi-objective optimization. For example, to get only the hyperparameter
importance of the first objective, use target=lambda t: t.values[0] for the
target parameter.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label. Names set via
set_metric_names() will be used if target is None [https://docs.python.org/3/library/constants.html#None],
overriding this argument.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_pareto_front


	
optuna.visualization.matplotlib.plot_pareto_front(study, *, target_names=None, include_dominated_trials=True, axis_order=None, constraints_func=None, targets=None)

	Plot the Pareto front of a study.


See also

Please refer to optuna.visualization.plot_pareto_front() for an example.



Example

The following code snippet shows how to plot the Pareto front of a study.

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1


study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

optuna.visualization.matplotlib.plot_pareto_front(study)






[image: ../../../_images/optuna-visualization-matplotlib-plot_pareto_front-1.png]


	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their objective
values. study.n_objectives must be either 2 or 3 when targets is None [https://docs.python.org/3/library/constants.html#None].


	target_names (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Objective name list used as the axis titles. If None [https://docs.python.org/3/library/constants.html#None] is specified,
“Objective {objective_index}” is used instead. If targets is specified
for a study that does not contain any completed trial,
target_name must be specified.


	include_dominated_trials (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to include all dominated trial’s objective values.


	axis_order (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] | None) – A list of indices indicating the axis order. If None [https://docs.python.org/3/library/constants.html#None] is specified,
default order is used. axis_order and targets cannot be used at the same time.


Warning

Deprecated in v3.0.0. This feature will be removed in the future. The removal of
this feature is currently scheduled for v5.0.0, but this schedule is subject to
change. See https://github.com/optuna/optuna/releases/tag/v3.0.0.






	constraints_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]] | None) – An optional function that computes the objective constraints. It must take a
FrozenTrial and return the constraints. The return value must
be a sequence of float [https://docs.python.org/3/library/functions.html#float] s. A value strictly larger than 0 means that a
constraint is violated. A value equal to or smaller than 0 is considered feasible.
This specification is the same as in, for example,
NSGAIISampler.

If given, trials are classified into three categories: feasible and best, feasible but
non-best, and infeasible. Categories are shown in different colors. Here, whether a
trial is best (on Pareto front) or not is determined ignoring all infeasible trials.




	targets (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]] | None) – A function that returns a tuple of target values to display.
The argument to this function is FrozenTrial.
targets must be None [https://docs.python.org/3/library/constants.html#None] or return 2 or 3 values.
axis_order and targets cannot be used at the same time.
If the number of objectives is neither 2 nor 3, targets must be specified.


Note

Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.










	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v2.8.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.
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optuna.visualization.matplotlib.plot_rank


	
optuna.visualization.matplotlib.plot_rank(study, params=None, *, target=None, target_name='Objective Value')

	Plot parameter relations as scatter plots with colors indicating ranks of target value.

Note that trials missing the specified parameters will not be plotted.


See also

Please refer to optuna.visualization.plot_rank() for an example.




Warning

Output figures of this Matplotlib-based
plot_rank() function would be different from
those of the Plotly-based plot_rank().



Example

The following code snippet shows how to plot the parameter relationship as a rank plot.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])

    c0 = 400 - (x + y)**2
    trial.set_user_attr("constraint", [c0])

    return x ** 2 + y


def constraints(trial):
    return trial.user_attrs["constraint"]


sampler = optuna.samplers.TPESampler(seed=10, constraints_func=constraints)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.matplotlib.plot_rank(study, params=["x", "y"])






[image: ../../../_images/optuna-visualization-matplotlib-plot_rank-1.png]


	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the color bar.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.










            

          

      

      

    

  

  
    
    

    optuna.visualization.matplotlib.plot_slice
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.visualization.matplotlib.plot_slice


	
optuna.visualization.matplotlib.plot_slice(study, params=None, *, target=None, target_name='Objective Value')

	Plot the parameter relationship as slice plot in a study with Matplotlib.


See also

Please refer to optuna.visualization.plot_slice() for an example.



Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna


def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x ** 2 + y


sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_slice(study, params=["x", "y"])






[image: ../../../_images/optuna-visualization-matplotlib-plot_slice-1.png]


	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their target values.


	params (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) – Parameter list to visualize. The default is all parameters.


	target (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[FrozenTrial], float [https://docs.python.org/3/library/functions.html#float]] | None) – A function to specify the value to display. If it is None [https://docs.python.org/3/library/constants.html#None] and study is being
used for single-objective optimization, the objective values are plotted.


Note

Specify this argument if study is being used for multi-objective optimization.






	target_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target’s name to display on the axis label.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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optuna.visualization.matplotlib.plot_terminator_improvement


	
optuna.visualization.matplotlib.plot_terminator_improvement(study, plot_error=False, improvement_evaluator=None, error_evaluator=None, min_n_trials=20)

	Plot the potentials for future objective improvement.

This function visualizes the objective improvement potentials, evaluated
with improvement_evaluator.
It helps to determine whether we should continue the optimization or not.
You can also plot the error evaluated with
error_evaluator if the plot_error argument is set to True [https://docs.python.org/3/library/constants.html#True].
Note that this function may take some time to compute
the improvement potentials.


See also

Please refer to optuna.visualization.plot_terminator_improvement().



Example

The following code snippet shows how to plot improvement potentials,
together with cross-validation errors.

from lightgbm import LGBMClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
import optuna
from optuna.terminator import report_cross_validation_scores
from optuna.visualization.matplotlib import plot_terminator_improvement

def objective(trial):
    X, y = load_wine(return_X_y=True)
    clf = LGBMClassifier(
        reg_alpha=trial.suggest_float("reg_alpha", 1e-8, 10.0, log=True),
        reg_lambda=trial.suggest_float("reg_lambda", 1e-8, 10.0, log=True),
        num_leaves=trial.suggest_int("num_leaves", 2, 256),
        colsample_bytree=trial.suggest_float("colsample_bytree", 0.4, 1.0),
        subsample=trial.suggest_float("subsample", 0.4, 1.0),
        subsample_freq=trial.suggest_int("subsample_freq", 1, 7),
        min_child_samples=trial.suggest_int("min_child_samples", 5, 100),
    )
    scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
    report_cross_validation_scores(trial, scores)
    return scores.mean()

study = optuna.create_study()
study.optimize(objective, n_trials=30)

plot_terminator_improvement(study, plot_error=True)






[image: ../../../_images/optuna-visualization-matplotlib-plot_terminator_improvement-1.png]


	Parameters:

	
	study (Study) – A Study object whose trials are plotted for their improvement.


	plot_error (bool [https://docs.python.org/3/library/functions.html#bool]) – A flag to show the error. If it is set to True [https://docs.python.org/3/library/constants.html#True], errors
evaluated by error_evaluator are also plotted as line graph.
Defaults to False [https://docs.python.org/3/library/constants.html#False].


	improvement_evaluator (BaseImprovementEvaluator | None) – An object that evaluates the improvement of the objective function.
Default to RegretBoundEvaluator.


	error_evaluator (BaseErrorEvaluator | None) – An object that evaluates the error inherent in the objective function.
Default to CrossValidationErrorEvaluator.


	min_n_trials (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of trials before termination is considered.
Terminator improvements for trials below this value are
shown in a lighter color. Defaults to 20.






	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.
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optuna.visualization.matplotlib.plot_timeline


	
optuna.visualization.matplotlib.plot_timeline(study)

	Plot the timeline of a study.


See also

Please refer to optuna.visualization.plot_timeline() for an example.



Example

The following code snippet shows how to plot the timeline of a study.

import time

import optuna


def objective(trial):
    x = trial.suggest_float("x", 0, 1)
    time.sleep(x * 0.1)
    if x > 0.8:
        raise ValueError()
    if x > 0.4:
        raise optuna.TrialPruned()
    return x ** 2


study = optuna.create_study(direction="minimize")
study.optimize(
    objective, n_trials=50, n_jobs=2, catch=(ValueError,)
)

optuna.visualization.matplotlib.plot_timeline(study)






[image: ../../../_images/optuna-visualization-matplotlib-plot_timeline-1.png]


	Parameters:

	study (Study) – A Study object whose trials are plotted with
their lifetime.



	Returns:

	A matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object.



	Return type:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]






Note

Added in v3.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.










            

          

      

      

    

  

  
    
    

    optuna.visualization.matplotlib.is_available
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
optuna.visualization.matplotlib.is_available


	
optuna.visualization.matplotlib.is_available()

	Returns whether visualization with Matplotlib is available or not.


Note

matplotlib module depends on Matplotlib version 3.0.0 or
higher. If a supported version of Matplotlib isn’t installed in your environment, this
function will return False [https://docs.python.org/3/library/constants.html#False]. In such a case, please execute $ pip install -U
matplotlib>=3.0.0 to install Matplotlib.




	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if visualization with Matplotlib is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]






Note

Added in v2.2.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.
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FAQ



	Can I use Optuna with X? (where X is your favorite ML library)


	How to define objective functions that have own arguments?


	Can I use Optuna without remote RDB servers?


	How can I save and resume studies?


	How to suppress log messages of Optuna?


	How to save machine learning models trained in objective functions?


	How can I obtain reproducible optimization results?


	How are exceptions from trials handled?


	How are NaNs returned by trials handled?


	What happens when I dynamically alter a search space?


	How can I use two GPUs for evaluating two trials simultaneously?


	How can I test my objective functions?


	How do I avoid running out of memory (OOM) when optimizing studies?


	How can I output a log only when the best value is updated?


	How do I suggest variables which represent the proportion, that is, are in accordance with Dirichlet distribution?


	How can I optimize a model with some constraints?


	How can I parallelize optimization?


	1. Multi-threading parallelization with a single node


	2. Multi-processing parallelization with single node


	3. Multi-processing parallelization with multiple nodes






	How can I solve the error that occurs when performing parallel optimization with SQLite3?


	Can I monitor trials and make them failed automatically when they are killed unexpectedly?


	How can I deal with permutation as a parameter?


	How can I ignore duplicated samples?






Can I use Optuna with X? (where X is your favorite ML library)

Optuna is compatible with most ML libraries, and it’s easy to use Optuna with those.
Please refer to examples [https://github.com/optuna/optuna-examples/].



How to define objective functions that have own arguments?

There are two ways to realize it.

First, callable classes can be used for that purpose as follows:

import optuna


class Objective:
    def __init__(self, min_x, max_x):
        # Hold this implementation specific arguments as the fields of the class.
        self.min_x = min_x
        self.max_x = max_x

    def __call__(self, trial):
        # Calculate an objective value by using the extra arguments.
        x = trial.suggest_float("x", self.min_x, self.max_x)
        return (x - 2) ** 2


# Execute an optimization by using an `Objective` instance.
study = optuna.create_study()
study.optimize(Objective(-100, 100), n_trials=100)





Second, you can use lambda or functools.partial for creating functions (closures) that hold extra arguments.
Below is an example that uses lambda:

import optuna

# Objective function that takes three arguments.
def objective(trial, min_x, max_x):
    x = trial.suggest_float("x", min_x, max_x)
    return (x - 2) ** 2


# Extra arguments.
min_x = -100
max_x = 100

# Execute an optimization by using the above objective function wrapped by `lambda`.
study = optuna.create_study()
study.optimize(lambda trial: objective(trial, min_x, max_x), n_trials=100)





Please also refer to sklearn_addtitional_args.py [https://github.com/optuna/optuna-examples/tree/main/sklearn/sklearn_additional_args.py] example,
which reuses the dataset instead of loading it in each trial execution.



Can I use Optuna without remote RDB servers?

Yes, it’s possible.

In the simplest form, Optuna works with in-memory storage:

study = optuna.create_study()
study.optimize(objective)





If you want to save and resume studies,  it’s handy to use SQLite as the local storage:

study = optuna.create_study(study_name="foo_study", storage="sqlite:///example.db")
study.optimize(objective)  # The state of `study` will be persisted to the local SQLite file.





Please see Saving/Resuming Study with RDB Backend for more details.



How can I save and resume studies?

There are two ways of persisting studies, which depend if you are using
in-memory storage (default) or remote databases (RDB). In-memory studies can be
saved and loaded like usual Python objects using pickle or joblib. For
example, using joblib:

study = optuna.create_study()
joblib.dump(study, "study.pkl")





And to resume the study:

study = joblib.load("study.pkl")
print("Best trial until now:")
print(" Value: ", study.best_trial.value)
print(" Params: ")
for key, value in study.best_trial.params.items():
    print(f"    {key}: {value}")





Note that Optuna does not support saving/reloading across different Optuna
versions with pickle. To save/reload a study across different Optuna versions,
please use RDBs and upgrade storage schema
if necessary. If you are using RDBs, see Saving/Resuming Study with RDB Backend for more details.



How to suppress log messages of Optuna?

By default, Optuna shows log messages at the optuna.logging.INFO level.
You can change logging levels by using  optuna.logging.set_verbosity().

For instance, you can stop showing each trial result as follows:

optuna.logging.set_verbosity(optuna.logging.WARNING)

study = optuna.create_study()
study.optimize(objective)
# Logs like '[I 2020-07-21 13:41:45,627] Trial 0 finished with value:...' are disabled.





Please refer to optuna.logging for further details.



How to save machine learning models trained in objective functions?

Optuna saves hyperparameter values with its corresponding objective value to storage,
but it discards intermediate objects such as machine learning models and neural network weights.
To save models or weights, please use features of the machine learning library you used.

We recommend saving optuna.trial.Trial.number with a model in order to identify its corresponding trial.
For example, you can save SVM models trained in the objective function as follows:

def objective(trial):
    svc_c = trial.suggest_float("svc_c", 1e-10, 1e10, log=True)
    clf = sklearn.svm.SVC(C=svc_c)
    clf.fit(X_train, y_train)

    # Save a trained model to a file.
    with open("{}.pickle".format(trial.number), "wb") as fout:
        pickle.dump(clf, fout)
    return 1.0 - accuracy_score(y_valid, clf.predict(X_valid))


study = optuna.create_study()
study.optimize(objective, n_trials=100)

# Load the best model.
with open("{}.pickle".format(study.best_trial.number), "rb") as fin:
    best_clf = pickle.load(fin)
print(accuracy_score(y_valid, best_clf.predict(X_valid)))







How can I obtain reproducible optimization results?

To make the parameters suggested by Optuna reproducible, you can specify a fixed random seed via seed argument of an instance of samplers as follows:

sampler = TPESampler(seed=10)  # Make the sampler behave in a deterministic way.
study = optuna.create_study(sampler=sampler)
study.optimize(objective)





To make the pruning by HyperbandPruner reproducible, you can specify study_name of Study and hash seed [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED].

However, there are two caveats.

First, when optimizing a study in distributed or parallel mode, there is inherent non-determinism.
Thus it is very difficult to reproduce the same results in such condition.
We recommend executing optimization of a study sequentially if you would like to reproduce the result.

Second, if your objective function behaves in a non-deterministic way (i.e., it does not return the same value even if the same parameters were suggested), you cannot reproduce an optimization.
To deal with this problem, please set an option (e.g., random seed) to make the behavior deterministic if your optimization target (e.g., an ML library) provides it.



How are exceptions from trials handled?

Trials that raise exceptions without catching them will be treated as failures, i.e. with the FAIL status.

By default, all exceptions except TrialPruned raised in objective functions are propagated to the caller of optimize().
In other words, studies are aborted when such exceptions are raised.
It might be desirable to continue a study with the remaining trials.
To do so, you can specify in optimize() which exception types to catch using the catch argument.
Exceptions of these types are caught inside the study and will not propagate further.

You can find the failed trials in log messages.

[W 2018-12-07 16:38:36,889] Setting status of trial#0 as TrialState.FAIL because of \
the following error: ValueError('A sample error in objective.')





You can also find the failed trials by checking the trial states as follows:

study.trials_dataframe()







	number

	state

	value

	…

	params

	system_attrs



	0

	TrialState.FAIL

	
	…

	0

	Setting status of trial#0 as TrialState.FAIL because of the following error: ValueError(‘A test error in objective.’)



	1

	TrialState.COMPLETE

	1269

	…

	1

	






See also

The catch argument in optimize().





How are NaNs returned by trials handled?

Trials that return NaN (float('nan')) are treated as failures, but they will not abort studies.

Trials which return NaN are shown as follows:

[W 2018-12-07 16:41:59,000] Setting status of trial#2 as TrialState.FAIL because the \
objective function returned nan.







What happens when I dynamically alter a search space?

Since parameters search spaces are specified in each call to the suggestion API, e.g.
suggest_float() and suggest_int(),
it is possible to, in a single study, alter the range by sampling parameters from different search
spaces in different trials.
The behavior when altered is defined by each sampler individually.


Note

Discussion about the TPE sampler. https://github.com/optuna/optuna/issues/822





How can I use two GPUs for evaluating two trials simultaneously?

If your optimization target supports GPU (CUDA) acceleration and you want to specify which GPU is used in your script,
main.py, the easiest way is to set CUDA_VISIBLE_DEVICES environment variable:

# On a terminal.
#
# Specify to use the first GPU, and run an optimization.
$ export CUDA_VISIBLE_DEVICES=0
$ python main.py

# On another terminal.
#
# Specify to use the second GPU, and run another optimization.
$ export CUDA_VISIBLE_DEVICES=1
$ python main.py





Please refer to CUDA C Programming Guide [https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars] for further details.



How can I test my objective functions?

When you test objective functions, you may prefer fixed parameter values to sampled ones.
In that case, you can use FixedTrial, which suggests fixed parameter values based on a given dictionary of parameters.
For instance, you can input arbitrary values of \(x\) and \(y\) to the objective function \(x + y\) as follows:

def objective(trial):
    x = trial.suggest_float("x", -1.0, 1.0)
    y = trial.suggest_int("y", -5, 5)
    return x + y


objective(FixedTrial({"x": 1.0, "y": -1}))  # 0.0
objective(FixedTrial({"x": -1.0, "y": -4}))  # -5.0





Using FixedTrial, you can write unit tests as follows:

# A test function of pytest
def test_objective():
    assert 1.0 == objective(FixedTrial({"x": 1.0, "y": 0}))
    assert -1.0 == objective(FixedTrial({"x": 0.0, "y": -1}))
    assert 0.0 == objective(FixedTrial({"x": -1.0, "y": 1}))







How do I avoid running out of memory (OOM) when optimizing studies?

If the memory footprint increases as you run more trials, try to periodically run the garbage collector.
Specify gc_after_trial to True [https://docs.python.org/3/library/constants.html#True] when calling optimize() or call gc.collect() [https://docs.python.org/3/library/gc.html#gc.collect] inside a callback.

def objective(trial):
    x = trial.suggest_float("x", -1.0, 1.0)
    y = trial.suggest_int("y", -5, 5)
    return x + y


study = optuna.create_study()
study.optimize(objective, n_trials=10, gc_after_trial=True)

# `gc_after_trial=True` is more or less identical to the following.
study.optimize(objective, n_trials=10, callbacks=[lambda study, trial: gc.collect()])





There is a performance trade-off for running the garbage collector, which could be non-negligible depending on how fast your objective function otherwise is. Therefore, gc_after_trial is False [https://docs.python.org/3/library/constants.html#False] by default.
Note that the above examples are similar to running the garbage collector inside the objective function, except for the fact that gc.collect() [https://docs.python.org/3/library/gc.html#gc.collect] is called even when errors, including TrialPruned are raised.


Note

ChainerMNStudy does currently not provide gc_after_trial nor callbacks for optimize().
When using this class, you will have to call the garbage collector inside the objective function.





How can I output a log only when the best value is updated?

Here’s how to replace the logging feature of optuna with your own logging callback function.
The implemented callback can be passed to optimize().
Here’s an example:

import optuna


# Turn off optuna log notes.
optuna.logging.set_verbosity(optuna.logging.WARN)


def objective(trial):
    x = trial.suggest_float("x", 0, 1)
    return x ** 2


def logging_callback(study, frozen_trial):
    previous_best_value = study.user_attrs.get("previous_best_value", None)
    if previous_best_value != study.best_value:
        study.set_user_attr("previous_best_value", study.best_value)
        print(
            "Trial {} finished with best value: {} and parameters: {}. ".format(
            frozen_trial.number,
            frozen_trial.value,
            frozen_trial.params,
            )
        )


study = optuna.create_study()
study.optimize(objective, n_trials=100, callbacks=[logging_callback])





Note that this callback may show incorrect values when you try to optimize an objective function with n_jobs!=1
(or other forms of distributed optimization) due to its reads and writes to storage that are prone to race conditions.



How do I suggest variables which represent the proportion, that is, are in accordance with Dirichlet distribution?

When you want to suggest \(n\) variables which represent the proportion, that is, \(p[0], p[1], ..., p[n-1]\) which satisfy \(0 \le p[k] \le 1\) for any \(k\) and \(p[0] + p[1] + ... + p[n-1] = 1\), try the below.
For example, these variables can be used as weights when interpolating the loss functions.
These variables are in accordance with the flat Dirichlet distribution [https://en.wikipedia.org/wiki/Dirichlet_distribution].

import numpy as np
import matplotlib.pyplot as plt
import optuna


def objective(trial):
    n = 5
    x = []
    for i in range(n):
        x.append(- np.log(trial.suggest_float(f"x_{i}", 0, 1)))

    p = []
    for i in range(n):
        p.append(x[i] / sum(x))

    for i in range(n):
        trial.set_user_attr(f"p_{i}", p[i])

    return 0

study = optuna.create_study(sampler=optuna.samplers.RandomSampler())
study.optimize(objective, n_trials=1000)

n = 5
p = []
for i in range(n):
    p.append([trial.user_attrs[f"p_{i}"] for trial in study.trials])
axes = plt.subplots(n, n, figsize=(20, 20))[1]

for i in range(n):
    for j in range(n):
        axes[j][i].scatter(p[i], p[j], marker=".")
        axes[j][i].set_xlim(0, 1)
        axes[j][i].set_ylim(0, 1)
        axes[j][i].set_xlabel(f"p_{i}")
        axes[j][i].set_ylabel(f"p_{j}")

plt.savefig("sampled_ps.png")





This method is justified in the following way:
First, if we apply the transformation \(x = - \log (u)\) to the variable \(u\) sampled from the uniform distribution \(Uni(0, 1)\) in the interval \([0, 1]\), the variable \(x\) will follow the exponential distribution \(Exp(1)\) with scale parameter \(1\).
Furthermore, for \(n\) variables \(x[0], ..., x[n-1]\) that follow the exponential distribution of scale parameter \(1\) independently, normalizing them with \(p[i] = x[i] / \sum_i x[i]\), the vector \(p\) follows the Dirichlet distribution \(Dir(\alpha)\) of scale parameter \(\alpha = (1, ..., 1)\).
You can verify the transformation by calculating the elements of the Jacobian.



How can I optimize a model with some constraints?

When you want to optimize a model with constraints, you can use the following classes: TPESampler, NSGAIISampler or BoTorchSampler.
The following example is a benchmark of Binh and Korn function, a multi-objective optimization, with constraints using NSGAIISampler. This one has two constraints \(c_0 = (x-5)^2 + y^2 - 25 \le 0\) and \(c_1 = -(x - 8)^2 - (y + 3)^2 + 7.7 \le 0\) and finds the optimal solution satisfying these constraints.

import optuna


def objective(trial):
    # Binh and Korn function with constraints.
    x = trial.suggest_float("x", -15, 30)
    y = trial.suggest_float("y", -15, 30)

    # Constraints which are considered feasible if less than or equal to zero.
    # The feasible region is basically the intersection of a circle centered at (x=5, y=0)
    # and the complement to a circle centered at (x=8, y=-3).
    c0 = (x - 5) ** 2 + y ** 2 - 25
    c1 = -((x - 8) ** 2) - (y + 3) ** 2 + 7.7

    # Store the constraints as user attributes so that they can be restored after optimization.
    trial.set_user_attr("constraint", (c0, c1))

    v0 = 4 * x ** 2 + 4 * y ** 2
    v1 = (x - 5) ** 2 + (y - 5) ** 2

    return v0, v1


def constraints(trial):
    return trial.user_attrs["constraint"]


sampler = optuna.samplers.NSGAIISampler(constraints_func=constraints)
study = optuna.create_study(
    directions=["minimize", "minimize"],
    sampler=sampler,
)
study.optimize(objective, n_trials=32, timeout=600)

print("Number of finished trials: ", len(study.trials))

print("Pareto front:")

trials = sorted(study.best_trials, key=lambda t: t.values)

for trial in trials:
    print("  Trial#{}".format(trial.number))
    print(
        "    Values: Values={}, Constraint={}".format(
            trial.values, trial.user_attrs["constraint"][0]
        )
    )
    print("    Params: {}".format(trial.params))





If you are interested in an example for BoTorchSampler, please refer to this sample code [https://github.com/optuna/optuna-examples/blob/main/multi_objective/botorch_simple.py].

There are two kinds of constrained optimizations, one with soft constraints and the other with hard constraints.
Soft constraints do not have to be satisfied, but an objective function is penalized if they are unsatisfied. On the other hand, hard constraints must be satisfied.

Optuna is adopting the soft one and DOES NOT support the hard one. In other words, Optuna DOES NOT have built-in samplers for the hard constraints.



How can I parallelize optimization?

The variations of parallelization are in the following three cases.


	Multi-threading parallelization with single node


	Multi-processing parallelization with single node


	Multi-processing parallelization with multiple nodes





1. Multi-threading parallelization with a single node

Parallelization can be achieved by setting the argument n_jobs in optuna.study.Study.optimize().
However, the python code will not be faster due to GIL because optuna.study.Study.optimize() with n_jobs!=1 uses multi-threading.

While optimizing, it will be faster in limited situations, such as waiting for other server requests or C/C++ processing with numpy, etc., but it will not be faster in other cases.

For more information about 1., see APIReference [https://optuna.readthedocs.io/en/stable/reference/index.html].



2. Multi-processing parallelization with single node

This can be achieved by using JournalFileStorage or client/server RDBs (such as PostgreSQL and MySQL).

For more information about 2., see TutorialEasyParallelization [https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html].



3. Multi-processing parallelization with multiple nodes

This can be achieved by using client/server RDBs (such as PostgreSQL and MySQL).
However, if you are in the environment where you can not install a client/server RDB, you can not run multi-processing parallelization with multiple nodes.

For more information about 3., see TutorialEasyParallelization [https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html].




How can I solve the error that occurs when performing parallel optimization with SQLite3?

We would never recommend SQLite3 for parallel optimization in the following reasons.


	To concurrently evaluate trials enqueued by enqueue_trial(), RDBStorage uses SELECT … FOR UPDATE syntax, which is unsupported in SQLite3 [https://github.com/sqlalchemy/sqlalchemy/blob/rel_1_4_41/lib/sqlalchemy/dialects/sqlite/base.py#L1265-L1267].


	As described in the SQLAlchemy’s documentation [https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#sqlite-concurrency],
SQLite3 (and pysqlite driver) does not support a high level of concurrency.
You may get a “database is locked” error, which occurs when one thread or process has an exclusive lock on a database connection (in reality a file handle) and another thread times out waiting for the lock to be released.
You can increase the default timeout [https://docs.python.org/3/library/sqlite3.html#sqlite3.connect] value like optuna.storages.RDBStorage(“sqlite:///example.db”, engine_kwargs={“connect_args”: {“timeout”: 20.0}}) though.


	For distributed optimization via NFS, SQLite3 does not work as described at FAQ section of sqlite.org [https://www.sqlite.org/faq.html#q5].




If you want to use a file-based Optuna storage for these scenarios, please consider using JournalFileStorage instead.

import optuna
from optuna.storages import JournalStorage, JournalFileStorage

storage = JournalStorage(JournalFileStorage("optuna-journal.log"))
study = optuna.create_study(storage=storage)
...





See the Medium blog post [https://medium.com/optuna/distributed-optimization-via-nfs-using-optunas-new-operation-based-logging-storage-9815f9c3f932] for details.



Can I monitor trials and make them failed automatically when they are killed unexpectedly?


Note

Heartbeat mechanism is experimental. API would change in the future.



A process running a trial could be killed unexpectedly, typically by a job scheduler in a cluster environment.
If trials are killed unexpectedly, they will be left on the storage with their states RUNNING until we remove them or update their state manually.
For such a case, Optuna supports monitoring trials using heartbeat [https://en.wikipedia.org/wiki/Heartbeat_(computing)] mechanism.
Using heartbeat, if a process running a trial is killed unexpectedly,
Optuna will automatically change the state of the trial that was running on that process to FAIL
from RUNNING.

import optuna

def objective(trial):
    (Very time-consuming computation)

# Recording heartbeats every 60 seconds.
# Other processes' trials where more than 120 seconds have passed
# since the last heartbeat was recorded will be automatically failed.
storage = optuna.storages.RDBStorage(url="sqlite:///:memory:", heartbeat_interval=60, grace_period=120)
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)






Note

The heartbeat is supposed to be used with optimize(). If you use ask() and
tell(), please change the state of the killed trials by calling tell()
explicitly.



You can also execute a callback function to process the failed trial.
Optuna provides a callback to retry failed trials as RetryFailedTrialCallback.
Note that a callback is invoked at a beginning of each trial, which means RetryFailedTrialCallback
will retry failed trials when a new trial starts to evaluate.

import optuna
from optuna.storages import RetryFailedTrialCallback

storage = optuna.storages.RDBStorage(
    url="sqlite:///:memory:",
    heartbeat_interval=60,
    grace_period=120,
    failed_trial_callback=RetryFailedTrialCallback(max_retry=3),
)

study = optuna.create_study(storage=storage)







How can I deal with permutation as a parameter?

Although it is not straightforward to deal with combinatorial search spaces like permutations with existing API, there exists a convenient technique for handling them.
It involves re-parametrization of permutation search space of \(n\) items as an independent \(n\)-dimensional integer search space.
This technique is based on the concept of Lehmer code [https://en.wikipedia.org/wiki/Lehmer_code].

A Lehmer code of a sequence is the sequence of integers in the same size, whose \(i\)-th entry denotes how many inversions the \(i\)-th entry of the permutation has after itself.
In other words, the \(i\)-th entry of the Lehmer code represents the number of entries that are located after and are smaller than the \(i\)-th entry of the original sequence.
For instance, the Lehmer code of the permutation \((3, 1, 4, 2, 0)\) is \((3, 1, 2, 1, 0)\).

Not only does the Lehmer code provide a unique encoding of permutations into an integer space, but it also has some desirable properties.
For example, the sum of Lehmer code entries is equal to the minimum number of adjacent transpositions necessary to transform the corresponding permutation into the identity permutation.
Additionally, the lexicographical order of the encodings of two permutations is the same as that of the original sequence.
Therefore, Lehmer code preserves “closeness” among permutations in some sense, which is important for the optimization algorithm.
An Optuna implementation example to solve Euclid TSP is as follows:

import numpy as np

import optuna


def decode(lehmer_code: list[int]) -> list[int]:
    """Decode Lehmer code to permutation.

    This function decodes Lehmer code represented as a list of integers to a permutation.
    """
    all_indices = list(range(n))
    output = []
    for k in lehmer_code:
        value = all_indices[k]
        output.append(value)
        all_indices.remove(value)
    return output


# Euclidean coordinates of cities for TSP.
city_coordinates = np.array(
    [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0], [2.0, 2.0], [-1.0, -1.0]]
)
n = len(city_coordinates)


def objective(trial: optuna.Trial) -> float:
    # Suggest a permutation in the Lehmer code representation.
    lehmer_code = [trial.suggest_int(f"x{i}", 0, n - i - 1) for i in range(n)]
    permutation = decode(lehmer_code)

    # Calculate the total distance of the suggested path.
    total_distance = 0.0
    for i in range(n):
        total_distance += np.linalg.norm(
            city_coordinates[permutation[i]] - city_coordinates[np.roll(permutation, 1)[i]]
        )
    return total_distance


study = optuna.create_study()
study.optimize(objective, n_trials=10)
lehmer_code = study.best_params.values()
print(decode(lehmer_code))







How can I ignore duplicated samples?

Optuna may sometimes suggest parameters evaluated in the past and if you would like to avoid this problem, you can try out the following workaround:

import optuna
from optuna.trial import TrialState


def objective(trial):
    # Sample parameters.
    x = trial.suggest_int("x", -5, 5)
    y = trial.suggest_int("y", -5, 5)
    # Fetch all the trials to consider.
    # In this example, we use only completed trials, but users can specify other states
    # such as TrialState.PRUNED and TrialState.FAIL.
    states_to_consider = (TrialState.COMPLETE,)
    trials_to_consider = trial.study.get_trials(deepcopy=False, states=states_to_consider)
    # Check whether we already evaluated the sampled `(x, y)`.
    for t in reversed(trials_to_consider):
        if trial.params == t.params:
            # Use the existing value as trial duplicated the parameters.
            return t.value

    # Compute the objective function if the parameters are not duplicated.
    # We use the 2D sphere function in this example.
    return x ** 2 + y ** 2


study = optuna.create_study()
study.optimize(objective, n_trials=100)









            

          

      

      

    

  

  
    
    
    Python Module Index
    

    

    

    

    

    

    

    

    

 


  

    
      
          
            

   Python Module Index


   
   o
   


   
     		 	

     		
       o	

     
       	[image: -]
       	
       optuna	
       

     
       	
       	   
       optuna.artifacts	
       

     
       	
       	   
       optuna.cli	
       

     
       	
       	   
       optuna.distributions	
       

     
       	
       	   
       optuna.exceptions	
       

     
       	
       	   
       optuna.importance	
       

     
       	
       	   
       optuna.integration	
       

     
       	
       	   
       optuna.logging	
       

     
       	
       	   
       optuna.pruners	
       

     
       	
       	   
       optuna.samplers	
       

     
       	
       	   
       optuna.samplers.nsgaii	
       

     
       	
       	   
       optuna.search_space	
       

     
       	
       	   
       optuna.storages	
       

     
       	
       	   
       optuna.study	
       

     
       	
       	   
       optuna.terminator	
       

     
       	
       	   
       optuna.trial	
       

     
       	
       	   
       optuna.visualization	
       

     
       	
       	   
       optuna.visualization.matplotlib	
       

   



            

          

      

      

    

  

  
    
    
    Index
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 


A


  	
      	acquire() (optuna.storages.JournalFileOpenLock method)

      
        	(optuna.storages.JournalFileSymlinkLock method)


      


      	add_note() (optuna.exceptions.CLIUsageError method)

      
        	(optuna.exceptions.DuplicatedStudyError method)


        	(optuna.exceptions.OptunaError method)


        	(optuna.exceptions.StorageInternalError method)


        	(optuna.exceptions.TrialPruned method)


        	(optuna.TrialPruned method)


      


      	add_trial() (optuna.study.Study method)


      	add_trials() (optuna.study.Study method)


      	after_iteration() (optuna.integration.CatBoostPruningCallback method)


      	after_trial() (optuna.integration.BoTorchSampler method)

      
        	(optuna.integration.CmaEsSampler method)


        	(optuna.integration.PyCmaSampler method)


        	(optuna.integration.SkoptSampler method)


        	(optuna.samplers.BaseSampler method)


        	(optuna.samplers.BruteForceSampler method)


        	(optuna.samplers.CmaEsSampler method)


        	(optuna.samplers.GridSampler method)


        	(optuna.samplers.MOTPESampler method)


        	(optuna.samplers.NSGAIIISampler method)


        	(optuna.samplers.NSGAIISampler method)


        	(optuna.samplers.PartialFixedSampler method)


        	(optuna.samplers.QMCSampler method)


        	(optuna.samplers.RandomSampler method)


        	(optuna.samplers.TPESampler method)


      


  

  	
      	append_logs() (optuna.storages.JournalFileStorage method)

      
        	(optuna.storages.JournalRedisStorage method)


      


      	as_integer_ratio() (optuna.study.StudyDirection method)

      
        	(optuna.trial.TrialState method)


      


      	ask() (optuna.study.Study method)


  





B


  	
      	Backoff (class in optuna.artifacts)


      	BaseCrossover (class in optuna.samplers.nsgaii)


      	BaseErrorEvaluator (class in optuna.terminator)


      	BaseImprovementEvaluator (class in optuna.terminator)


      	BasePruner (class in optuna.pruners)


      	BaseSampler (class in optuna.samplers)


      	BaseTerminator (class in optuna.terminator)


      	before_trial() (optuna.integration.BoTorchSampler method)

      
        	(optuna.integration.CmaEsSampler method)


        	(optuna.integration.PyCmaSampler method)


        	(optuna.integration.SkoptSampler method)


        	(optuna.samplers.BaseSampler method)


        	(optuna.samplers.BruteForceSampler method)


        	(optuna.samplers.CmaEsSampler method)


        	(optuna.samplers.GridSampler method)


        	(optuna.samplers.MOTPESampler method)


        	(optuna.samplers.NSGAIIISampler method)


        	(optuna.samplers.NSGAIISampler method)


        	(optuna.samplers.PartialFixedSampler method)


        	(optuna.samplers.QMCSampler method)


        	(optuna.samplers.RandomSampler method)


        	(optuna.samplers.TPESampler method)


      


  

  	
      	best_estimator_ (optuna.integration.OptunaSearchCV attribute)


      	best_index_ (optuna.integration.OptunaSearchCV property)


      	best_params (optuna.integration.lightgbm.LightGBMTuner property)

      
        	(optuna.integration.lightgbm.LightGBMTunerCV property)


        	(optuna.study.Study property)


      


      	best_params_ (optuna.integration.OptunaSearchCV property)


      	best_score (optuna.integration.lightgbm.LightGBMTuner property)

      
        	(optuna.integration.lightgbm.LightGBMTunerCV property)


      


      	best_score_ (optuna.integration.OptunaSearchCV property)


      	best_trial (optuna.study.Study property)

      
        	(optuna.study.StudySummary attribute)


      


      	best_trial_ (optuna.integration.OptunaSearchCV property)


      	best_trials (optuna.study.Study property)


      	best_value (optuna.study.Study property)


      	BestValueStagnationEvaluator (class in optuna.terminator)


      	bit_count() (optuna.study.StudyDirection method)

      
        	(optuna.trial.TrialState method)


      


      	bit_length() (optuna.study.StudyDirection method)

      
        	(optuna.trial.TrialState method)


      


      	BLXAlphaCrossover (class in optuna.samplers.nsgaii)


      	Boto3ArtifactStore (class in optuna.artifacts)


      	BoTorchSampler (class in optuna.integration)


      	BruteForceSampler (class in optuna.samplers)


  





C


  	
      	calculate() (optuna.samplers.IntersectionSearchSpace method)

      
        	(optuna.search_space.IntersectionSearchSpace method)


      


      	CatBoostPruningCallback (class in optuna.integration)


      	CategoricalDistribution (class in optuna.distributions)


      	check_distribution_compatibility() (in module optuna.distributions)


      	check_pruned() (optuna.integration.CatBoostPruningCallback method)

      
        	(optuna.integration.PyTorchLightningPruningCallback method)


      


      	check_trial_is_updatable() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	choices (optuna.distributions.CategoricalDistribution attribute)


      	classes_ (optuna.integration.OptunaSearchCV property)


      	CLIUsageError


      	CmaEsSampler (class in optuna.integration)

      
        	(class in optuna.samplers)


      


      	COMPLETE (optuna.trial.TrialState attribute)


      	conjugate() (optuna.study.StudyDirection method)

      
        	(optuna.trial.TrialState method)


      


      	copy_study() (in module optuna)

      
        	(in module optuna.study)


      


  

  	
      	create_new_study() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	create_new_trial() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	create_study() (in module optuna)

      
        	(in module optuna.study)


      


      	create_trial() (in module optuna.trial)


      	crossover() (optuna.samplers.nsgaii.BaseCrossover method)

      
        	(optuna.samplers.nsgaii.BLXAlphaCrossover method)


        	(optuna.samplers.nsgaii.SBXCrossover method)


        	(optuna.samplers.nsgaii.SPXCrossover method)


        	(optuna.samplers.nsgaii.UNDXCrossover method)


        	(optuna.samplers.nsgaii.UniformCrossover method)


        	(optuna.samplers.nsgaii.VSBXCrossover method)


      


      	CrossValidationErrorEvaluator (class in optuna.terminator)


      	cv_results_ (optuna.integration.OptunaSearchCV property)


  





D


  	
      	DaskStorage (class in optuna.integration)


      	datetime_complete (optuna.trial.FrozenTrial attribute)


      	datetime_start (optuna.study.StudySummary attribute)

      
        	(optuna.trial.FrozenTrial attribute)


        	(optuna.trial.Trial property)


      


      	decision_function (optuna.integration.OptunaSearchCV property)


      	delete_study() (in module optuna)

      
        	(in module optuna.study)


        	(optuna.integration.DaskStorage method)


        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	denominator (optuna.study.StudyDirection attribute)

      
        	(optuna.trial.TrialState attribute)


      


  

  	
      	direction (optuna.study.Study property)

      
        	(optuna.study.StudySummary attribute)


      


      	directions (optuna.study.Study property)

      
        	(optuna.study.StudySummary attribute)


      


      	disable_default_handler() (in module optuna.logging)


      	disable_propagation() (in module optuna.logging)


      	DiscreteUniformDistribution (class in optuna.distributions)


      	distribution_to_json() (in module optuna.distributions)


      	distributions (optuna.trial.FrozenTrial attribute)

      
        	(optuna.trial.Trial property)


      


      	DuplicatedStudyError


      	duration (optuna.trial.FrozenTrial property)


  





E


  	
      	enable_default_handler() (in module optuna.logging)


      	enable_propagation() (in module optuna.logging)


      	enqueue_trial() (optuna.study.Study method)


  

  	
      	evaluate() (optuna.importance.FanovaImportanceEvaluator method)

      
        	(optuna.importance.MeanDecreaseImpurityImportanceEvaluator method)


        	(optuna.terminator.CrossValidationErrorEvaluator method)


      


  





F


  	
      	FAIL (optuna.trial.TrialState attribute)


      	fail_stale_trials() (in module optuna.storages)


      	FanovaImportanceEvaluator (class in optuna.importance)


      	FastAIPruningCallback (in module optuna.integration)


      	FastAIV1PruningCallback (class in optuna.integration)


      	FastAIV2PruningCallback (class in optuna.integration)


  

  	
      	FileSystemArtifactStore (class in optuna.artifacts)


      	fit() (optuna.integration.OptunaSearchCV method)


      	FixedTrial (class in optuna.trial)


      	FloatDistribution (class in optuna.distributions)


      	from_bytes() (optuna.study.StudyDirection method)

      
        	(optuna.trial.TrialState method)


      


      	FrozenTrial (class in optuna.trial)


  





G


  	
      	GCSArtifactStore (class in optuna.artifacts)


      	get_all_studies() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_all_study_names() (in module optuna)

      
        	(in module optuna.study)


      


      	get_all_study_summaries() (in module optuna)

      
        	(in module optuna.study)


      


      	get_all_trials() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_all_versions() (optuna.storages.RDBStorage method)


      	get_base_storage() (optuna.integration.DaskStorage method)


      	get_best_booster() (optuna.integration.lightgbm.LightGBMTuner method)

      
        	(optuna.integration.lightgbm.LightGBMTunerCV method)


      


      	get_best_trial() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_current_version() (optuna.storages.RDBStorage method)


      	get_failed_trial_callback() (optuna.storages.RDBStorage method)


      	get_head_version() (optuna.storages.RDBStorage method)


      	get_heartbeat_interval() (optuna.storages.RDBStorage method)


      	get_metadata_routing() (optuna.integration.OptunaSearchCV method)


      	get_n_trials() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_param_importances() (in module optuna.importance)


      	get_params() (optuna.integration.OptunaSearchCV method)


      	get_study_directions() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_study_id_from_name() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


  

  	
      	get_study_name_from_id() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_study_system_attrs() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_study_user_attrs() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial_id_from_study_id_trial_number() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial_number_from_id() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial_param() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial_params() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial_system_attrs() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trial_user_attrs() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	get_trials() (optuna.study.Study method)


      	get_verbosity() (in module optuna.logging)


      	GridSampler (class in optuna.samplers)


  





H


  	
      	high (optuna.distributions.DiscreteUniformDistribution attribute)

      
        	(optuna.distributions.FloatDistribution attribute)


        	(optuna.distributions.IntDistribution attribute)


        	(optuna.distributions.IntLogUniformDistribution attribute)


        	(optuna.distributions.IntUniformDistribution attribute)


        	(optuna.distributions.LogUniformDistribution attribute)


        	(optuna.distributions.UniformDistribution attribute)


      


  

  	
      	HyperbandPruner (class in optuna.pruners)


      	hyperopt_parameters() (optuna.samplers.MOTPESampler static method)

      
        	(optuna.samplers.TPESampler static method)


      


  





I


  	
      	imag (optuna.study.StudyDirection attribute)

      
        	(optuna.trial.TrialState attribute)


      


      	infer_relative_search_space() (optuna.integration.BoTorchSampler method)

      
        	(optuna.integration.CmaEsSampler method)


        	(optuna.integration.PyCmaSampler method)


        	(optuna.integration.SkoptSampler method)


        	(optuna.samplers.BaseSampler method)


        	(optuna.samplers.BruteForceSampler method)


        	(optuna.samplers.CmaEsSampler method)


        	(optuna.samplers.GridSampler method)


        	(optuna.samplers.MOTPESampler method)


        	(optuna.samplers.NSGAIIISampler method)


        	(optuna.samplers.NSGAIISampler method)


        	(optuna.samplers.PartialFixedSampler method)


        	(optuna.samplers.QMCSampler method)


        	(optuna.samplers.RandomSampler method)


        	(optuna.samplers.TPESampler method)


      


  

  	
      	IntDistribution (class in optuna.distributions)


      	intermediate_values (optuna.trial.FrozenTrial attribute)


      	intersection_search_space() (in module optuna.samplers)

      
        	(in module optuna.search_space)


      


      	IntersectionSearchSpace (class in optuna.samplers)

      
        	(class in optuna.search_space)


      


      	IntLogUniformDistribution (class in optuna.distributions)


      	IntUniformDistribution (class in optuna.distributions)


      	inverse_transform (optuna.integration.OptunaSearchCV property)


      	is_available() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	is_finished() (optuna.trial.TrialState method)


  





J


  	
      	JournalFileOpenLock (class in optuna.storages)


      	JournalFileStorage (class in optuna.storages)


      	JournalFileSymlinkLock (class in optuna.storages)


  

  	
      	JournalRedisStorage (class in optuna.storages)


      	JournalStorage (class in optuna.storages)


      	json_to_distribution() (in module optuna.distributions)


  





L


  	
      	last_step (optuna.trial.FrozenTrial property)


      	LightGBMPruningCallback (class in optuna.integration)


      	LightGBMTuner (class in optuna.integration.lightgbm)


      	LightGBMTunerCV (class in optuna.integration.lightgbm)


      	load_snapshot() (optuna.storages.JournalRedisStorage method)


      	load_study() (in module optuna)

      
        	(in module optuna.study)


      


      	log (optuna.distributions.FloatDistribution attribute)

      
        	(optuna.distributions.IntDistribution attribute)


      


  

  	
      	logei_candidates_func() (in module optuna.integration.botorch)


      	LogUniformDistribution (class in optuna.distributions)


      	low (optuna.distributions.DiscreteUniformDistribution attribute)

      
        	(optuna.distributions.FloatDistribution attribute)


        	(optuna.distributions.IntDistribution attribute)


        	(optuna.distributions.IntLogUniformDistribution attribute)


        	(optuna.distributions.IntUniformDistribution attribute)


        	(optuna.distributions.LogUniformDistribution attribute)


        	(optuna.distributions.UniformDistribution attribute)


      


  





M


  	
      	MAXIMIZE (optuna.study.StudyDirection attribute)


      	MaxTrialsCallback (class in optuna.study)


      	MeanDecreaseImpurityImportanceEvaluator (class in optuna.importance)


      	MedianPruner (class in optuna.pruners)


      	metric_names (optuna.study.Study property)


      	MINIMIZE (optuna.study.StudyDirection attribute)


      	MLflowCallback (class in optuna.integration)


      	
    module

      
        	optuna


        	optuna.artifacts


        	optuna.cli


        	optuna.distributions


        	optuna.exceptions


        	optuna.importance


        	optuna.integration


        	optuna.logging


        	optuna.pruners


        	optuna.samplers


        	optuna.samplers.nsgaii


        	optuna.search_space


        	optuna.storages


        	optuna.study


        	optuna.terminator


        	optuna.trial


        	optuna.visualization


        	optuna.visualization.matplotlib


      


  

  	
      	MOTPESampler (class in optuna.samplers)


  





N


  	
      	n_parents (optuna.samplers.nsgaii.BaseCrossover property)


      	n_splits_ (optuna.integration.OptunaSearchCV attribute)


      	n_trials (optuna.study.StudySummary attribute)


      	n_trials_ (optuna.integration.OptunaSearchCV property)


      	NopPruner (class in optuna.pruners)


      	NOT_SET (optuna.study.StudyDirection attribute)


  

  	
      	NSGAIIISampler (class in optuna.samplers)


      	NSGAIISampler (class in optuna.samplers)


      	number (optuna.trial.FrozenTrial attribute)

      
        	(optuna.trial.Trial property)


      


      	numerator (optuna.study.StudyDirection attribute)

      
        	(optuna.trial.TrialState attribute)


      


  





O


  	
      	optimize() (optuna.study.Study method)


      	
    optuna

      
        	module


      


      	
    optuna.artifacts

      
        	module


      


      	
    optuna.cli

      
        	module


      


      	
    optuna.distributions

      
        	module


      


      	
    optuna.exceptions

      
        	module


      


      	
    optuna.importance

      
        	module


      


      	
    optuna.integration

      
        	module


      


      	
    optuna.logging

      
        	module


      


      	
    optuna.pruners

      
        	module


      


  

  	
      	
    optuna.samplers

      
        	module


      


      	
    optuna.samplers.nsgaii

      
        	module


      


      	
    optuna.search_space

      
        	module


      


      	
    optuna.storages

      
        	module


      


      	
    optuna.study

      
        	module


      


      	
    optuna.terminator

      
        	module


      


      	
    optuna.trial

      
        	module


      


      	
    optuna.visualization

      
        	module


      


      	
    optuna.visualization.matplotlib

      
        	module


      


      	OptunaError


      	OptunaSearchCV (class in optuna.integration)


  





P


  	
      	params (optuna.trial.FrozenTrial attribute)

      
        	(optuna.trial.Trial property)


      


      	PartialFixedSampler (class in optuna.samplers)


      	PatientPruner (class in optuna.pruners)


      	PercentilePruner (class in optuna.pruners)


      	plot_contour() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_edf() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_hypervolume_history() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_intermediate_values() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_optimization_history() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_parallel_coordinate() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_param_importances() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_pareto_front() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_rank() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


  

  	
      	plot_slice() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_terminator_improvement() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	plot_timeline() (in module optuna.visualization)

      
        	(in module optuna.visualization.matplotlib)


      


      	predict (optuna.integration.OptunaSearchCV property)


      	predict_log_proba (optuna.integration.OptunaSearchCV property)


      	predict_proba (optuna.integration.OptunaSearchCV property)


      	prune() (optuna.pruners.BasePruner method)

      
        	(optuna.pruners.HyperbandPruner method)


        	(optuna.pruners.MedianPruner method)


        	(optuna.pruners.NopPruner method)


        	(optuna.pruners.PatientPruner method)


        	(optuna.pruners.PercentilePruner method)


        	(optuna.pruners.SuccessiveHalvingPruner method)


        	(optuna.pruners.ThresholdPruner method)


      


      	PRUNED (optuna.trial.TrialState attribute)


      	PyCmaSampler (class in optuna.integration)


      	PyTorchIgnitePruningHandler (class in optuna.integration)


      	PyTorchLightningPruningCallback (class in optuna.integration)


  





Q


  	
      	q (optuna.distributions.DiscreteUniformDistribution property)


      	qehvi_candidates_func() (in module optuna.integration.botorch)


      	qei_candidates_func() (in module optuna.integration.botorch)


  

  	
      	QMCSampler (class in optuna.samplers)


      	qnehvi_candidates_func() (in module optuna.integration.botorch)


      	qnei_candidates_func() (in module optuna.integration.botorch)


      	qparego_candidates_func() (in module optuna.integration.botorch)


  





R


  	
      	RandomSampler (class in optuna.samplers)


      	RDBStorage (class in optuna.storages)


      	read_logs() (optuna.storages.JournalFileStorage method)

      
        	(optuna.storages.JournalRedisStorage method)


      


      	real (optuna.study.StudyDirection attribute)

      
        	(optuna.trial.TrialState attribute)


      


      	record_heartbeat() (optuna.storages.RDBStorage method)


      	refit_time_ (optuna.integration.OptunaSearchCV attribute)


      	RegretBoundEvaluator (class in optuna.terminator)


      	release() (optuna.storages.JournalFileOpenLock method)

      
        	(optuna.storages.JournalFileSymlinkLock method)


      


      	remove_session() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	report() (optuna.trial.FrozenTrial method)

      
        	(optuna.trial.Trial method)


      


      	report_cross_validation_scores() (in module optuna.terminator)


      	reseed_rng() (optuna.integration.BoTorchSampler method)

      
        	(optuna.integration.CmaEsSampler method)


        	(optuna.integration.PyCmaSampler method)


        	(optuna.integration.SkoptSampler method)


        	(optuna.samplers.BaseSampler method)


        	(optuna.samplers.BruteForceSampler method)


        	(optuna.samplers.CmaEsSampler method)


        	(optuna.samplers.GridSampler method)


        	(optuna.samplers.MOTPESampler method)


        	(optuna.samplers.NSGAIIISampler method)


        	(optuna.samplers.NSGAIISampler method)


        	(optuna.samplers.PartialFixedSampler method)


        	(optuna.samplers.QMCSampler method)


        	(optuna.samplers.RandomSampler method)


        	(optuna.samplers.TPESampler method)


      


  

  	
      	retried_trial_number() (optuna.storages.RetryFailedTrialCallback static method)


      	retry_history() (optuna.storages.RetryFailedTrialCallback static method)


      	RetryFailedTrialCallback (class in optuna.storages)


      	run() (optuna.integration.lightgbm.LightGBMTuner method)

      
        	(optuna.integration.lightgbm.LightGBMTunerCV method)


      


      	RUNNING (optuna.trial.TrialState attribute)


  





S


  	
      	sample_independent() (optuna.integration.BoTorchSampler method)

      
        	(optuna.integration.CmaEsSampler method)


        	(optuna.integration.PyCmaSampler method)


        	(optuna.integration.SkoptSampler method)


        	(optuna.samplers.BaseSampler method)


        	(optuna.samplers.BruteForceSampler method)


        	(optuna.samplers.CmaEsSampler method)


        	(optuna.samplers.GridSampler method)


        	(optuna.samplers.MOTPESampler method)


        	(optuna.samplers.NSGAIIISampler method)


        	(optuna.samplers.NSGAIISampler method)


        	(optuna.samplers.PartialFixedSampler method)


        	(optuna.samplers.QMCSampler method)


        	(optuna.samplers.RandomSampler method)


        	(optuna.samplers.TPESampler method)


      


      	sample_indices_ (optuna.integration.OptunaSearchCV attribute)


      	sample_relative() (optuna.integration.BoTorchSampler method)

      
        	(optuna.integration.CmaEsSampler method)


        	(optuna.integration.PyCmaSampler method)


        	(optuna.integration.SkoptSampler method)


        	(optuna.samplers.BaseSampler method)


        	(optuna.samplers.BruteForceSampler method)


        	(optuna.samplers.CmaEsSampler method)


        	(optuna.samplers.GridSampler method)


        	(optuna.samplers.MOTPESampler method)


        	(optuna.samplers.NSGAIIISampler method)


        	(optuna.samplers.NSGAIISampler method)


        	(optuna.samplers.PartialFixedSampler method)


        	(optuna.samplers.QMCSampler method)


        	(optuna.samplers.RandomSampler method)


        	(optuna.samplers.TPESampler method)


      


      	sample_train_set() (optuna.integration.lightgbm.LightGBMTuner method)

      
        	(optuna.integration.lightgbm.LightGBMTunerCV method)


      


      	save_snapshot() (optuna.storages.JournalRedisStorage method)


      	SBXCrossover (class in optuna.samplers.nsgaii)


      	score() (optuna.integration.OptunaSearchCV method)


      	score_samples (optuna.integration.OptunaSearchCV property)


      	scorer_ (optuna.integration.OptunaSearchCV attribute)


      	set_fit_request() (optuna.integration.OptunaSearchCV method)


      	set_metric_names() (optuna.study.Study method)


      	set_params() (optuna.integration.OptunaSearchCV method)


      	set_study_system_attr() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	set_study_user_attr() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	set_system_attr() (optuna.integration.TorchDistributedTrial method)

      
        	(optuna.study.Study method)


        	(optuna.trial.FixedTrial method)


        	(optuna.trial.FrozenTrial method)


        	(optuna.trial.Trial method)


      


      	set_trial_intermediate_value() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	set_trial_param() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)
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        	(optuna.storages.RDBStorage method)
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        	(optuna.storages.RDBStorage method)


      


      	set_trial_user_attr() (optuna.integration.DaskStorage method)

      
        	(optuna.storages.JournalStorage method)


        	(optuna.storages.RDBStorage method)


      


      	set_user_attr (optuna.integration.OptunaSearchCV property)


      	set_user_attr() (optuna.study.Study method)

      
        	(optuna.trial.Trial method)


      


      	set_verbosity() (in module optuna.logging)


      	should_prune() (optuna.trial.FrozenTrial method)

      
        	(optuna.trial.Trial method)


      


      	should_terminate() (optuna.terminator.Terminator method)


      	single() (optuna.distributions.CategoricalDistribution method)

      
        	(optuna.distributions.DiscreteUniformDistribution method)


        	(optuna.distributions.FloatDistribution method)


        	(optuna.distributions.IntDistribution method)


        	(optuna.distributions.IntLogUniformDistribution method)


        	(optuna.distributions.IntUniformDistribution method)
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      	SkoptSampler (class in optuna.integration)


      	SPXCrossover (class in optuna.samplers.nsgaii)


      	state (optuna.trial.FrozenTrial attribute)


      	StaticErrorEvaluator (class in optuna.terminator)


      	step (optuna.distributions.FloatDistribution attribute)

      
        	(optuna.distributions.IntDistribution attribute)


        	(optuna.distributions.IntLogUniformDistribution attribute)


        	(optuna.distributions.IntUniformDistribution attribute)


      


      	stop() (optuna.study.Study method)


      	StorageInternalError


      	Study (class in optuna.study)


      	study_ (optuna.integration.OptunaSearchCV attribute)


      	study_name (optuna.study.StudySummary attribute)
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      	suggest_float() (optuna.trial.Trial method)


      	suggest_int() (optuna.trial.Trial method)


      	suggest_loguniform() (optuna.integration.TorchDistributedTrial method)

      
        	(optuna.trial.FixedTrial method)


        	(optuna.trial.FrozenTrial method)


        	(optuna.trial.Trial method)


      


      	suggest_uniform() (optuna.integration.TorchDistributedTrial method)

      
        	(optuna.trial.FixedTrial method)


        	(optuna.trial.FrozenTrial method)


        	(optuna.trial.Trial method)


      


      	system_attrs (optuna.integration.TorchDistributedTrial property)

      
        	(optuna.study.Study property)


        	(optuna.study.StudySummary attribute)


        	(optuna.trial.FrozenTrial attribute)


        	(optuna.trial.Trial property)
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      	train() (in module optuna.integration.lightgbm)


      	transform (optuna.integration.OptunaSearchCV property)
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      	trials (optuna.study.Study property)
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      	trials_dataframe (optuna.integration.OptunaSearchCV property)
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      	TrialState (class in optuna.trial)
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      	UNDXCrossover (class in optuna.samplers.nsgaii)


      	UniformCrossover (class in optuna.samplers.nsgaii)


      	UniformDistribution (class in optuna.distributions)


      	upgrade() (optuna.storages.RDBStorage method)


      	upload_artifact() (in module optuna.artifacts)


  

  	
      	user_attrs (optuna.study.Study property)

      
        	(optuna.study.StudySummary attribute)


        	(optuna.trial.FrozenTrial attribute)


        	(optuna.trial.Trial property)


      


      	user_attrs_ (optuna.integration.OptunaSearchCV property)
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      	value (optuna.trial.FrozenTrial attribute)


  

  	
      	values (optuna.trial.FrozenTrial attribute)


      	VSBXCrossover (class in optuna.samplers.nsgaii)
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      	WAITING (optuna.trial.TrialState attribute)


  

  	
      	WeightsAndBiasesCallback (class in optuna.integration)
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      	XGBoostPruningCallback (class in optuna.integration)
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Third-party License


SciPy

The Optuna contains the codes from SciPy project.

Copyright (c) 2001-2002 Enthought, Inc. 2003-2022, SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.


	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



fdlibm


Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice
is preserved.
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Privacy Policy


Google Analytics

To collect information about how visitors use our website and to improve our services, we are using Google Analytics on this website. You can find out more about how Google Analytics works and about how information is collected on the Google Analytics terms of services and on Google’s privacy policy.


	Google Analytics Terms of Service: http://www.google.com/analytics/terms/us.html


	Google Privacy Policy: https://policies.google.com/privacy?hl=en


	Google Analytics Opt-out Add-on: https://tools.google.com/dlpage/gaoptout?hl=en
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Lightweight, versatile, and platform agnostic architecture

Optuna is entirely written in Python and has few dependencies.
This means that we can quickly move to the real example once you get interested in Optuna.


Quadratic Function Example

Usually, Optuna is used to optimize hyperparameters, but as an example,
let’s optimize a simple quadratic function: \((x - 2)^2\).

First of all, import optuna.

import optuna





In optuna, conventionally functions to be optimized are named objective.

def objective(trial):
    x = trial.suggest_float("x", -10, 10)
    return (x - 2) ** 2





This function returns the value of \((x - 2)^2\). Our goal is to find the value of x
that minimizes the output of the objective function. This is the “optimization.”
During the optimization, Optuna repeatedly calls and evaluates the objective function with
different values of x.

A Trial object corresponds to a single execution of the objective
function and is internally instantiated upon each invocation of the function.

The suggest APIs (for example, suggest_float()) are called
inside the objective function to obtain parameters for a trial.
suggest_float() selects parameters uniformly within the range
provided. In our example, from \(-10\) to \(10\).

To start the optimization, we create a study object and pass the objective function to method
optimize() as follows.

study = optuna.create_study()
study.optimize(objective, n_trials=100)





You can get the best parameter as follows.

best_params = study.best_params
found_x = best_params["x"]
print("Found x: {}, (x - 2)^2: {}".format(found_x, (found_x - 2) ** 2))





Found x: 1.958621097970003, (x - 2)^2: 0.0017122135332080944





We can see that the x value found by Optuna is close to the optimal value of 2.


Note

When used to search for hyperparameters in machine learning,
usually the objective function would return the loss or accuracy
of the model.





Study Object

Let us clarify the terminology in Optuna as follows:


	Trial: A single call of the objective function


	Study: An optimization session, which is a set of trials


	Parameter: A variable whose value is to be optimized, such as x in the above example




In Optuna, we use the study object to manage optimization.
Method create_study() returns a study object.
A study object has useful properties for analyzing the optimization outcome.

To get the dictionary of parameter name and parameter values:

study.best_params





{'x': 1.958621097970003}





To get the best observed value of the objective function:

study.best_value





0.0017122135332080944





To get the best trial:

study.best_trial





FrozenTrial(number=61, state=1, values=[0.0017122135332080944], datetime_start=datetime.datetime(2023, 10, 17, 7, 28, 44, 675960), datetime_complete=datetime.datetime(2023, 10, 17, 7, 28, 44, 680048), params={'x': 1.958621097970003}, user_attrs={}, system_attrs={}, intermediate_values={}, distributions={'x': FloatDistribution(high=10.0, log=False, low=-10.0, step=None)}, trial_id=61, value=None)





To get all trials:

study.trials
for trial in study.trials[:2]:  # Show first two trials
    print(trial)





FrozenTrial(number=0, state=1, values=[129.74896365939048], datetime_start=datetime.datetime(2023, 10, 17, 7, 28, 44, 448471), datetime_complete=datetime.datetime(2023, 10, 17, 7, 28, 44, 449144), params={'x': -9.39074025949984}, user_attrs={}, system_attrs={}, intermediate_values={}, distributions={'x': FloatDistribution(high=10.0, log=False, low=-10.0, step=None)}, trial_id=0, value=None)
FrozenTrial(number=1, state=1, values=[12.123212475328693], datetime_start=datetime.datetime(2023, 10, 17, 7, 28, 44, 449406), datetime_complete=datetime.datetime(2023, 10, 17, 7, 28, 44, 449709), params={'x': -1.4818403862510259}, user_attrs={}, system_attrs={}, intermediate_values={}, distributions={'x': FloatDistribution(high=10.0, log=False, low=-10.0, step=None)}, trial_id=1, value=None)





To get the number of trials:

len(study.trials)





100





By executing optimize() again, we can continue the optimization.

study.optimize(objective, n_trials=100)





To get the updated number of trials:

len(study.trials)





200





As the objective function is so easy that the last 100 trials don’t improve the result.
However, we can check the result again:

best_params = study.best_params
found_x = best_params["x"]
print("Found x: {}, (x - 2)^2: {}".format(found_x, (found_x - 2) ** 2))





Found x: 2.0055033829469595, (x - 2)^2: 3.028722386088476e-05





Total running time of the script: (0 minutes 0.964 seconds)



Download Python source code: 001_first.py




Download Jupyter notebook: 001_first.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Pythonic Search Space

For hyperparameter sampling, Optuna provides the following features:


	optuna.trial.Trial.suggest_categorical() for categorical parameters


	optuna.trial.Trial.suggest_int() for integer parameters


	optuna.trial.Trial.suggest_float() for floating point parameters




With optional arguments of step and log, we can discretize or take the logarithm of
integer and floating point parameters.

import optuna


def objective(trial):
    # Categorical parameter
    optimizer = trial.suggest_categorical("optimizer", ["MomentumSGD", "Adam"])

    # Integer parameter
    num_layers = trial.suggest_int("num_layers", 1, 3)

    # Integer parameter (log)
    num_channels = trial.suggest_int("num_channels", 32, 512, log=True)

    # Integer parameter (discretized)
    num_units = trial.suggest_int("num_units", 10, 100, step=5)

    # Floating point parameter
    dropout_rate = trial.suggest_float("dropout_rate", 0.0, 1.0)

    # Floating point parameter (log)
    learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-2, log=True)

    # Floating point parameter (discretized)
    drop_path_rate = trial.suggest_float("drop_path_rate", 0.0, 1.0, step=0.1)






Defining Parameter Spaces

In Optuna, we define search spaces using familiar Python syntax including conditionals and loops.

Also, you can use branches or loops depending on the parameter values.

For more various use, see examples [https://github.com/optuna/optuna-examples/].


	Branches:




import sklearn.ensemble
import sklearn.svm


def objective(trial):
    classifier_name = trial.suggest_categorical("classifier", ["SVC", "RandomForest"])
    if classifier_name == "SVC":
        svc_c = trial.suggest_float("svc_c", 1e-10, 1e10, log=True)
        classifier_obj = sklearn.svm.SVC(C=svc_c)
    else:
        rf_max_depth = trial.suggest_int("rf_max_depth", 2, 32, log=True)
        classifier_obj = sklearn.ensemble.RandomForestClassifier(max_depth=rf_max_depth)






	Loops:




import torch
import torch.nn as nn


def create_model(trial, in_size):
    n_layers = trial.suggest_int("n_layers", 1, 3)

    layers = []
    for i in range(n_layers):
        n_units = trial.suggest_int("n_units_l{}".format(i), 4, 128, log=True)
        layers.append(nn.Linear(in_size, n_units))
        layers.append(nn.ReLU())
        in_size = n_units
    layers.append(nn.Linear(in_size, 10))

    return nn.Sequential(*layers)






Note on the Number of Parameters

The difficulty of optimization increases roughly exponentially with regard to the number of parameters. That is, the number of necessary trials increases exponentially when you increase the number of parameters, so it is recommended to not add unimportant parameters.

Total running time of the script: (0 minutes 0.001 seconds)



Download Python source code: 002_configurations.py




Download Jupyter notebook: 002_configurations.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Efficient Optimization Algorithms

Optuna enables efficient hyperparameter optimization by
adopting state-of-the-art algorithms for sampling hyperparameters and
pruning efficiently unpromising trials.


Sampling Algorithms

Samplers basically continually narrow down the search space using the records of suggested parameter values and evaluated objective values,
leading to an optimal search space which giving off parameters leading to better objective values.
More detailed explanation of how samplers suggest parameters is in BaseSampler.

Optuna provides the following sampling algorithms:


	Grid Search implemented in GridSampler


	Random Search implemented in RandomSampler


	Tree-structured Parzen Estimator algorithm implemented in TPESampler


	CMA-ES based algorithm implemented in CmaEsSampler


	Algorithm to enable partial fixed parameters implemented in PartialFixedSampler


	Nondominated Sorting Genetic Algorithm II implemented in NSGAIISampler


	A Quasi Monte Carlo sampling algorithm implemented in QMCSampler




The default sampler is TPESampler.



Switching Samplers

import optuna





By default, Optuna uses TPESampler as follows.

study = optuna.create_study()
print(f"Sampler is {study.sampler.__class__.__name__}")





Sampler is TPESampler





If you want to use different samplers for example RandomSampler
and CmaEsSampler,

study = optuna.create_study(sampler=optuna.samplers.RandomSampler())
print(f"Sampler is {study.sampler.__class__.__name__}")

study = optuna.create_study(sampler=optuna.samplers.CmaEsSampler())
print(f"Sampler is {study.sampler.__class__.__name__}")





Sampler is RandomSampler
Sampler is CmaEsSampler







Pruning Algorithms

Pruners automatically stop unpromising trials at the early stages of the training (a.k.a., automated early-stopping).

Optuna provides the following pruning algorithms:


	Median pruning algorithm implemented in MedianPruner


	Non-pruning algorithm implemented in NopPruner


	Algorithm to operate pruner with tolerance implemented in PatientPruner


	Algorithm to prune specified percentile of trials implemented in PercentilePruner


	Asynchronous Successive Halving algorithm implemented in SuccessiveHalvingPruner


	Hyperband algorithm implemented in HyperbandPruner


	Threshold pruning algorithm implemented in ThresholdPruner




We use MedianPruner in most examples,
though basically it is outperformed by SuccessiveHalvingPruner and
HyperbandPruner as in this benchmark result [https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako].



Activating Pruners

To turn on the pruning feature, you need to call report() and should_prune() after each step of the iterative training.
report() periodically monitors the intermediate objective values.
should_prune() decides termination of the trial that does not meet a predefined condition.

We would recommend using integration modules for major machine learning frameworks.
Exclusive list is integration and usecases are available in ~optuna/examples [https://github.com/optuna/optuna-examples/].

import logging
import sys

import sklearn.datasets
import sklearn.linear_model
import sklearn.model_selection


def objective(trial):
    iris = sklearn.datasets.load_iris()
    classes = list(set(iris.target))
    train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split(
        iris.data, iris.target, test_size=0.25, random_state=0
    )

    alpha = trial.suggest_float("alpha", 1e-5, 1e-1, log=True)
    clf = sklearn.linear_model.SGDClassifier(alpha=alpha)

    for step in range(100):
        clf.partial_fit(train_x, train_y, classes=classes)

        # Report intermediate objective value.
        intermediate_value = 1.0 - clf.score(valid_x, valid_y)
        trial.report(intermediate_value, step)

        # Handle pruning based on the intermediate value.
        if trial.should_prune():
            raise optuna.TrialPruned()

    return 1.0 - clf.score(valid_x, valid_y)





Set up the median stopping rule as the pruning condition.

# Add stream handler of stdout to show the messages
optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))
study = optuna.create_study(pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=20)





A new study created in memory with name: no-name-5655a884-ef8e-45dc-924b-53153846664c
Trial 0 finished with value: 0.02631578947368418 and parameters: {'alpha': 0.007339923916124627}. Best is trial 0 with value: 0.02631578947368418.
Trial 1 finished with value: 0.052631578947368474 and parameters: {'alpha': 1.5608838514149246e-05}. Best is trial 0 with value: 0.02631578947368418.
Trial 2 finished with value: 0.23684210526315785 and parameters: {'alpha': 0.0004006348106829595}. Best is trial 0 with value: 0.02631578947368418.
Trial 3 finished with value: 0.07894736842105265 and parameters: {'alpha': 0.04016331697652828}. Best is trial 0 with value: 0.02631578947368418.
Trial 4 finished with value: 0.23684210526315785 and parameters: {'alpha': 0.0027785510904624615}. Best is trial 0 with value: 0.02631578947368418.
Trial 5 finished with value: 0.02631578947368418 and parameters: {'alpha': 0.007728283382278068}. Best is trial 0 with value: 0.02631578947368418.
Trial 6 pruned.
Trial 7 finished with value: 0.2894736842105263 and parameters: {'alpha': 0.05949007448433726}. Best is trial 0 with value: 0.02631578947368418.
Trial 8 finished with value: 0.39473684210526316 and parameters: {'alpha': 1.9767129815646807e-05}. Best is trial 0 with value: 0.02631578947368418.
Trial 9 pruned.
Trial 10 finished with value: 0.23684210526315785 and parameters: {'alpha': 0.0022125100341557225}. Best is trial 0 with value: 0.02631578947368418.
Trial 11 pruned.
Trial 12 pruned.
Trial 13 pruned.
Trial 14 pruned.
Trial 15 pruned.
Trial 16 pruned.
Trial 17 pruned.
Trial 18 pruned.
Trial 19 pruned.





As you can see, several trials were pruned (stopped) before they finished all of the iterations.
The format of message is "Trial <Trial Number> pruned.".



Which Sampler and Pruner Should be Used?

From the benchmark results which are available at optuna/optuna - wiki “Benchmarks with Kurobako” [https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako], at least for not deep learning tasks, we would say that


	For RandomSampler, MedianPruner is the best.


	For TPESampler, HyperbandPruner is the best.




However, note that the benchmark is not deep learning.
For deep learning tasks,
consult the below table.
This table is from the Ozaki et al., Hyperparameter Optimization Methods: Overview and Characteristics, in IEICE Trans, Vol.J103-D No.9 pp.615-631, 2020 [https://doi.org/10.14923/transinfj.2019JDR0003] paper,
which is written in Japanese.



	Parallel Compute Resource

	Categorical/Conditional Hyperparameters

	Recommended Algorithms





	Limited

	No

	TPE. GP-EI if search space is low-dimensional and continuous.



	Yes

	TPE. GP-EI if search space is low-dimensional and continuous



	Sufficient

	No

	CMA-ES, Random Search



	Yes

	Random Search or Genetic Algorithm








Integration Modules for Pruning

To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following libraries.

For the complete list of Optuna’s integration modules, see integration.

For example, XGBoostPruningCallback introduces pruning without directly changing the logic of training iteration.
(See also example [https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py] for the entire script.)

pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'validation-error')
bst = xgb.train(param, dtrain, evals=[(dvalid, 'validation')], callbacks=[pruning_callback])





Total running time of the script: (0 minutes 2.093 seconds)



Download Python source code: 003_efficient_optimization_algorithms.py




Download Jupyter notebook: 003_efficient_optimization_algorithms.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Easy Parallelization

It’s straightforward to parallelize optuna.study.Study.optimize().

If you want to manually execute Optuna optimization:



	start an RDB server (this example uses MySQL)


	create a study with --storage argument


	share the study among multiple nodes and processes







Of course, you can use Kubernetes as in the kubernetes examples [https://github.com/optuna/optuna-examples/tree/main/kubernetes].

To just see how parallel optimization works in Optuna, check the below video.
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Quick Visualization for Hyperparameter Optimization Analysis

Optuna provides various visualization features in optuna.visualization to analyze optimization results visually.

This tutorial walks you through this module by visualizing the history of lightgbm model for breast cancer dataset.

For visualizing multi-objective optimization (i.e., the usage of optuna.visualization.plot_pareto_front()),
please refer to the tutorial of Multi-objective Optimization with Optuna.


Note

By using Optuna Dashboard [https://github.com/optuna/optuna-dashboard], you can also check the optimization history,
hyperparameter importances, hyperparameter relationships, etc. in graphs and tables.
Please make your study persistent using RDB backend and execute following commands to run Optuna Dashboard.

$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///example-study.db





Please check out the GitHub repository [https://github.com/optuna/optuna-dashboard] for more details.
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import lightgbm as lgb
import numpy as np
import sklearn.datasets
import sklearn.metrics
from sklearn.model_selection import train_test_split

import optuna

# You can use Matplotlib instead of Plotly for visualization by simply replacing `optuna.visualization` with
# `optuna.visualization.matplotlib` in the following examples.
from optuna.visualization import plot_contour
from optuna.visualization import plot_edf
from optuna.visualization import plot_intermediate_values
from optuna.visualization import plot_optimization_history
from optuna.visualization import plot_parallel_coordinate
from optuna.visualization import plot_param_importances
from optuna.visualization import plot_rank
from optuna.visualization import plot_slice
from optuna.visualization import plot_timeline

SEED = 42

np.random.seed(SEED)





Define the objective function.

def objective(trial):
    data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)
    train_x, valid_x, train_y, valid_y = train_test_split(data, target, test_size=0.25)
    dtrain = lgb.Dataset(train_x, label=train_y)
    dvalid = lgb.Dataset(valid_x, label=valid_y)

    param = {
        "objective": "binary