
Optuna Documentation
Release 4.0.0.dev

Optuna Contributors.

May 08, 2024

CONTENTS:

1 Key Features 3

2 Basic Concepts 5

3 Web Dashboard 7

4 Communication 9

5 Contribution 11

6 License 13

7 Reference 15
7.1 Installation . 15
7.2 Tutorial . 15
7.3 API Reference . 16
7.4 FAQ . 248

8 Indices and tables 263

Python Module Index 265

Index 267

i

ii

Optuna Documentation, Release 4.0.0.dev

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning.
It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna
enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.

CONTENTS: 1

Optuna Documentation, Release 4.0.0.dev

2 CONTENTS:

CHAPTER

ONE

KEY FEATURES

Optuna has modern functionalities as follows:

• Lightweight, versatile, and platform agnostic architecture

– Handle a wide variety of tasks with a simple installation that has few requirements.

• Pythonic search spaces

– Define search spaces using familiar Python syntax including conditionals and loops.

• Efficient optimization algorithms

– Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials.

• Easy parallelization

– Scale studies to tens or hundreds of workers with little or no changes to the code.

• Quick visualization

– Inspect optimization histories from a variety of plotting functions.

3

Optuna Documentation, Release 4.0.0.dev

4 Chapter 1. Key Features

CHAPTER

TWO

BASIC CONCEPTS

We use the terms study and trial as follows:

• Study: optimization based on an objective function

• Trial: a single execution of the objective function

Please refer to sample code below. The goal of a study is to find out the optimal set of hyperparameter values (e.g.,
classifier and svm_c) through multiple trials (e.g., n_trials=100). Optuna is a framework designed for the
automation and the acceleration of the optimization studies.

import ...

Define an objective function to be minimized.
def objective(trial):

Invoke suggest methods of a Trial object to generate hyperparameters.
regressor_name = trial.suggest_categorical('classifier', ['SVR', 'RandomForest'])
if regressor_name == 'SVR':

svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
regressor_obj = sklearn.svm.SVR(C=svr_c)

else:
rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y,␣

→˓random_state=0)

regressor_obj.fit(X_train, y_train)
y_pred = regressor_obj.predict(X_val)

error = sklearn.metrics.mean_squared_error(y_val, y_pred)

return error # An objective value linked with the Trial object.

study = optuna.create_study() # Create a new study.
study.optimize(objective, n_trials=100) # Invoke optimization of the objective function.

5

http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb

Optuna Documentation, Release 4.0.0.dev

6 Chapter 2. Basic Concepts

CHAPTER

THREE

WEB DASHBOARD

Optuna Dashboard is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter
importance, etc. in graphs and tables. You don’t need to create a Python script to call Optuna’s visualization functions.
Feature requests and bug reports are welcome!

optuna-dashboard can be installed via pip:

$ pip install optuna-dashboard

Tip: Please check out the getting started section of Optuna Dashboard’s official documentation.

7

https://github.com/optuna/optuna-dashboard
https://optuna.readthedocs.io/en/stable/reference/visualization/index.html
https://optuna-dashboard.readthedocs.io/en/latest/getting-started.html

Optuna Documentation, Release 4.0.0.dev

8 Chapter 3. Web Dashboard

CHAPTER

FOUR

COMMUNICATION

• GitHub Discussions for questions.

• GitHub Issues for bug reports and feature requests.

9

https://github.com/optuna/optuna/discussions
https://github.com/optuna/optuna/issues

Optuna Documentation, Release 4.0.0.dev

10 Chapter 4. Communication

CHAPTER

FIVE

CONTRIBUTION

Any contributions to Optuna are welcome! When you send a pull request, please follow the contribution guide.

11

https://github.com/optuna/optuna/blob/master/CONTRIBUTING.md

Optuna Documentation, Release 4.0.0.dev

12 Chapter 5. Contribution

CHAPTER

SIX

LICENSE

MIT License (see LICENSE).

Optuna uses the codes from SciPy and fdlibm projects (see Third-party License).

13

https://github.com/optuna/optuna/blob/master/LICENSE

Optuna Documentation, Release 4.0.0.dev

14 Chapter 6. License

CHAPTER

SEVEN

REFERENCE

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-
generation Hyperparameter Optimization Framework. In KDD (arXiv).

7.1 Installation

Optuna supports Python 3.7 or newer.

We recommend to install Optuna via pip:

$ pip install optuna

You can also install the development version of Optuna from master branch of Git repository:

$ pip install git+https://github.com/optuna/optuna.git

You can also install Optuna via conda:

$ conda install -c conda-forge optuna

7.2 Tutorial

If you are new to Optuna or want a general introduction, we highly recommend the below video.

7.2.1 Key Features

Showcases Optuna’s Key Features.

1. 10_key_features/001_first

2. 10_key_features/002_configurations

3. 10_key_features/003_efficient_optimization_algorithms

4. 10_key_features/004_distributed

5. 10_key_features/005_visualization

15

https://arxiv.org/abs/1907.10902
https://github.com/optuna/optuna/blob/master/README.md#key-features

Optuna Documentation, Release 4.0.0.dev

7.2.2 Recipes

Showcases the recipes that might help you using Optuna with comfort.

• 20_recipes/001_rdb

• 20_recipes/002_multi_objective

• 20_recipes/003_attributes

• 20_recipes/004_cli

• 20_recipes/005_user_defined_sampler

• 20_recipes/006_user_defined_pruner

• 20_recipes/007_optuna_callback

• 20_recipes/008_specify_params

• 20_recipes/009_ask_and_tell

• 20_recipes/010_reuse_best_trial

• 20_recipes/011_journal_storage

• Human-in-the-loop Optimization with Optuna Dashboard

• 20_recipes/012_artifact_tutorial

• 20_recipes/013_wilcoxon_pruner

7.3 API Reference

7.3.1 optuna

The optuna module is primarily used as an alias for basic Optuna functionality coded in other modules. Currently,
two modules are aliased: (1) from optuna.study, functions regarding the Study lifecycle, and (2) from optuna.
exceptions, the TrialPruned Exception raised when a trial is pruned.

optuna.create_study Create a new Study.
optuna.load_study Load the existing Study that has the specified name.
optuna.delete_study Delete a Study object.
optuna.copy_study Copy study from one storage to another.
optuna.get_all_study_names Get all study names stored in a specified storage.
optuna.get_all_study_summaries Get all history of studies stored in a specified storage.
optuna.TrialPruned Exception for pruned trials.

16 Chapter 7. Reference

https://optuna-dashboard.readthedocs.io/en/latest/tutorials/hitl.html

Optuna Documentation, Release 4.0.0.dev

optuna.create_study

optuna.create_study(*, storage=None, sampler=None, pruner=None, study_name=None, direction=None,
load_if_exists=False, directions=None)

Create a new Study.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

Parameters
• storage (str | storages.BaseStorage | None) – Database URL. If this argument is

set to None, in-memory storage is used, and the Study will not be persistent.

Note:
When a database URL is passed, Optuna internally uses SQLAlchemy to handle the
database. Please refer to SQLAlchemy’s document for further details. If you want to
specify non-default options to SQLAlchemy Engine, you can instantiate RDBStorage
with your desired options and pass it to the storage argument instead of a URL.

• sampler ('samplers.BaseSampler' | None) – A sampler object that implements back-
ground algorithm for value suggestion. If None is specified, TPESampler is used during
single-objective optimization and NSGAIISampler during multi-objective optimization. See
also samplers.

• pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of
unpromising trials. If None is specified, MedianPruner is used as the default. See also
pruners.

• study_name (str | None) – Study’s name. If this argument is set to None, a unique name
is generated automatically.

• direction (str | StudyDirection | None) – Direction of optimization. Set
minimize for minimization and maximize for maximization. You can also pass the cor-
responding StudyDirection object. direction and directions must not be specified
at the same time.

Note: If none of direction and directions are specified, the direction of the study is set to
“minimize”.

• load_if_exists (bool) – Flag to control the behavior to handle a conflict of study
names. In the case where a study named study_name already exists in the storage, a

7.3. API Reference 17

https://docs.python.org/3/library/stdtypes.html#str
https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

DuplicatedStudyError is raised if load_if_exists is set to False. Otherwise, the
creation of the study is skipped, and the existing one is returned.

• directions (Sequence[str | StudyDirection] | None) – A sequence of directions
during multi-objective optimization. direction and directions must not be specified at
the same time.

Returns
A Study object.

Return type
Study

See also:
optuna.create_study() is an alias of optuna.study.create_study().

See also:
The rdb tutorial provides concrete examples to save and resume optimization using RDB.

optuna.load_study

optuna.load_study(*, study_name, storage, sampler=None, pruner=None)
Load the existing Study that has the specified name.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study")
study.optimize(objective, n_trials=3)

loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.
→˓db")
assert len(loaded_study.trials) == len(study.trials)

Parameters
• study_name (str | None) – Study’s name. Each study has a unique name as an identi-

fier. If None, checks whether the storage contains a single study, and if so loads that study.
study_name is required if there are multiple studies in the storage.

• storage (str | storages.BaseStorage) – Database URL such as sqlite:///
example.db. Please see also the documentation of create_study() for further details.

• sampler ('samplers.BaseSampler' | None) – A sampler object that implements back-
ground algorithm for value suggestion. If None is specified, TPESampler is used as the
default. See also samplers.

18 Chapter 7. Reference

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

• pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of
unpromising trials. If None is specified, MedianPruner is used as the default. See also
pruners.

Return type
Study

See also:
optuna.load_study() is an alias of optuna.study.load_study().

optuna.delete_study

optuna.delete_study(*, study_name, storage)
Delete a Study object.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.
→˓db")
study.optimize(objective, n_trials=3)

optuna.delete_study(study_name="example-study", storage="sqlite:///example.db")

Parameters
• study_name (str) – Study’s name.

• storage (str | BaseStorage) – Database URL such as sqlite:///example.db.
Please see also the documentation of create_study() for further details.

Return type
None

See also:
optuna.delete_study() is an alias of optuna.study.delete_study().

7.3. API Reference 19

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.copy_study

optuna.copy_study(*, from_study_name, from_storage, to_storage, to_study_name=None)
Copy study from one storage to another.

The direction(s) of the objective(s) in the study, trials, user attributes and system attributes are copied.

Note: copy_study() copies a study even if the optimization is working on. It means users will get a copied
study that contains a trial that is not finished.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(
study_name="example-study",
storage="sqlite:///example.db",

)
study.optimize(objective, n_trials=3)

optuna.copy_study(
from_study_name="example-study",
from_storage="sqlite:///example.db",
to_storage="sqlite:///example_copy.db",

)

study = optuna.load_study(
study_name=None,
storage="sqlite:///example_copy.db",

)

Parameters
• from_study_name (str) – Name of study.

• from_storage (str | BaseStorage) – Source database URL such as sqlite:///
example.db. Please see also the documentation of create_study() for further details.

• to_storage (str | BaseStorage) – Destination database URL.

• to_study_name (str | None) – Name of the created study. If omitted,
from_study_name is used.

Raises
DuplicatedStudyError – If a study with a conflicting name already exists in the destination
storage.

20 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Return type
None

optuna.get_all_study_names

optuna.get_all_study_names(storage)
Get all study names stored in a specified storage.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.
→˓db")
study.optimize(objective, n_trials=3)

study_names = optuna.study.get_all_study_names(storage="sqlite:///example.db")
assert len(study_names) == 1

assert study_names[0] == "example-study"

Parameters
storage (str | BaseStorage) – Database URL such as sqlite:///example.db. Please
see also the documentation of create_study() for further details.

Returns
List of all study names in the storage.

Return type
list[str]

See also:
optuna.get_all_study_names() is an alias of optuna.study.get_all_study_names().

optuna.get_all_study_summaries

optuna.get_all_study_summaries(storage, include_best_trial=True)
Get all history of studies stored in a specified storage.

7.3. API Reference 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.
→˓db")
study.optimize(objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries(storage="sqlite:///example.db
→˓")
assert len(study_summaries) == 1

study_summary = study_summaries[0]
assert study_summary.study_name == "example-study"

Parameters
• storage (str | BaseStorage) – Database URL such as sqlite:///example.db.

Please see also the documentation of create_study() for further details.

• include_best_trial (bool) – Include the best trials if exist. It potentially increases the
number of queries and may take longer to fetch summaries depending on the storage.

Returns
List of study history summarized as StudySummary objects.

Return type
list[StudySummary]

See also:
optuna.get_all_study_summaries() is an alias of optuna.study.get_all_study_summaries().

optuna.TrialPruned

exception optuna.TrialPruned

Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is supposed to be raised after optuna.trial.
Trial.should_prune() as shown in the following example.

See also:
optuna.TrialPruned is an alias of optuna.exceptions.TrialPruned .

22 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Optuna Documentation, Release 4.0.0.dev

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)

add_note()

Exception.add_note(note) – add a note to the exception

7.3.2 optuna.artifacts

The artifacts module provides the way to manage artifacts (output files) in Optuna.

class optuna.artifacts.FileSystemArtifactStore(base_path)
An artifact store for file systems.

Parameters
base_path (str | Path) – The base path to a directory to store artifacts.

7.3. API Reference 23

https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Example

import os

import optuna
from optuna.artifacts import FileSystemArtifactStore
from optuna.artifacts import upload_artifact

base_path = "./artifacts"
os.makedirs(base_path, exist_ok=True)
artifact_store = FileSystemArtifactStore(base_path=base_path)

def objective(trial: optuna.Trial) -> float:
... = trial.suggest_float("x", -10, 10)
file_path = generate_example(...)
upload_artifact(trial, file_path, artifact_store)
return ...

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

class optuna.artifacts.Boto3ArtifactStore(bucket_name, client=None, *, avoid_buf_copy=False)
An artifact backend for Boto3.

Parameters
• bucket_name (str) – The name of the bucket to store artifacts.

• client (S3Client | None) – A Boto3 client to use for storage operations. If not specified,
a new client will be created.

• avoid_buf_copy (bool) – If True, skip procedure to copy the content of the source file
object to a buffer before uploading it to S3 ins. This is default to False because using up-
load_fileobj() method of Boto3 client might close the source file object.

Example

import optuna
from optuna.artifacts import upload_artifact
from optuna.artifacts import Boto3ArtifactStore

artifact_store = Boto3ArtifactStore("my-bucket")

def objective(trial: optuna.Trial) -> float:
... = trial.suggest_float("x", -10, 10)
file_path = generate_example(...)
upload_artifact(trial, file_path, artifact_store)
return ...

24 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

class optuna.artifacts.GCSArtifactStore(bucket_name, client=None)
An artifact backend for Google Cloud Storage (GCS).

Parameters
• bucket_name (str) – The name of the bucket to store artifacts.

• client (google.cloud.storage.Client | None) – A google-cloud-storage Client to
use for storage operations. If not specified, a new client will be created with default settings.

Example

import optuna
from optuna.artifacts import GCSArtifactStore, upload_artifact

artifact_backend = GCSArtifactStore("my-bucket")

def objective(trial: optuna.Trial) -> float:
... = trial.suggest_float("x", -10, 10)
file_path = generate_example(...)
upload_artifact(trial, file_path, artifact_backend)
return ...

Before running this code, you will have to install gcloud and run

gcloud auth application-default login

so that the Cloud Storage library can automatically find the credential.

Note: Added in v3.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.4.0.

class optuna.artifacts.Backoff(backend, *, max_retries=10, multiplier=2, min_delay=0.1, max_delay=30)
An artifact store’s middleware for exponential backoff.

Example

import optuna
from optuna.artifacts import upload_artifact
from optuna.artifacts import Boto3ArtifactStore
from optuna.artifacts import Backoff

artifact_store = Backoff(Boto3ArtifactStore("my-bucket"))

(continues on next page)

7.3. API Reference 25

https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v3.4.0

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

def objective(trial: optuna.Trial) -> float:
... = trial.suggest_float("x", -10, 10)
file_path = generate_example(...)
upload_artifact(trial, file_path, artifact_store)
return ...

Parameters
• backend (ArtifactStore)

• max_retries (int)

• multiplier (float)

• min_delay (float)

• max_delay (float)

optuna.artifacts.upload_artifact(study_or_trial, file_path, artifact_store, *, storage=None,
mimetype=None, encoding=None)

Upload an artifact to the artifact store.

Parameters
• study_or_trial (Trial | FrozenTrial | Study) – A Trial object, a FrozenTrial,

or a Study object.

• file_path (str) – A path to the file to be uploaded.

• artifact_store (ArtifactStore) – An artifact store.

• storage (BaseStorage | None) – A storage object. If trial is not a Trial object, this
argument is required.

• mimetype (str | None) – A MIME type of the artifact. If not specified, the MIME type
is guessed from the file extension.

• encoding (str | None) – An encoding of the artifact, which is suitable for use as a
Content-Encoding header (e.g. gzip). If not specified, the encoding is guessed from the
file extension.

Returns
An artifact ID.

Return type
str

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

26 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

7.3.3 optuna.cli

The cli module implements Optuna’s command-line functionality.

For detail, please see the result of

$ optuna --help

See also:
The cli tutorial provides use-cases with examples.

7.3.4 optuna.distributions

The distributions module defines various classes representing probability distributions, mainly used to sug-
gest initial hyperparameter values for an optimization trial. Distribution classes inherit from a library-internal
BaseDistribution, and is initialized with specific parameters, such as the low and high endpoints for a
IntDistribution.

Optuna users should not use distribution classes directly, but instead use utility functions provided by Trial such as
suggest_int().

optuna.distributions.FloatDistribution A distribution on floats.
optuna.distributions.IntDistribution A distribution on integers.
optuna.distributions.UniformDistribution A uniform distribution in the linear domain.
optuna.distributions.
LogUniformDistribution

A uniform distribution in the log domain.

optuna.distributions.
DiscreteUniformDistribution

A discretized uniform distribution in the linear domain.

optuna.distributions.
IntUniformDistribution

A uniform distribution on integers.

optuna.distributions.
IntLogUniformDistribution

A uniform distribution on integers in the log domain.

optuna.distributions.
CategoricalDistribution

A categorical distribution.

optuna.distributions.distribution_to_json Serialize a distribution to JSON format.
optuna.distributions.json_to_distribution Deserialize a distribution in JSON format.
optuna.distributions.
check_distribution_compatibility

A function to check compatibility of two distributions.

optuna.distributions.FloatDistribution

class optuna.distributions.FloatDistribution(low, high, log=False, step=None)
A distribution on floats.

This object is instantiated by suggest_float(), and passed to samplers in general.

Note: When step is not None, if the range [low, high] is not divisible by step, high will be replaced with the
maximum of 𝑘 × step+ low < high, where 𝑘 is an integer.

Parameters

7.3. API Reference 27

https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

• low (float)

• high (float)

• log (bool)

• step (None | float)

low

Lower endpoint of the range of the distribution. low is included in the range. low must be less than or
equal to high. If log is True, low must be larger than 0.

high

Upper endpoint of the range of the distribution. high is included in the range. high must be greater than
or equal to low.

log

If log is True, this distribution is in log-scaled domain. In this case, all parameters enqueued to the
distribution must be positive values. This parameter must be False when the parameter step is not None.

step

A discretization step. step must be larger than 0. This parameter must be None when the parameter log
is True.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
Any

28 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (float) – Optuna’s external representation of a param-
eter value.

Returns
Optuna’s internal representation of a parameter value.

Return type
float

optuna.distributions.IntDistribution

class optuna.distributions.IntDistribution(low, high, log=False, step=1)
A distribution on integers.

This object is instantiated by suggest_int(), and passed to samplers in general.

Note: When step is not None, if the range [low, high] is not divisible by step, high will be replaced with the
maximum of 𝑘 × step+ low < high, where 𝑘 is an integer.

Parameters
• low (int)

• high (int)

• log (bool)

• step (int)

low

Lower endpoint of the range of the distribution. low is included in the range. low must be less than or
equal to high. If log is True, low must be larger than or equal to 1.

high

Upper endpoint of the range of the distribution. high is included in the range. high must be greater than
or equal to low.

log

If log is True, this distribution is in log-scaled domain. In this case, all parameters enqueued to the
distribution must be positive values. This parameter must be False when the parameter step is not 1.

step

A discretization step. step must be a positive integer. This parameter must be 1 when the parameter log
is True.

7.3. API Reference 29

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 4.0.0.dev

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
int

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (int) – Optuna’s external representation of a parameter
value.

Returns
Optuna’s internal representation of a parameter value.

Return type
float

optuna.distributions.UniformDistribution

class optuna.distributions.UniformDistribution(low, high)
A uniform distribution in the linear domain.

This object is instantiated by suggest_float(), and passed to samplers in general.

Parameters
• low (float)

• high (float)

30 Chapter 7. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

low

Lower endpoint of the range of the distribution. low is included in the range. low must be less than or
equal to high.

high

Upper endpoint of the range of the distribution. high is included in the range. high must be greater than
or equal to low.

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v3.0.0.

Use FloatDistribution instead.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
Any

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (float) – Optuna’s external representation of a param-
eter value.

Returns
Optuna’s internal representation of a parameter value.

7.3. API Reference 31

https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

Return type
float

optuna.distributions.LogUniformDistribution

class optuna.distributions.LogUniformDistribution(low, high)
A uniform distribution in the log domain.

This object is instantiated by suggest_float() with log=True, and passed to samplers in general.

Parameters
• low (float)

• high (float)

low

Lower endpoint of the range of the distribution. low is included in the range. low must be larger than 0.
low must be less than or equal to high.

high

Upper endpoint of the range of the distribution. high is included in the range. high must be greater than
or equal to low.

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v3.0.0.

Use FloatDistribution instead.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

32 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

Returns
Optuna’s external representation of a parameter value.

Return type
Any

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (float) – Optuna’s external representation of a param-
eter value.

Returns
Optuna’s internal representation of a parameter value.

Return type
float

optuna.distributions.DiscreteUniformDistribution

class optuna.distributions.DiscreteUniformDistribution(low, high, q)
A discretized uniform distribution in the linear domain.

This object is instantiated by suggest_float() with step argument, and passed to samplers in general.

Note: If the range [low, high] is not divisible by 𝑞, high will be replaced with the maximum of 𝑘𝑞+ low < high,
where 𝑘 is an integer.

Parameters
• low (float) – Lower endpoint of the range of the distribution. low is included in the range.
low must be less than or equal to high.

• high (float) – Upper endpoint of the range of the distribution. high is included in the
range. high must be greater than or equal to low.

• q (float) – A discretization step. q must be larger than 0.

low

Lower endpoint of the range of the distribution. low is included in the range.

high

Upper endpoint of the range of the distribution. high is included in the range.

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v3.0.0.

Use FloatDistribution instead.

7.3. API Reference 33

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

Attributes

q Discretization step.

property q: float

Discretization step.

DiscreteUniformDistribution is a subtype of FloatDistribution. This property is a proxy for its
step attribute.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
Any

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (float) – Optuna’s external representation of a param-
eter value.

Returns
Optuna’s internal representation of a parameter value.

Return type
float

34 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

optuna.distributions.IntUniformDistribution

class optuna.distributions.IntUniformDistribution(low, high, step=1)
A uniform distribution on integers.

This object is instantiated by suggest_int(), and passed to samplers in general.

Note: If the range [low, high] is not divisible by step, highwill be replaced with the maximum of 𝑘×step+low <
high, where 𝑘 is an integer.

Parameters
• low (int)

• high (int)

• step (int)

low

Lower endpoint of the range of the distribution. low is included in the range. low must be less than or
equal to high.

high

Upper endpoint of the range of the distribution. high is included in the range. high must be greater than
or equal to low.

step

A discretization step. step must be a positive integer.

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v3.0.0.

Use IntDistribution instead.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

7.3. API Reference 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
int

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (int) – Optuna’s external representation of a parameter
value.

Returns
Optuna’s internal representation of a parameter value.

Return type
float

optuna.distributions.IntLogUniformDistribution

class optuna.distributions.IntLogUniformDistribution(low, high, step=1)
A uniform distribution on integers in the log domain.

This object is instantiated by suggest_int(), and passed to samplers in general.

Parameters
• low (int)

• high (int)

• step (int)

low

Lower endpoint of the range of the distribution. low is included in the range and must be larger than or
equal to 1. low must be less than or equal to high.

high

Upper endpoint of the range of the distribution. high is included in the range. high must be greater than
or equal to low.

step

A discretization step. step must be a positive integer.

Warning: Deprecated in v2.0.0. step argument will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.

Samplers and other components in Optuna relying on this distribution will ignore this value and assume
that step is always 1. User-defined samplers may continue to use other values besides 1 during the
deprecation.

36 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v3.0.0.

Use IntDistribution instead.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
int

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (int) – Optuna’s external representation of a parameter
value.

Returns
Optuna’s internal representation of a parameter value.

Return type
float

7.3. API Reference 37

https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

optuna.distributions.CategoricalDistribution

class optuna.distributions.CategoricalDistribution(choices)
A categorical distribution.

This object is instantiated by suggest_categorical(), and passed to samplers in general.

Parameters
choices (Sequence[None | bool | int | float | str]) – Parameter value candidates.
choices must have one element at least.

Note: Not all types are guaranteed to be compatible with all storages. It is recommended to restrict the types
of the choices to None, bool, int, float and str.

choices

Parameter value candidates.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_repr) Convert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr) Convert external representation of a parameter value
into internal representation.

single()

Test whether the range of this distribution contains just a single value.

Returns
True if the range of this distribution contains just a single value, otherwise False.

Return type
bool

to_external_repr(param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters
param_value_in_internal_repr (float) – Optuna’s internal representation of a param-
eter value.

Returns
Optuna’s external representation of a parameter value.

Return type
None | bool | int | float | str

to_internal_repr(param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters
param_value_in_external_repr (None | bool | int | float | str) – Optuna’s
external representation of a parameter value.

38 Chapter 7. Reference

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Returns
Optuna’s internal representation of a parameter value.

Return type
float

optuna.distributions.distribution_to_json

optuna.distributions.distribution_to_json(dist)
Serialize a distribution to JSON format.

Parameters
dist (BaseDistribution) – A distribution to be serialized.

Returns
A JSON string of a given distribution.

Return type
str

optuna.distributions.json_to_distribution

optuna.distributions.json_to_distribution(json_str)
Deserialize a distribution in JSON format.

Parameters
json_str (str) – A JSON-serialized distribution.

Returns
A deserialized distribution.

Return type
BaseDistribution

optuna.distributions.check_distribution_compatibility

optuna.distributions.check_distribution_compatibility(dist_old, dist_new)
A function to check compatibility of two distributions.

It checks whether dist_old and dist_new are the same kind of distributions. If dist_old is
CategoricalDistribution, it further checks choices are the same between dist_old and dist_new. Note
that this method is not supposed to be called by library users.

Parameters
• dist_old (BaseDistribution) – A distribution previously recorded in storage.

• dist_new (BaseDistribution) – A distribution newly added to storage.

Return type
None

7.3. API Reference 39

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

7.3.5 optuna.exceptions

The exceptions module defines Optuna-specific exceptions deriving from a base OptunaError class. Of special
importance for library users is the TrialPruned exception to be raised if optuna.trial.Trial.should_prune()
returns True for a trial that should be pruned.

optuna.exceptions.OptunaError Base class for Optuna specific errors.
optuna.exceptions.TrialPruned Exception for pruned trials.
optuna.exceptions.CLIUsageError Exception for CLI.
optuna.exceptions.StorageInternalError Exception for storage operation.
optuna.exceptions.DuplicatedStudyError Exception for a duplicated study name.

optuna.exceptions.OptunaError

exception optuna.exceptions.OptunaError

Base class for Optuna specific errors.

add_note()

Exception.add_note(note) – add a note to the exception

optuna.exceptions.TrialPruned

exception optuna.exceptions.TrialPruned

Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is supposed to be raised after optuna.trial.
Trial.should_prune() as shown in the following example.

See also:
optuna.TrialPruned is an alias of optuna.exceptions.TrialPruned .

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

(continues on next page)

40 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)

add_note()

Exception.add_note(note) – add a note to the exception

optuna.exceptions.CLIUsageError

exception optuna.exceptions.CLIUsageError

Exception for CLI.

CLI raises this exception when it receives invalid configuration.

add_note()

Exception.add_note(note) – add a note to the exception

optuna.exceptions.StorageInternalError

exception optuna.exceptions.StorageInternalError

Exception for storage operation.

This error is raised when an operation failed in backend DB of storage.

add_note()

Exception.add_note(note) – add a note to the exception

optuna.exceptions.DuplicatedStudyError

exception optuna.exceptions.DuplicatedStudyError

Exception for a duplicated study name.

This error is raised when a specified study name already exists in the storage.

add_note()

Exception.add_note(note) – add a note to the exception

7.3. API Reference 41

Optuna Documentation, Release 4.0.0.dev

7.3.6 optuna.importance

The importance module provides functionality for evaluating hyperparameter importances based on completed
trials in a given study. The utility function get_param_importances() takes a Study and optional eval-
uator as two of its inputs. The evaluator must derive from BaseImportanceEvaluator, and is initial-
ized as a FanovaImportanceEvaluator by default when not passed in. Users implementing custom evalua-
tors should refer to either FanovaImportanceEvaluator, MeanDecreaseImpurityImportanceEvaluator, or
PedAnovaImportanceEvaluator as a guide, paying close attention to the format of the return value from the Eval-
uator’s evaluate function.

Note: FanovaImportanceEvaluator takes over 1 minute when given a study that contains 1000+ trials. We pub-
lished optuna-fast-fanova library, that is a Cython accelerated fANOVA implementation. By using it, you can get
hyperparameter importances within a few seconds. If n_trials is more than 10000, the Cython implementation takes
more than a minute, so you can use PedAnovaImportanceEvaluator instead, enabling the evaluation to finish in a
second.

optuna.importance.get_param_importances Evaluate parameter importances based on completed tri-
als in the given study.

optuna.importance.
FanovaImportanceEvaluator

fANOVA importance evaluator.

optuna.importance.
MeanDecreaseImpurityImportanceEvaluator

Mean Decrease Impurity (MDI) parameter importance
evaluator.

optuna.importance.
PedAnovaImportanceEvaluator

PED-ANOVA importance evaluator.

optuna.importance.get_param_importances

optuna.importance.get_param_importances(study, *, evaluator=None, params=None, target=None,
normalize=True)

Evaluate parameter importances based on completed trials in the given study.

The parameter importances are returned as a dictionary where the keys consist of parameter names and their val-
ues importances. The importances are represented by non-negative floating point numbers, where higher values
mean that the parameters are more important. The returned dictionary is ordered by its values in a descending
order. By default, the sum of the importance values are normalized to 1.0.

If params is None, all parameter that are present in all of the completed trials are assessed. This implies that
conditional parameters will be excluded from the evaluation. To assess the importances of conditional parame-
ters, a list of parameter names can be specified via params. If specified, only completed trials that contain all
of the parameters will be considered. If no such trials are found, an error will be raised.

If the given study does not contain completed trials, an error will be raised.

Note: If params is specified as an empty list, an empty dictionary is returned.

See also:
See plot_param_importances() to plot importances.

Parameters
• study (Study) – An optimized study.

42 Chapter 7. Reference

https://github.com/optuna/optuna-fast-fanova
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

Optuna Documentation, Release 4.0.0.dev

• evaluator (BaseImportanceEvaluator | None) – An importance evaluator object
that specifies which algorithm to base the importance assessment on. Defaults to
FanovaImportanceEvaluator.

Note: FanovaImportanceEvaluator takes over 1 minute when given a study that con-
tains 1000+ trials. We published optuna-fast-fanova library, that is a Cython accelerated
fANOVA implementation. By using it, you can get hyperparameter importances within a
few seconds. If n_trials is more than 10000, the Cython implementation takes more than
a minute, so you can use PedAnovaImportanceEvaluator instead, enabling the evaluation
to finish in a second.

• params (List[str] | None) – A list of names of parameters to assess. If None, all pa-
rameters that are present in all of the completed trials are assessed.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to evaluate importances. If it is None and study is being used for single-objective optimiza-
tion, the objective values are used. target must be specified if study is being used for
multi-objective optimization.

Note: Specify this argument if study is being used for multi-objective optimization. For
example, to get the hyperparameter importance of the first objective, use target=lambda
t: t.values[0] for the target parameter.

• normalize (bool) – A boolean option to specify whether the sum of the importance values
should be normalized to 1.0. Defaults to True.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Returns
A dict where the keys are parameter names and the values are assessed importances.

Return type
Dict[str, float]

optuna.importance.FanovaImportanceEvaluator

class optuna.importance.FanovaImportanceEvaluator(*, n_trees=64, max_depth=64, seed=None)
fANOVA importance evaluator.

Implements the fANOVA hyperparameter importance evaluation algorithm in An Efficient Approach for Assess-
ing Hyperparameter Importance.

fANOVA fits a random forest regression model that predicts the objective values of COMPLETE trials given their
parameter configurations. The more accurate this model is, the more reliable the importances assessed by this
class are.

Note: This class takes over 1 minute when given a study that contains 1000+ trials. We published optuna-fast-
fanova library, that is a Cython accelerated fANOVA implementation. By using it, you can get hyperparameter
importances within a few seconds.

7.3. API Reference 43

https://github.com/optuna/optuna-fast-fanova
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://proceedings.mlr.press/v32/hutter14.html
http://proceedings.mlr.press/v32/hutter14.html
https://github.com/optuna/optuna-fast-fanova
https://github.com/optuna/optuna-fast-fanova

Optuna Documentation, Release 4.0.0.dev

Note: Requires the sklearn Python package.

Note: The performance of fANOVA depends on the prediction performance of the underlying random forest
model. In order to obtain high prediction performance, it is necessary to cover a wide range of the hyperparameter
search space. It is recommended to use an exploration-oriented sampler such as RandomSampler.

Note: For how to cite the original work, please refer to https://automl.github.io/fanova/cite.html.

Parameters
• n_trees (int) – The number of trees in the forest.

• max_depth (int) – The maximum depth of the trees in the forest.

• seed (int | None) – Controls the randomness of the forest. For deterministic behavior,
specify a value other than None.

Methods

evaluate(study[, params, target]) Evaluate parameter importances based on completed
trials in the given study.

evaluate(study, params=None, *, target=None)
Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:
Please refer to get_param_importances() for how a concrete evaluator should implement this method.

Parameters
• study (Study) – An optimized study.

• params (List[str] | None) – A list of names of parameters to assess. If None, all
parameters that are present in all of the completed trials are assessed.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the
value to evaluate importances. If it is None and study is being used for single-objective
optimization, the objective values are used. Can also be used for other trial attributes, such
as the duration, like target=lambda t: t.duration.total_seconds().

Note: Specify this argument if study is being used for multi-objective optimization. For
example, to get the hyperparameter importance of the first objective, use target=lambda
t: t.values[0] for the target parameter.

44 Chapter 7. Reference

https://github.com/scikit-learn/scikit-learn
https://automl.github.io/fanova/cite.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Returns
A dict where the keys are parameter names and the values are assessed importances.

Return type
Dict[str, float]

optuna.importance.MeanDecreaseImpurityImportanceEvaluator

class optuna.importance.MeanDecreaseImpurityImportanceEvaluator(*, n_trees=64, max_depth=64,
seed=None)

Mean Decrease Impurity (MDI) parameter importance evaluator.

This evaluator fits fits a random forest regression model that predicts the objective values of COMPLETE trials
given their parameter configurations. Feature importances are then computed using MDI.

Note: This evaluator requires the sklearn Python package and is based on
sklearn.ensemble.RandomForestClassifier.feature_importances_.

Parameters
• n_trees (int) – Number of trees in the random forest.

• max_depth (int) – The maximum depth of each tree in the random forest.

• seed (int | None) – Seed for the random forest.

Methods

evaluate(study[, params, target]) Evaluate parameter importances based on completed
trials in the given study.

evaluate(study, params=None, *, target=None)
Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:
Please refer to get_param_importances() for how a concrete evaluator should implement this method.

Parameters
• study (Study) – An optimized study.

• params (List[str] | None) – A list of names of parameters to assess. If None, all
parameters that are present in all of the completed trials are assessed.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the
value to evaluate importances. If it is None and study is being used for single-objective
optimization, the objective values are used. Can also be used for other trial attributes, such
as the duration, like target=lambda t: t.duration.total_seconds().

7.3. API Reference 45

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Note: Specify this argument if study is being used for multi-objective optimization. For
example, to get the hyperparameter importance of the first objective, use target=lambda
t: t.values[0] for the target parameter.

Returns
A dict where the keys are parameter names and the values are assessed importances.

Return type
Dict[str, float]

optuna.importance.PedAnovaImportanceEvaluator

class optuna.importance.PedAnovaImportanceEvaluator(*, baseline_quantile=0.1,
evaluate_on_local=True)

PED-ANOVA importance evaluator.

Implements the PED-ANOVA hyperparameter importance evaluation algorithm.

PED-ANOVA fits Parzen estimators of COMPLETE trials better than a user-specified baseline. Users can specify
the baseline by a quantile. The importance can be interpreted as how important each hyperparameter is to get
the performance better than baseline.

For further information about PED-ANOVA algorithm, please refer to the following paper:

• PED-ANOVA: Efficiently Quantifying Hyperparameter Importance in Arbitrary Subspaces

Note: The performance of PED-ANOVA depends on how many trials to consider above baseline. To stabilize
the analysis, it is preferable to include at least 5 trials above baseline.

Note: Please refer to the original work.

Parameters
• baseline_quantile (float) – Compute the importance of achieving top-
baseline_quantile quantile objective value. For example, baseline_quantile=0.1
means that the importances give the information of which parameters were important to
achieve the top-10% performance during optimization.

• evaluate_on_local (bool) – Whether we measure the importance in the local or global
space. If True, the importances imply how importance each parameter is during opti-
mization. Meanwhile, evaluate_on_local=False gives the importances in the specified
search_space. evaluate_on_local=True is especially useful when users modify search
space during optimization.

46 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/2304.10255
https://github.com/nabenabe0928/local-anova
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 4.0.0.dev

Example

An example of using PED-ANOVA is as follows:

import optuna
from optuna.importance import PedAnovaImportanceEvaluator

def objective(trial):
x1 = trial.suggest_float("x1", -10, 10)
x2 = trial.suggest_float("x2", -10, 10)
return x1 + x2 / 1000

study = optuna.create_study()
study.optimize(objective, n_trials=100)
evaluator = PedAnovaImportanceEvaluator()
evaluator.evaluate(study)

Note: Added in v3.6.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.6.0.

Methods

evaluate(study[, params, target]) Evaluate parameter importances based on completed
trials in the given study.

evaluate(study, params=None, *, target=None)
Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:
Please refer to get_param_importances() for how a concrete evaluator should implement this method.

Parameters
• study (Study) – An optimized study.

• params (list[str] | None) – A list of names of parameters to assess. If None, all
parameters that are present in all of the completed trials are assessed.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the
value to evaluate importances. If it is None and study is being used for single-objective
optimization, the objective values are used. Can also be used for other trial attributes, such
as the duration, like target=lambda t: t.duration.total_seconds().

Note: Specify this argument if study is being used for multi-objective optimization. For
example, to get the hyperparameter importance of the first objective, use target=lambda

7.3. API Reference 47

https://github.com/optuna/optuna/releases/tag/v3.6.0
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

t: t.values[0] for the target parameter.

Returns
A dict where the keys are parameter names and the values are assessed importances.

Return type
dict[str, float]

7.3.7 optuna.integration

The integration module contains classes used to integrate Optuna with external machine learning frameworks.

Note: Optuna’s integration modules for third-party libraries have started migrating from Optuna itself to a package
called optuna-integration. Please check the repository and the documentation.

For most of the ML frameworks supported by Optuna, the corresponding Optuna integration class serves only to im-
plement a callback object and functions, compliant with the framework’s specific callback API, to be called with each
intermediate step in the model training. The functionality implemented in these callbacks across the different ML
frameworks includes:

(1) Reporting intermediate model scores back to the Optuna trial using optuna.trial.Trial.report(),

(2) According to the results of optuna.trial.Trial.should_prune(), pruning the current model by raising
optuna.TrialPruned(), and

(3) Reporting intermediate Optuna data such as the current trial number back to the framework, as done in
MLflowCallback.

For scikit-learn, an integrated OptunaSearchCV estimator is available that combines scikit-learn BaseEstimator func-
tionality with access to a class-level Study object.

Dependencies of each integration

We summarize the necessary dependencies for each integration.

48 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna-integration
https://optuna-integration.readthedocs.io/en/latest/index.html

Optuna Documentation, Release 4.0.0.dev

Integration Dependencies
AllenNLP allennlp, torch, psutil, jsonnet
BoTorch botorch, gpytorch, torch
CatBoost catboost
ChainerMN chainermn
Chainer chainer
pycma cma
Dask distributed
FastAI fastai
Keras keras
LightGBMTuner lightgbm, scikit-learn
LightGBMPruningCallback lightgbm
MLflow mlflow
MXNet mxnet
PyTorch Distributed torch
PyTorch (Ignite) pytorch-ignite
PyTorch (Lightning) pytorch-lightning
SHAP scikit-learn, shap
Scikit-learn pandas, scipy, scikit-learn
SKorch skorch
TensorBoard tensorboard, tensorflow
TensorFlow tensorflow, tensorflow-estimator
TensorFlow + Keras tensorflow
Weights & Biases wandb
XGBoost xgboost

7.3.8 optuna.logging

The logging module implements logging using the Python logging package. Library users may be especially in-
terested in setting verbosity levels using set_verbosity() to one of optuna.logging.CRITICAL (aka optuna.
logging.FATAL), optuna.logging.ERROR, optuna.logging.WARNING (aka optuna.logging.WARN), optuna.
logging.INFO, or optuna.logging.DEBUG.

optuna.logging.get_verbosity Return the current level for the Optuna's root logger.
optuna.logging.set_verbosity Set the level for the Optuna's root logger.
optuna.logging.disable_default_handler Disable the default handler of the Optuna's root logger.
optuna.logging.enable_default_handler Enable the default handler of the Optuna's root logger.
optuna.logging.disable_propagation Disable propagation of the library log outputs.
optuna.logging.enable_propagation Enable propagation of the library log outputs.

7.3. API Reference 49

https://github.com/optuna/optuna/tree/master/optuna/integration/allennlp
https://github.com/optuna/optuna/blob/master/optuna/integration/botorch.py
https://github.com/optuna/optuna/blob/master/optuna/integration/catboost.py
https://github.com/optuna/optuna/blob/master/optuna/integration/chainermn.py
https://github.com/optuna/optuna/blob/master/optuna/integration/chainer.py
https://github.com/optuna/optuna/blob/master/optuna/integration/cma.py
https://github.com/optuna/optuna/blob/master/optuna/integration/dask.py
https://github.com/optuna/optuna/blob/master/optuna/integration/fastaiv2.py
https://github.com/optuna/optuna/blob/master/optuna/integration/keras.py
https://github.com/optuna/optuna/blob/master/optuna/integration/lightgbm.py
https://github.com/optuna/optuna/blob/master/optuna/integration/lightgbm.py
https://github.com/optuna/optuna/blob/master/optuna/integration/mlflow.py
https://github.com/optuna/optuna/blob/master/optuna/integration/mxnet.py
https://github.com/optuna/optuna/blob/master/optuna/integration/pytorch_distributed.py
https://github.com/optuna/optuna/blob/master/optuna/integration/pytorch_ignite.py
https://github.com/optuna/optuna/blob/master/optuna/integration/pytorch_lightning.py
https://github.com/optuna/optuna/blob/master/optuna/integration/shap.py
https://github.com/optuna/optuna/blob/master/optuna/integration/sklearn.py
https://github.com/optuna/optuna/blob/master/optuna/integration/skorch.py
https://github.com/optuna/optuna/blob/master/optuna/integration/tensorboard.py
https://github.com/optuna/optuna/blob/master/optuna/integration/tensorflow.py
https://github.com/optuna/optuna/blob/master/optuna/integration/tfkeras.py
https://github.com/optuna/optuna/blob/master/optuna/integration/wandb.py
https://github.com/optuna/optuna/blob/master/optuna/integration/xgboost.py

Optuna Documentation, Release 4.0.0.dev

optuna.logging.get_verbosity

optuna.logging.get_verbosity()

Return the current level for the Optuna’s root logger.

Example

Get the default verbosity level.

import optuna

The default verbosity level of Optuna is `optuna.logging.INFO`.
print(optuna.logging.get_verbosity())
20
print(optuna.logging.INFO)
20

There are logs of the INFO level.
study = optuna.create_study()
study.optimize(objective, n_trials=5)
[I 2021-10-31 05:35:17,232] A new study created ...
[I 2021-10-31 05:35:17,238] Trial 0 finished with value: ...
[I 2021-10-31 05:35:17,245] Trial 1 finished with value: ...
...

Returns
Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.

Return type
int

Note: Optuna has following logging levels:

• optuna.logging.CRITICAL, optuna.logging.FATAL

• optuna.logging.ERROR

• optuna.logging.WARNING, optuna.logging.WARN

• optuna.logging.INFO

• optuna.logging.DEBUG

optuna.logging.set_verbosity

optuna.logging.set_verbosity(verbosity)
Set the level for the Optuna’s root logger.

50 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Example

Set the logging level optuna.logging.WARNING.

import optuna

There are INFO level logs.
study = optuna.create_study()
study.optimize(objective, n_trials=10)
[I 2021-10-31 02:59:35,088] Trial 0 finished with value: 16.0 ...
[I 2021-10-31 02:59:35,091] Trial 1 finished with value: 1.0 ...
[I 2021-10-31 02:59:35,096] Trial 2 finished with value: 1.0 ...

Setting the logging level WARNING, the INFO logs are suppressed.
optuna.logging.set_verbosity(optuna.logging.WARNING)
study.optimize(objective, n_trials=10)

Parameters
verbosity (int) – Logging level, e.g., optuna.logging.DEBUG and optuna.logging.
INFO.

Return type
None

Note: Optuna has following logging levels:

• optuna.logging.CRITICAL, optuna.logging.FATAL

• optuna.logging.ERROR

• optuna.logging.WARNING, optuna.logging.WARN

• optuna.logging.INFO

• optuna.logging.DEBUG

optuna.logging.disable_default_handler

optuna.logging.disable_default_handler()

Disable the default handler of the Optuna’s root logger.

Example

Stop and then resume logging to sys.stderr.

import optuna

study = optuna.create_study()

There are no logs in sys.stderr.
optuna.logging.disable_default_handler()
study.optimize(objective, n_trials=10)

(continues on next page)

7.3. API Reference 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/sys.html#sys.stderr

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

There are logs in sys.stderr.
optuna.logging.enable_default_handler()
study.optimize(objective, n_trials=10)
[I 2020-02-23 17:00:54,314] Trial 10 finished with value: ...
[I 2020-02-23 17:00:54,356] Trial 11 finished with value: ...
...

Return type
None

optuna.logging.enable_default_handler

optuna.logging.enable_default_handler()

Enable the default handler of the Optuna’s root logger.

Please refer to the example shown in disable_default_handler().

Return type
None

optuna.logging.disable_propagation

optuna.logging.disable_propagation()

Disable propagation of the library log outputs.

Note that log propagation is disabled by default. You only need to use this function to stop log propagation when
you use enable_propagation().

Example

Stop propagating logs to the root logger on the second optimize call.

import optuna
import logging

optuna.logging.disable_default_handler() # Disable the default handler.
logger = logging.getLogger()

logger.setLevel(logging.INFO) # Setup the root logger.
logger.addHandler(logging.FileHandler("foo.log", mode="w"))

optuna.logging.enable_propagation() # Propagate logs to the root logger.

study = optuna.create_study()

logger.info("Logs from first optimize call") # The logs are saved in the logs file.
study.optimize(objective, n_trials=10)

optuna.logging.disable_propagation() # Stop propogating logs to the root logger.

(continues on next page)

52 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

logger.info("Logs from second optimize call")
The new logs for second optimize call are not saved.
study.optimize(objective, n_trials=10)

with open("foo.log") as f:
assert f.readline().startswith("A new study created")
assert f.readline() == "Logs from first optimize call\n"
Check for logs after second optimize call.
assert f.read().split("Logs from second optimize call\n")[-1] == ""

Return type
None

optuna.logging.enable_propagation

optuna.logging.enable_propagation()

Enable propagation of the library log outputs.

Please disable the Optuna’s default handler to prevent double logging if the root logger has been configured.

Example

Propagate all log output to the root logger in order to save them to the file.

import optuna
import logging

logger = logging.getLogger()

logger.setLevel(logging.INFO) # Setup the root logger.
logger.addHandler(logging.FileHandler("foo.log", mode="w"))

optuna.logging.enable_propagation() # Propagate logs to the root logger.
optuna.logging.disable_default_handler() # Stop showing logs in sys.stderr.

study = optuna.create_study()

logger.info("Start optimization.")
study.optimize(objective, n_trials=10)

with open("foo.log") as f:
assert f.readline().startswith("A new study created")
assert f.readline() == "Start optimization.\n"

Return type
None

7.3. API Reference 53

Optuna Documentation, Release 4.0.0.dev

7.3.9 optuna.pruners

The prunersmodule defines a BasePruner class characterized by an abstract prune()method, which, for a given trial
and its associated study, returns a boolean value representing whether the trial should be pruned. This determination is
made based on stored intermediate values of the objective function, as previously reported for the trial using optuna.
trial.Trial.report(). The remaining classes in this module represent child classes, inheriting from BasePruner,
which implement different pruning strategies.

Warning: Currently pruners module is expected to be used only for single-objective optimization.

See also:
pruning tutorial explains the concept of the pruner classes and a minimal example.

See also:
user_defined_pruner tutorial could be helpful if you want to implement your own pruner classes.

optuna.pruners.BasePruner Base class for pruners.
optuna.pruners.MedianPruner Pruner using the median stopping rule.
optuna.pruners.NopPruner Pruner which never prunes trials.
optuna.pruners.PatientPruner Pruner which wraps another pruner with tolerance.
optuna.pruners.PercentilePruner Pruner to keep the specified percentile of the trials.
optuna.pruners.SuccessiveHalvingPruner Pruner using Asynchronous Successive Halving Algo-

rithm.
optuna.pruners.HyperbandPruner Pruner using Hyperband.
optuna.pruners.ThresholdPruner Pruner to detect outlying metrics of the trials.
optuna.pruners.WilcoxonPruner Pruner based on the Wilcoxon signed-rank test.

optuna.pruners.BasePruner

class optuna.pruners.BasePruner

Base class for pruners.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

abstract prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

54 Chapter 7. Reference

https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=1195011212

Optuna Documentation, Release 4.0.0.dev

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

optuna.pruners.MedianPruner

class optuna.pruners.MedianPruner(n_startup_trials=5, n_warmup_steps=0, interval_steps=1, *,
n_min_trials=1)

Pruner using the median stopping rule.

Prune if the trial’s best intermediate result is worse than median of intermediate results of previous trials at the
same step.

Example

We minimize an objective function with the median stopping rule.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(
direction="maximize",
pruner=optuna.pruners.MedianPruner(

n_startup_trials=5, n_warmup_steps=30, interval_steps=10
),

(continues on next page)

7.3. API Reference 55

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

)
study.optimize(objective, n_trials=20)

Parameters
• n_startup_trials (int) – Pruning is disabled until the given number of trials finish in

the same study.

• n_warmup_steps (int) – Pruning is disabled until the trial exceeds the given number of
step. Note that this feature assumes that step starts at zero.

• interval_steps (int) – Interval in number of steps between the pruning checks, offset by
the warmup steps. If no value has been reported at the time of a pruning check, that particular
check will be postponed until a value is reported.

• n_min_trials (int) – Minimum number of reported trial results at a step to judge whether
to prune. If the number of reported intermediate values from all trials at the current step
is less than n_min_trials, the trial will not be pruned. This can be used to ensure that a
minimum number of trials are run to completion without being pruned.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

56 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

optuna.pruners.NopPruner

class optuna.pruners.NopPruner

Pruner which never prunes trials.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
assert False, "should_prune() should always return False with this␣

→˓pruner."
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize", pruner=optuna.pruners.NopPruner())
study.optimize(objective, n_trials=20)

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

7.3. API Reference 57

Optuna Documentation, Release 4.0.0.dev

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

optuna.pruners.PatientPruner

class optuna.pruners.PatientPruner(wrapped_pruner, patience, min_delta=0.0)
Pruner which wraps another pruner with tolerance.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(
(continues on next page)

58 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

direction="maximize",
pruner=optuna.pruners.PatientPruner(optuna.pruners.MedianPruner(), patience=1),

)
study.optimize(objective, n_trials=20)

Parameters
• wrapped_pruner (BasePruner | None) – Wrapped pruner to perform pruning when
PatientPruner allows a trial to be pruned. If it is None, this pruner is equivalent to early-
stopping taken the intermediate values in the individual trial.

• patience (int) – Pruning is disabled until the objective doesn’t improve for patience
consecutive steps.

• min_delta (float) – Tolerance value to check whether or not the objective improves. This
value should be non-negative.

Note: Added in v2.8.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

7.3. API Reference 59

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v2.8.0
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

optuna.pruners.PercentilePruner

class optuna.pruners.PercentilePruner(percentile, n_startup_trials=5, n_warmup_steps=0,
interval_steps=1, *, n_min_trials=1)

Pruner to keep the specified percentile of the trials.

Prune if the best intermediate value is in the bottom percentile among trials at the same step.

Example

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(
direction="maximize",
pruner=optuna.pruners.PercentilePruner(

25.0, n_startup_trials=5, n_warmup_steps=30, interval_steps=10
),

)
study.optimize(objective, n_trials=20)

Parameters
• percentile (float) – Percentile which must be between 0 and 100 inclusive (e.g., When

given 25.0, top of 25th percentile trials are kept).

• n_startup_trials (int) – Pruning is disabled until the given number of trials finish in
the same study.

60 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

• n_warmup_steps (int) – Pruning is disabled until the trial exceeds the given number of
step. Note that this feature assumes that step starts at zero.

• interval_steps (int) – Interval in number of steps between the pruning checks, offset by
the warmup steps. If no value has been reported at the time of a pruning check, that particular
check will be postponed until a value is reported. Value must be at least 1.

• n_min_trials (int) – Minimum number of reported trial results at a step to judge whether
to prune. If the number of reported intermediate values from all trials at the current step
is less than n_min_trials, the trial will not be pruned. This can be used to ensure that a
minimum number of trials are run to completion without being pruned.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

optuna.pruners.SuccessiveHalvingPruner

class optuna.pruners.SuccessiveHalvingPruner(min_resource='auto', reduction_factor=4,
min_early_stopping_rate=0, bootstrap_count=0)

Pruner using Asynchronous Successive Halving Algorithm.

Successive Halving is a bandit-based algorithm to identify the best one among multiple configurations. This
class implements an asynchronous version of Successive Halving. Please refer to the paper of Asynchronous
Successive Halving for detailed descriptions.

Note that, this class does not take care of the parameter for the maximum resource, referred to as 𝑅 in the paper.
The maximum resource allocated to a trial is typically limited inside the objective function (e.g., step number
in simple_pruning.py, EPOCH number in chainer_integration.py).

See also:
Please refer to report().

7.3. API Reference 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
https://github.com/optuna/optuna-examples/blob/main/simple_pruning.py
https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py#L73

Optuna Documentation, Release 4.0.0.dev

Example

We minimize an objective function with SuccessiveHalvingPruner.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(
direction="maximize", pruner=optuna.pruners.SuccessiveHalvingPruner()

)
study.optimize(objective, n_trials=20)

Parameters
• min_resource (str | int) – A parameter for specifying the minimum resource allocated

to a trial (in the paper this parameter is referred to as 𝑟). This parameter defaults to ‘auto’
where the value is determined based on a heuristic that looks at the number of required steps
for the first trial to complete.

A trial is never pruned until it executes min_resource× reduction_factormin_early_stopping_rate

steps (i.e., the completion point of the first rung). When the trial completes the first rung, it
will be promoted to the next rung only if the value of the trial is placed in the top 1

reduction_factor
fraction of the all trials that already have reached the point (otherwise it will be pruned there).
If the trial won the competition, it runs until the next completion point (i.e., min_resource×
reduction_factor(min_early_stopping_rate+rung) steps) and repeats the same procedure.

Note: If the step of the last intermediate value may change with each trial, please manually

62 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf

Optuna Documentation, Release 4.0.0.dev

specify the minimum possible step to min_resource.

• reduction_factor (int) – A parameter for specifying reduction factor of promotable tri-
als (in the paper this parameter is referred to as 𝜂). At the completion point of each rung,
about 1

reduction_factor trials will be promoted.

• min_early_stopping_rate (int) – A parameter for specifying the minimum early-
stopping rate (in the paper this parameter is referred to as 𝑠).

• bootstrap_count (int) – Minimum number of trials that need to complete a rung before
any trial is considered for promotion into the next rung.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

optuna.pruners.HyperbandPruner

class optuna.pruners.HyperbandPruner(min_resource=1, max_resource='auto', reduction_factor=3,
bootstrap_count=0)

Pruner using Hyperband.

As SuccessiveHalving (SHA) requires the number of configurations 𝑛 as its hyperparameter. For a given finite
budget 𝐵, all the configurations have the resources of 𝐵

𝑛 on average. As you can see, there will be a trade-off of
𝐵 and 𝐵

𝑛 . Hyperband attacks this trade-off by trying different 𝑛 values for a fixed budget.

Note:
• In the Hyperband paper, the counterpart of RandomSampler is used.

• Optuna uses TPESampler by default.

• The benchmark result shows that optuna.pruners.HyperbandPruner supports both samplers.

7.3. API Reference 63

https://docs.python.org/3/library/functions.html#int
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
https://docs.python.org/3/library/functions.html#int
https://proceedings.mlsys.org/paper_files/paper/2020/file/a06f20b349c6cf09a6b171c71b88bbfc-Paper.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://www.jmlr.org/papers/volume18/16-558/16-558.pdf
https://github.com/optuna/optuna/pull/828#issuecomment-575457360

Optuna Documentation, Release 4.0.0.dev

Note: If you use HyperbandPruner with TPESampler, it’s recommended to consider setting larger n_trials
or timeout to make full use of the characteristics of TPESampler because TPESampler uses some (by default,
10) Trials for its startup.

As Hyperband runs multiple SuccessiveHalvingPruner and collects trials based on the current Trial‘s
bracket ID, each bracket needs to observe more than 10 Trials for TPESampler to adapt its search space.

Thus, for example, if HyperbandPruner has 4 pruners in it, at least 4× 10 trials are consumed for startup.

Note: Hyperband has several SuccessiveHalvingPruners. Each SuccessiveHalvingPruner is re-
ferred to as “bracket” in the original paper. The number of brackets is an important factor to control the
early stopping behavior of Hyperband and is automatically determined by min_resource, max_resource and
reduction_factor as The number of brackets = floor(logreduction_factor(

max_resource
min_resource)) + 1. Please set

reduction_factor so that the number of brackets is not too large (about 4 – 6 in most use cases). Please
see Section 3.6 of the original paper for the detail.

Example

We minimize an objective function with Hyperband pruning algorithm.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classes = np.unique(y)
n_train_iter = 100

def objective(trial):
alpha = trial.suggest_float("alpha", 0.0, 1.0)
clf = SGDClassifier(alpha=alpha)

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

(continues on next page)

64 Chapter 7. Reference

http://www.jmlr.org/papers/volume18/16-558/16-558.pdf

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study = optuna.create_study(
direction="maximize",
pruner=optuna.pruners.HyperbandPruner(

min_resource=1, max_resource=n_train_iter, reduction_factor=3
),

)
study.optimize(objective, n_trials=20)

Parameters
• min_resource (int) – A parameter for specifying the minimum resource allocated to a

trial noted as 𝑟 in the paper. A smaller 𝑟 will give a result faster, but a larger 𝑟 will
give a better guarantee of successful judging between configurations. See the details for
SuccessiveHalvingPruner.

• max_resource (str | int) – A parameter for specifying the maximum resource allocated
to a trial. 𝑅 in the paper corresponds to max_resource / min_resource. This value rep-
resents and should match the maximum iteration steps (e.g., the number of epochs for neural
networks). When this argument is “auto”, the maximum resource is estimated according to
the completed trials. The default value of this argument is “auto”.

Note: With “auto”, the maximum resource will be the largest step reported by report()
in the first, or one of the first if trained in parallel, completed trial. No trials will be pruned
until the maximum resource is determined.

Note: If the step of the last intermediate value may change with each trial, please manually
specify the maximum possible step to max_resource.

• reduction_factor (int) – A parameter for specifying reduction factor of promotable tri-
als noted as 𝜂 in the paper. See the details for SuccessiveHalvingPruner.

• bootstrap_count (int) – Parameter specifying the number of trials required in a rung
before any trial can be promoted. Incompatible with max_resource is "auto". See the
details for SuccessiveHalvingPruner.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

7.3. API Reference 65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

optuna.pruners.ThresholdPruner

class optuna.pruners.ThresholdPruner(lower=None, upper=None, n_warmup_steps=0, interval_steps=1)
Pruner to detect outlying metrics of the trials.

Prune if a metric exceeds upper threshold, falls behind lower threshold or reaches nan.

Example

from optuna import create_study
from optuna.pruners import ThresholdPruner
from optuna import TrialPruned

def objective_for_upper(trial):
for step, y in enumerate(ys_for_upper):

trial.report(y, step)

if trial.should_prune():
raise TrialPruned()

return ys_for_upper[-1]

def objective_for_lower(trial):
for step, y in enumerate(ys_for_lower):

trial.report(y, step)

if trial.should_prune():
raise TrialPruned()

return ys_for_lower[-1]

ys_for_upper = [0.0, 0.1, 0.2, 0.5, 1.2]
ys_for_lower = [100.0, 90.0, 0.1, 0.0, -1]

study = create_study(pruner=ThresholdPruner(upper=1.0))
study.optimize(objective_for_upper, n_trials=10)

study = create_study(pruner=ThresholdPruner(lower=0.0))
study.optimize(objective_for_lower, n_trials=10)

Parameters
• lower (float | None) – A minimum value which determines whether pruner prunes or

not. If an intermediate value is smaller than lower, it prunes.

66 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

• upper (float | None) – A maximum value which determines whether pruner prunes or
not. If an intermediate value is larger than upper, it prunes.

• n_warmup_steps (int) – Pruning is disabled if the step is less than the given number of
warmup steps.

• interval_steps (int) – Interval in number of steps between the pruning checks, offset by
the warmup steps. If no value has been reported at the time of a pruning check, that particular
check will be postponed until a value is reported. Value must be at least 1.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

optuna.pruners.WilcoxonPruner

class optuna.pruners.WilcoxonPruner(*, p_threshold=0.1, n_startup_steps=0)
Pruner based on the Wilcoxon signed-rank test.

This pruner performs the Wilcoxon signed-rank test between the current trial and the current best trial, and stops
whenever the pruner is sure up to a given p-value that the current trial is worse than the best one.

This pruner is effective for optimizing the mean/median of some (costly-to-evaluate) performance scores over a
set of problem instances. Example applications include the optimization of:

• the mean performance of a heuristic method (simulated annealing, genetic algorithm, SAT solver, etc.) on
a set of problem instances,

• the k-fold cross-validation score of a machine learning model, and

• the accuracy of outputs of a large language model (LLM) on a set of questions.

There can be “easy” or “hard” instances (the pruner handles correspondence of the instances between different
trials). In each trial, it is recommended to shuffle the evaluation order, so that the optimization doesn’t overfit to
the instances in the beginning.

7.3. API Reference 67

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=1195011212

Optuna Documentation, Release 4.0.0.dev

When you use this pruner, you must call Trial.report(value, step)method for each step (instance id) with
the evaluated value. The instance id may not be in ascending order. This is different from other pruners in that
the reported value need not converge to the real value. To use pruners such as SuccessiveHalvingPruner in
the same setting, you must provide e.g., the historical average of the evaluated values.

See also:
Please refer to report().

Example

import optuna
import numpy as np

We minimize the mean evaluation loss over all the problem instances.
def evaluate(param, instance):

A toy loss function for demonstrative purpose.
return (param - instance) ** 2

problem_instances = np.linspace(-1, 1, 100)

def objective(trial):
Sample a parameter.
param = trial.suggest_float("param", -1, 1)

Evaluate performance of the parameter.
results = []

For best results, shuffle the evaluation order in each trial.
instance_ids = np.random.permutation(len(problem_instances))
for instance_id in instance_ids:

loss = evaluate(param, problem_instances[instance_id])
results.append(loss)

Report loss together with the instance id.
CAVEAT: You need to pass the same id for the same instance,
otherwise WilcoxonPruner cannot correctly pair the losses across trials␣

→˓and
the pruning performance will degrade.
trial.report(loss, instance_id)

if trial.should_prune():
Return the current predicted value instead of raising `TrialPruned`.
This is a workaround to tell the Optuna about the evaluation
results in pruned trials. (See the note below.)
return sum(results) / len(results)

return sum(results) / len(results)

(continues on next page)

68 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study = optuna.create_study(pruner=optuna.pruners.WilcoxonPruner(p_threshold=0.1))
study.optimize(objective, n_trials=100)

Note: This pruner cannot handle infinity or nan values. Trials containing those values are never pruned.

Note: If should_prune() returns True, you can return an estimation of the final value (e.g., the average of
all evaluated values) instead of raise optuna.TrialPruned(). This is a workaround for the problem that
currently there is no way to tell Optuna the predicted objective value for trials raising optuna.TrialPruned .

Parameters
• p_threshold (float) – The p-value threshold for pruning. This value should be between

0 and 1. A trial will be pruned whenever the pruner is sure up to the given p-value that the
current trial is worse than the best trial. The larger this value is, the more aggressive pruning
will be performed. Defaults to 0.1.

Note: This pruner repeatedly performs statistical tests between the current trial and the
current best trial with increasing samples. The false-positive rate of such a sequential test is
different from performing the test only once. To get the nominal false-positive rate, please
specify the Pocock-corrected p-value.

• n_startup_steps (int) – The number of steps before which no trials are pruned. Pruning
starts only after you have n_startup_steps steps of available observations for comparison
between the current trial and the best trial. Defaults to 0 (pruning kicks in from the very first
step).

Note: Added in v3.6.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.6.0.

Methods

prune(study, trial) Judge whether the trial should be pruned based on the
reported values.

prune(study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report() and optuna.trial.Trial.should_prune() provide user interfaces to implement pruning
mechanism in an objective function.

Parameters
• study (Study) – Study object of the target study.

7.3. API Reference 69

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://github.com/optuna/optuna/releases/tag/v3.6.0

Optuna Documentation, Release 4.0.0.dev

• trial (FrozenTrial) – FrozenTrial object of the target trial. Take a copy before modify-
ing this object.

Returns
A boolean value representing whether the trial should be pruned.

Return type
bool

7.3.10 optuna.samplers

The samplers module defines a base class for parameter sampling as described extensively in BaseSampler. The
remaining classes in this module represent child classes, deriving from BaseSampler, which implement different
sampling strategies.

See also:
pruning tutorial explains the overview of the sampler classes.

See also:
user_defined_sampler tutorial could be helpful if you want to implement your own sampler classes.

Ran-
dom-
Sam-
pler

Grid-
Sampler

TPE-
Sam-
pler

CmaEs-
Sam-
pler

NSGAI-
ISampler

QMC-
Sam-
pler

GP-
Sam-
pler

BoTorch-
Sam-
pler

Brute-
Force-
Sampler

Float parame-
ters

✓ ✓ ✓ ✓ ▲ ✓ ✓ ✓ ✓ (× for
infinite
domain)

Integer param-
eters

✓ ✓ ✓ ✓ ▲ ✓ ✓ ▲ ✓

Categorical
parameters

✓ ✓ ✓ ▲ ✓ ▲ ✓ ▲ ✓

Pruning ✓ ✓ ✓ ▲ × ✓ ▲ ▲ ✓
Multivariate
optimization

▲ ▲ ✓ ✓ ▲ ▲ ✓ ✓ ▲

Conditional
search space

✓ ▲ ✓ ▲ ▲ ▲ ▲ ▲ ✓

Multi-
objective
optimization

✓ ✓ ✓ × ✓ (▲ for
single-
objective)

✓ × ✓ ✓

Batch opti-
mization

✓ ✓ ✓ ✓ ✓ ✓ ▲ ✓ ✓

Distributed
optimization

✓ ✓ ✓ ✓ ✓ ✓ ▲ ✓ ✓

Constrained
optimization

× × ✓ × ✓ × × ✓ ×

Time com-
plexity (per
trial) (*)

𝑂(𝑑) 𝑂(𝑑𝑛) 𝑂(𝑑𝑛 log 𝑛)𝑂(𝑑3) 𝑂(𝑚𝑝2)
(***)

𝑂(𝑑𝑛) 𝑂(𝑛3) 𝑂(𝑛3) 𝑂(𝑑)

Recom-
mended
budgets (#tri-
als) (**)

as many
as one
likes

number
of combi-
nations

100 –
1000

1000 –
10000

100 –
10000

as many
as one
likes

–
500

10 –
100

number of
combina-
tions

70 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

Note: ✓: Supports this feature. ▲: Works, but inefficiently. ×: Causes an error, or has no interface.

(*): We assumes that 𝑑 is the dimension of the search space, 𝑛 is the number of finished trials, 𝑚 is the
number of objectives, and 𝑝 is the population size (algorithm specific parameter). This table shows the
time complexity of the sampling algorithms. We may omit other terms that depend on the implementation
in Optuna, including 𝑂(𝑑) to call the sampling methods and 𝑂(𝑛) to collect the completed trials. This
means that, for example, the actual time complexity of RandomSampler is 𝑂(𝑑 + 𝑛 + 𝑑) = 𝑂(𝑑 + 𝑛).
From another perspective, with the exception of NSGAIISampler, all time complexity is written for single-
objective optimization.

(**): (1) The budget depends on the number of parameters and the number of objectives. (2) This budget
includes n_startup_trials if a sampler has n_startup_trials as one of its arguments.

(***): This time complexity assumes that the number of population size 𝑝 and the number of parallelization
are regular. This means that the number of parallelization should not exceed the number of population size
𝑝.

Note: Samplers initialize their random number generators by specifying seed argument at initialization. However,
samplers reseed them when n_jobs!=1 of optuna.study.Study.optimize() to avoid sampling duplicated pa-
rameters by using the same generator. Thus we can hardly reproduce the optimization results with n_jobs!=1. For
the same reason, make sure that use either seed=None or different seed values among processes with distributed
optimization explained in distributed tutorial.

Note: For float, integer, or categorical parameters, see configurations tutorial.

For pruning, see pruning tutorial.

For multivariate optimization, see BaseSampler. The multivariate optimization is implemented as
sample_relative() in Optuna. Please check the concrete documents of samplers for more details.

For conditional search space, see configurations tutorial and TPESampler. The group option of TPESampler allows
TPESampler to handle the conditional search space.

For multi-objective optimization, see multi_objective tutorial.

For batch optimization, see Batch-Optimization tutorial. Note that the constant_liar option of TPESampler allows
TPESampler to handle the batch optimization.

For distributed optimization, see distributed tutorial. Note that the constant_liar option of TPESampler allows
TPESampler to handle the distributed optimization.

For constrained optimization, see an example.

7.3. API Reference 71

https://github.com/optuna/optuna-examples/blob/main/multi_objective/botorch_simple.py

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.BaseSampler Base class for samplers.
optuna.samplers.GridSampler Sampler using grid search.
optuna.samplers.RandomSampler Sampler using random sampling.
optuna.samplers.TPESampler Sampler using TPE (Tree-structured Parzen Estimator)

algorithm.
optuna.samplers.CmaEsSampler A sampler using cmaes as the backend.
optuna.samplers.GPSampler Sampler using Gaussian process-based Bayesian opti-

mization.
optuna.samplers.PartialFixedSampler Sampler with partially fixed parameters.
optuna.samplers.NSGAIISampler Multi-objective sampler using the NSGA-II algorithm.
optuna.samplers.NSGAIIISampler Multi-objective sampler using the NSGA-III algorithm.
optuna.samplers.QMCSampler A Quasi Monte Carlo Sampler that generates low-

discrepancy sequences.
optuna.samplers.BruteForceSampler Sampler using brute force.

optuna.samplers.BaseSampler

class optuna.samplers.BaseSampler

Base class for samplers.

Optuna combines two types of sampling strategies, which are called relative sampling and independent sampling.

The relative sampling determines values of multiple parameters simultaneously so that sampling algorithms can
use relationship between parameters (e.g., correlation). Target parameters of the relative sampling are described
in a relative search space, which is determined by infer_relative_search_space().

The independent sampling determines a value of a single parameter without considering any relationship between
parameters. Target parameters of the independent sampling are the parameters not described in the relative search
space.

More specifically, parameters are sampled by the following procedure. At the beginning of a trial,
infer_relative_search_space() is called to determine the relative search space for the trial. During the
execution of the objective function, sample_relative() is called only once when sampling the parameters
belonging to the relative search space for the first time. sample_independent() is used to sample parameters
that don’t belong to the relative search space.

The following figure depicts the lifetime of a trial and how the above three methods are called in the trial.

72 Chapter 7. Reference

https://github.com/CyberAgentAILab/cmaes

Optuna Documentation, Release 4.0.0.dev

7.3. API Reference 73

Optuna Documentation, Release 4.0.0.dev

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

74 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

abstract infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

abstract sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

7.3. API Reference 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

abstract sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

optuna.samplers.GridSampler

class optuna.samplers.GridSampler(search_space, seed=None)
Sampler using grid search.

With GridSampler, the trials suggest all combinations of parameters in the given search space during the study.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_int("y", -100, 100)
return x**2 + y**2

search_space = {"x": [-50, 0, 50], "y": [-99, 0, 99]}
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space))
study.optimize(objective)

Note: This sampler with ask_and_tell raises RuntimeError just after evaluating the final grid. This is because
GridSampler automatically stops the optimization if all combinations in the passed search_space have already
been evaluated, internally invoking the stop()method. As a workaround, we need to handle the error manually
as in https://github.com/optuna/optuna/issues/4121#issuecomment-1305289910.

76 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://github.com/optuna/optuna/issues/4121#issuecomment-1305289910

Optuna Documentation, Release 4.0.0.dev

Note: GridSampler does not take care of a parameter’s quantization specified by discrete suggest methods but
just samples one of values specified in the search space. E.g., in the following code snippet, either of -0.5 or
0.5 is sampled as x instead of an integer point.

import optuna

def objective(trial):
The following suggest method specifies integer points between -5 and 5.
x = trial.suggest_float("x", -5, 5, step=1)
return x**2

Non-int points are specified in the grid.
search_space = {"x": [-0.5, 0.5]}
study = optuna.create_study(sampler=optuna.samplers.GridSampler(search_space))
study.optimize(objective, n_trials=2)

Note: A parameter configuration in the grid is not considered finished until its trial is finished. Therefore,
during distributed optimization where trials run concurrently, different workers will occasionally suggest the
same parameter configuration. The total number of actual trials may therefore exceed the size of the grid.

Note: All parameters must be specified when using GridSampler with enqueue_trial().

Parameters
• search_space (Mapping[str, Sequence[GridValueType]]) – A dictionary whose

key and value are a parameter name and the corresponding candidates of values, respec-
tively.

• seed (Optional[int]) – A seed to fix the order of trials as the grid is randomly shuffled.
Please note that it is not recommended using this option in distributed optimization settings
since this option cannot ensure the order of trials and may increase the number of duplicate
suggestions during distributed optimization.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
is_exhausted(study) Return True if all the possible params are evaluated,

otherwise return False.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

7.3. API Reference 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

78 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

is_exhausted(study)
Return True if all the possible params are evaluated, otherwise return False.

Parameters
study (Study)

Return type
bool

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

7.3. API Reference 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

optuna.samplers.RandomSampler

class optuna.samplers.RandomSampler(seed=None)
Sampler using random sampling.

This sampler is based on independent sampling. See also BaseSampler for more details of ‘independent sam-
pling’.

Example

import optuna
from optuna.samplers import RandomSampler

def objective(trial):
x = trial.suggest_float("x", -5, 5)
return x**2

study = optuna.create_study(sampler=RandomSampler())
study.optimize(objective, n_trials=10)

Parameters
seed (Optional[int]) – Seed for random number generator.

80 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

7.3. API Reference 81

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (distributions.BaseDistribution) – Distribution object
that specifies a prior and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

82 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

optuna.samplers.TPESampler

class optuna.samplers.TPESampler(consider_prior=True, prior_weight=1.0, consider_magic_clip=True,
consider_endpoints=False, n_startup_trials=10, n_ei_candidates=24,
gamma=<function default_gamma>, weights=<function
default_weights>, seed=None, *, multivariate=False, group=False,
warn_independent_sampling=True, constant_liar=False,
constraints_func=None, categorical_distance_func=None)

Sampler using TPE (Tree-structured Parzen Estimator) algorithm.

This sampler is based on independent sampling. See also BaseSampler for more details of ‘independent sam-
pling’.

On each trial, for each parameter, TPE fits one Gaussian Mixture Model (GMM) l(x) to the set of parameter
values associated with the best objective values, and another GMM g(x) to the remaining parameter values. It
chooses the parameter value x that maximizes the ratio l(x)/g(x).

For further information about TPE algorithm, please refer to the following papers:

• Algorithms for Hyper-Parameter Optimization

• Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures

• Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better
Empirical Performance

For multi-objective TPE (MOTPE), please refer to the following papers:

• Multiobjective Tree-Structured Parzen Estimator for Computationally Expensive Optimization Problems

• Multiobjective Tree-Structured Parzen Estimator

7.3. API Reference 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2304.11127
https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1613/jair.1.13188

Optuna Documentation, Release 4.0.0.dev

Example

An example of a single-objective optimization is as follows:

import optuna
from optuna.samplers import TPESampler

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return x**2

study = optuna.create_study(sampler=TPESampler())
study.optimize(objective, n_trials=10)

Note: TPESampler can handle a multi-objective task as well and the following shows an example:

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
f1 = x**2 + y
f2 = -((x - 2) ** 2 + y)
return f1, f2

We minimize the first objective and maximize the second objective.
sampler = optuna.samplers.TPESampler()
study = optuna.create_study(directions=["minimize", "maximize"], sampler=sampler)
study.optimize(objective, n_trials=100)

Parameters
• consider_prior (bool) – Enhance the stability of Parzen estimator by imposing a Gaus-

sian prior when True. The prior is only effective if the sampling distribution is either
FloatDistribution, or IntDistribution.

• prior_weight (float) – The weight of the prior. This argument is used in
FloatDistribution, IntDistribution, and CategoricalDistribution.

• consider_magic_clip (bool) – Enable a heuristic to limit the smallest variances of Gaus-
sians used in the Parzen estimator.

• consider_endpoints (bool) – Take endpoints of domains into account when calculating
variances of Gaussians in Parzen estimator. See the original paper for details on the heuristics
to calculate the variances.

• n_startup_trials (int) – The random sampling is used instead of the TPE algorithm
until the given number of trials finish in the same study.

• n_ei_candidates (int) – Number of candidate samples used to calculate the expected
improvement.

84 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

• gamma (Callable[[int], int]) – A function that takes the number of finished trials and
returns the number of trials to form a density function for samples with low grains. See the
original paper for more details.

• weights (Callable[[int], np.ndarray]) – A function that takes the number of fin-
ished trials and returns a weight for them. See Making a Science of Model Search: Hy-
perparameter Optimization in Hundreds of Dimensions for Vision Architectures for more
details.

Note: In the multi-objective case, this argument is only used to compute the weights of bad
trials, i.e., trials to construct g(x) in the paper). The weights of good trials, i.e., trials to
construct l(x), are computed by a rule based on the hypervolume contribution proposed in
the paper of MOTPE.

• seed (Optional[int]) – Seed for random number generator.

• multivariate (bool) – If this is True, the multivariate TPE is used when suggesting pa-
rameters. The multivariate TPE is reported to outperform the independent TPE. See BOHB:
Robust and Efficient Hyperparameter Optimization at Scale for more details.

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

• group (bool) – If this and multivariate are True, the multivariate TPE with the group
decomposed search space is used when suggesting parameters. The sampling algorithm
decomposes the search space based on past trials and samples from the joint distribution in
each decomposed subspace. The decomposed subspaces are a partition of the whole search
space. Each subspace is a maximal subset of the whole search space, which satisfies the
following: for a trial in completed trials, the intersection of the subspace and the search space
of the trial becomes subspace itself or an empty set. Sampling from the joint distribution on
the subspace is realized by multivariate TPE. If group is True, multivariate must be
True as well.

Note: Added in v2.8.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.

Example:

import optuna

def objective(trial):
x = trial.suggest_categorical("x", ["A", "B"])
if x == "A":

return trial.suggest_float("y", -10, 10)
else:

return trial.suggest_int("z", -10, 10)

sampler = optuna.samplers.TPESampler(multivariate=True, group=True)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

7.3. API Reference 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://proceedings.mlr.press/v28/bergstra13.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://doi.org/10.1613/jair.1.13188
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.8.0

Optuna Documentation, Release 4.0.0.dev

• warn_independent_sampling (bool) – If this is True and multivariate=True, a warn-
ing message is emitted when the value of a parameter is sampled by using an independent
sampler. If multivariate=False, this flag has no effect.

• constant_liar (bool) – If True, penalize running trials to avoid suggesting parameter
configurations nearby.

Note: Abnormally terminated trials often leave behind a record with a state of RUNNING
in the storage. Such “zombie” trial parameters will be avoided by the constant liar algo-
rithm during subsequent sampling. When using an RDBStorage, it is possible to enable the
heartbeat_interval to change the records for abnormally terminated trials to FAIL.

Note: It is recommended to set this value to True during distributed optimization to avoid
having multiple workers evaluating similar parameter configurations. In particular, if each
objective function evaluation is costly and the durations of the running states are significant,
and/or the number of workers is high.

Note: Added in v2.8.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.

• constraints_func (Optional[Callable[[FrozenTrial], Sequence[float]]]) –
An optional function that computes the objective constraints. It must take a FrozenTrial
and return the constraints. The return value must be a sequence of float s. A value strictly
larger than 0 means that a constraints is violated. A value equal to or smaller than 0 is
considered feasible. If constraints_func returns more than one value for a trial, that trial
is considered feasible if and only if all values are equal to 0 or smaller.

The constraints_func will be evaluated after each successful trial. The function won’t be
called when trials fail or they are pruned, but this behavior is subject to change in the future
releases.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

• categorical_distance_func (Optional[dict[str,
Callable[[CategoricalChoiceType, CategoricalChoiceType], float]]])
– A dictionary of distance functions for categorical parameters. The key is the
name of the categorical parameter and the value is a distance function that takes two
CategoricalChoiceType s and returns a float value. The distance function must return
a non-negative value.

While categorical choices are handled equally by default, this option allows users to specify
prior knowledge on the structure of categorical parameters. When specified, categorical
choices closer to current best choices are more likely to be sampled.

Note: Added in v3.4.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.4.0.

86 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.8.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.4.0

Optuna Documentation, Release 4.0.0.dev

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
hyperopt_parameters() Return the the default parameters of hyperopt

(v0.1.2).
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

7.3. API Reference 87

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

Return type
None

static hyperopt_parameters()

Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned by this method.

Example

Create a TPESampler instance with the default parameters of hyperopt.

import optuna
from optuna.samplers import TPESampler

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return x**2

sampler = TPESampler(**TPESampler.hyperopt_parameters())
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

Returns
A dictionary containing the default parameters of hyperopt.

Return type
Dict[str, Any]

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

88 Chapter 7. Reference

https://github.com/hyperopt/hyperopt/tree/0.1.2
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

7.3. API Reference 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

optuna.samplers.CmaEsSampler

class optuna.samplers.CmaEsSampler(x0=None, sigma0=None, n_startup_trials=1,
independent_sampler=None, warn_independent_sampling=True,
seed=None, *, consider_pruned_trials=False, restart_strategy=None,
popsize=None, inc_popsize=2, use_separable_cma=False,
with_margin=False, lr_adapt=False, source_trials=None)

A sampler using cmaes as the backend.

Example

Optimize a simple quadratic function by using CmaEsSampler.

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)
y = trial.suggest_int("y", -1, 1)
return x**2 + y

sampler = optuna.samplers.CmaEsSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=20)

Please note that this sampler does not support CategoricalDistribution. However, FloatDistribution with
step, (suggest_float()) and IntDistribution (suggest_int()) are supported.

If your search space contains categorical parameters, I recommend you to use TPESampler instead. Furthermore,
there is room for performance improvements in parallel optimization settings. This sampler cannot use some
trials for updating the parameters of multivariate normal distribution.

For further information about CMA-ES algorithm, please refer to the following papers:

• N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016.

• A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC 2005), pages 1769–1776. IEEE Press, 2005.

• N. Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed. GECCO Work-
shop, 2009.

• Raymond Ros, Nikolaus Hansen. A Simple Modification in CMA-ES Achieving Linear Time and Space
Complexity. 10th International Conference on Parallel Problem Solving From Nature, Sep 2008, Dort-
mund, Germany. inria-00287367.

• Masahiro Nomura, Shuhei Watanabe, Youhei Akimoto, Yoshihiko Ozaki, Masaki Onishi. Warm Starting
CMA-ES for Hyperparameter Optimization, AAAI. 2021.

90 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/CyberAgentAILab/cmaes
https://arxiv.org/abs/1604.00772
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1007/978-3-540-87700-4_30
https://doi.org/10.1007/978-3-540-87700-4_30
https://doi.org/10.1007/978-3-540-87700-4_30
https://doi.org/10.1609/aaai.v35i10.17109
https://doi.org/10.1609/aaai.v35i10.17109

Optuna Documentation, Release 4.0.0.dev

• R. Hamano, S. Saito, M. Nomura, S. Shirakawa. CMA-ES with Margin: Lower-Bounding Marginal Prob-
ability for Mixed-Integer Black-Box Optimization, GECCO. 2022.

• M. Nomura, Y. Akimoto, I. Ono. CMA-ES with Learning Rate Adaptation: Can CMA-ES with Default
Population Size Solve Multimodal and Noisy Problems?, GECCO. 2023.

See also:
You can also use optuna_integration.PyCmaSampler which is a sampler using cma library as the backend.

Parameters
• x0 (Optional[Dict[str, Any]]) – A dictionary of an initial parameter values for CMA-

ES. By default, the mean of low and high for each distribution is used. Note that
x0 is sampled uniformly within the search space domain for each restart if you specify
restart_strategy argument.

• sigma0 (Optional[float]) – Initial standard deviation of CMA-ES. By default, sigma0
is set to min_range / 6, where min_range denotes the minimum range of the distributions
in the search space.

• seed (Optional[int]) – A random seed for CMA-ES.

• n_startup_trials (int) – The independent sampling is used instead of the CMA-ES
algorithm until the given number of trials finish in the same study.

• independent_sampler (Optional[BaseSampler]) – A BaseSampler instance that is
used for independent sampling. The parameters not contained in the relative search space
are sampled by this sampler. The search space for CmaEsSampler is determined by
intersection_search_space().

If None is specified, RandomSampler is used as the default.

See also:
optuna.samplers module provides built-in independent samplers such as
RandomSampler and TPESampler.

• warn_independent_sampling (bool) – If this is True, a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled via an independent
sampler, so no warning messages are emitted in this case.

• restart_strategy (Optional[str]) – Strategy for restarting CMA-ES optimization
when converges to a local minimum. If None is given, CMA-ES will not restart (de-
fault). If ‘ipop’ is given, CMA-ES will restart with increasing population size. if ‘bipop’
is given, CMA-ES will restart with the population size increased or decreased. Please see
also inc_popsize parameter.

Note: Added in v2.1.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.1.0.

• popsize (Optional[int]) – A population size of CMA-ES. When restart_strategy
= 'ipop' or restart_strategy = 'bipop' is specified, this is used as the initial popu-
lation size.

• inc_popsize (int) – Multiplier for increasing population size before each restart. This
argument will be used when restart_strategy = 'ipop' or restart_strategy =
'bipop' is specified.

7.3. API Reference 91

https://doi.org/10.1145/3512290.3528827
https://doi.org/10.1145/3512290.3528827
https://doi.org/10.1145/3583131.3590358
https://doi.org/10.1145/3583131.3590358
https://optuna-integration.readthedocs.io/en/stable/reference/generated/optuna_integration.PyCmaSampler.html#optuna_integration.PyCmaSampler
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.1.0
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

• consider_pruned_trials (bool) – If this is True, the PRUNED trials are considered for
sampling.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Note: It is suggested to set this flag False when the MedianPruner is used. On the other
hand, it is suggested to set this flag True when the HyperbandPruner is used. Please see
the benchmark result for the details.

• use_separable_cma (bool) – If this is True, the covariance matrix is constrained to be
diagonal. Due to reduce the model complexity, the learning rate for the covariance matrix is
increased. Consequently, this algorithm outperforms CMA-ES on separable functions.

Note: Added in v2.6.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.

• with_margin (bool) – If this is True, CMA-ES with margin is used. This algo-
rithm prevents samples in each discrete distribution (FloatDistribution with step and
IntDistribution) from being fixed to a single point. Currently, this option cannot be
used with use_separable_cma=True.

Note: Added in v3.1.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.

• lr_adapt (bool) – If this is True, CMA-ES with learning rate adaptation is used.
This algorithm focuses on working well on multimodal and/or noisy problems with de-
fault settings. Currently, this option cannot be used with use_separable_cma=True or
with_margin=True.

Note: Added in v3.3.0 or later, as an experimental feature. The interface may change in
newer versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.
3.0.

• source_trials (Optional[List[FrozenTrial]]) – This option is for Warm Starting
CMA-ES, a method to transfer prior knowledge on similar HPO tasks through the initializa-
tion of CMA-ES. This method estimates a promising distribution from source_trials and
generates the parameter of multivariate gaussian distribution. Please note that it is prohibited
to use x0, sigma0, or use_separable_cma argument together.

Note: Added in v2.6.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.

92 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/pull/1229
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.6.0
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://github.com/optuna/optuna/releases/tag/v2.6.0

Optuna Documentation, Release 4.0.0.dev

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Sequence[float] | None) – Resulting trial values. Guaranteed to not be None
if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

7.3. API Reference 93

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

94 Chapter 7. Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

optuna.samplers.GPSampler

class optuna.samplers.GPSampler(*, seed=None, independent_sampler=None, n_startup_trials=10,
deterministic_objective=False)

Sampler using Gaussian process-based Bayesian optimization.

This sampler fits a Gaussian process (GP) to the objective function and optimizes the acquisition function to
suggest the next parameters.

The current implementation uses:
• Matern kernel with nu=2.5 (twice differentiable),

• Automatic relevance determination (ARD) for the length scale of each parameter,

• Gamma prior for inverse squared lengthscales, kernel scale, and noise variance,

• Log Expected Improvement (logEI) as the acquisition function, and

• Quasi-Monte Carlo (QMC) sampling to optimize the acquisition function.

Note: This sampler requires scipy and torch. You can install these dependencies with pip install scipy
torch.

Parameters
• seed (int | None) – Random seed to initialize internal random number generator. Defaults

to None (a seed is picked randomly).

• independent_sampler (BaseSampler | None) – Sampler used for initial sampling (for
the first n_startup_trials trials) and for conditional parameters. Defaults to None (a
random sampler with the same seed is used).

7.3. API Reference 95

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

• n_startup_trials (int) – Number of initial trials. Defaults to 10.

• deterministic_objective (bool) – Whether the objective function is deterministic or
not. If True, the sampler will fix the noise variance of the surrogate model to the minimum
value (slightly above 0 to ensure numerical stability). Defaults to False.

Note: Added in v3.6.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.6.0.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Sequence[float] | None) – Resulting trial values. Guaranteed to not be None
if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

96 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://github.com/optuna/optuna/releases/tag/v3.6.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters

7.3. API Reference 97

https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
dict[str, Any]

optuna.samplers.PartialFixedSampler

class optuna.samplers.PartialFixedSampler(fixed_params, base_sampler)
Sampler with partially fixed parameters.

Example

After several steps of optimization, you can fix the value of y and re-optimize it.

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)
y = trial.suggest_int("y", -1, 1)

(continues on next page)

98 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

return x**2 + y

study = optuna.create_study()
study.optimize(objective, n_trials=10)

best_params = study.best_params
fixed_params = {"y": best_params["y"]}
partial_sampler = optuna.samplers.PartialFixedSampler(fixed_params, study.sampler)

study.sampler = partial_sampler
study.optimize(objective, n_trials=10)

Parameters
• fixed_params (Dict[str, Any]) – A dictionary of parameters to be fixed.

• base_sampler (BaseSampler) – A sampler which samples unfixed parameters.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

7.3. API Reference 99

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 4.0.0.dev

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

100 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

7.3. API Reference 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.NSGAIISampler

class optuna.samplers.NSGAIISampler(*, population_size=50, mutation_prob=None, crossover=None,
crossover_prob=0.9, swapping_prob=0.5, seed=None,
constraints_func=None, elite_population_selection_strategy=None,
child_generation_strategy=None, after_trial_strategy=None)

Multi-objective sampler using the NSGA-II algorithm.

NSGA-II stands for “Nondominated Sorting Genetic Algorithm II”, which is a well known, fast and elitist multi-
objective genetic algorithm.

For further information about NSGA-II, please refer to the following paper:

• A fast and elitist multiobjective genetic algorithm: NSGA-II

Parameters
• population_size (int) – Number of individuals (trials) in a generation.
population_size must be greater than or equal to crossover.n_parents. For
UNDXCrossover and SPXCrossover, n_parents=3, and for the other algorithms,
n_parents=2.

• mutation_prob (float | None) – Probability of mutating each parameter when creating
a new individual. If None is specified, the value 1.0 / len(parent_trial.params) is
used where parent_trial is the parent trial of the target individual.

• crossover (BaseCrossover | None) – Crossover to be applied when creating child in-
dividuals. The available crossovers are listed here: https://optuna.readthedocs.io/en/stable/
reference/samplers/nsgaii.html.

UniformCrossover is always applied to parameters sampled from
CategoricalDistribution, and by default for parameters sampled from other dis-
tributions unless this argument is specified.

For more information on each of the crossover method, please refer to specific crossover
documentation.

• crossover_prob (float) – Probability that a crossover (parameters swapping between
parents) will occur when creating a new individual.

• swapping_prob (float) – Probability of swapping each parameter of the parents during
crossover.

• seed (int | None) – Seed for random number generator.

• constraints_func (Callable[[FrozenTrial], Sequence[float]] | None) – An
optional function that computes the objective constraints. It must take a FrozenTrial and
return the constraints. The return value must be a sequence of float s. A value strictly
larger than 0 means that a constraints is violated. A value equal to or smaller than 0 is
considered feasible. If constraints_func returns more than one value for a trial, that trial
is considered feasible if and only if all values are equal to 0 or smaller.

The constraints_func will be evaluated after each successful trial. The function won’t be
called when trials fail or they are pruned, but this behavior is subject to change in the future
releases.

The constraints are handled by the constrained domination. A trial x is said to constrained-
dominate a trial y, if any of the following conditions is true:

1. Trial x is feasible and trial y is not.

2. Trial x and y are both infeasible, but trial x has a smaller overall violation.

102 Chapter 7. Reference

https://doi.org/10.1109/4235.996017
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://optuna.readthedocs.io/en/stable/reference/samplers/nsgaii.html
https://optuna.readthedocs.io/en/stable/reference/samplers/nsgaii.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

3. Trial x and y are feasible and trial x dominates trial y.

Note: Added in v2.5.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.5.0.

• elite_population_selection_strategy (Callable[[Study,
list[FrozenTrial]], list[FrozenTrial]] | None) – The selection strategy
for determining the individuals to survive from the current population pool. Default to
None.

Note: The arguments elite_population_selection_strategy was added in v3.3.0 as
an experimental feature. The interface may change in newer versions without prior notice.
See https://github.com/optuna/optuna/releases/tag/v3.3.0.

• child_generation_strategy (Callable[[Study, dict[str,
BaseDistribution], list[FrozenTrial]], dict[str, Any]] | None) – The
strategy for generating child parameters from parent trials. Defaults to None.

Note: The arguments child_generation_strategy was added in v3.3.0 as an exper-
imental feature. The interface may change in newer versions without prior notice. See
https://github.com/optuna/optuna/releases/tag/v3.3.0.

• after_trial_strategy (Callable[[Study, FrozenTrial, TrialState,
Sequence[float] | None], None] | None) – A set of procedure to be conducted
after each trial. Defaults to None.

Note: The arguments after_trial_strategy was added in v3.3.0 as an experimental
feature. The interface may change in newer versions without prior notice. See https://github.
com/optuna/optuna/releases/tag/v3.3.0.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

7.3. API Reference 103

https://github.com/optuna/optuna/releases/tag/v2.5.0
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Sequence[float] | None) – Resulting trial values. Guaranteed to not be None
if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
dict[str, BaseDistribution]

104 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

7.3. API Reference 105

https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

• search_space (dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
dict[str, Any]

optuna.samplers.NSGAIIISampler

class optuna.samplers.NSGAIIISampler(*, population_size=50, mutation_prob=None, crossover=None,
crossover_prob=0.9, swapping_prob=0.5, seed=None,
constraints_func=None, reference_points=None,
dividing_parameter=3, elite_population_selection_strategy=None,
child_generation_strategy=None, after_trial_strategy=None)

Multi-objective sampler using the NSGA-III algorithm.

NSGA-III stands for “Nondominated Sorting Genetic Algorithm III”, which is a modified version of NSGA-II
for many objective optimization problem.

For further information about NSGA-III, please refer to the following papers:

• An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated
Sorting Approach, Part I: Solving Problems With Box Constraints

• An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated
Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach

Parameters
• reference_points (np.ndarray | None) – A 2 dimension numpy.ndarray with ob-

jective dimension columns. Represents a list of reference points which is used to determine
who to survive. After non-dominated sort, who out of borderline front are going to survived
is determined according to how sparse the closest reference point of each individual is. In
the default setting the algorithm uses uniformly spread points to diversify the result. It is
also possible to reflect your preferences by giving an arbitrary set of target points since the
algorithm prioritizes individuals around reference points.

• dividing_parameter (int) – A parameter to determine the density of default reference
points. This parameter determines how many divisions are made between reference points
on each axis. The smaller this value is, the less reference points you have. The default value
is 3. Note that this parameter is not used when reference_points is not None.

• population_size (int)

• mutation_prob (float | None)

• crossover (BaseCrossover | None)

• crossover_prob (float)

• swapping_prob (float)

• seed (int | None)

• constraints_func (Callable[[FrozenTrial], Sequence[float]] | None)

• elite_population_selection_strategy (Callable[[Study,
list[FrozenTrial]], list[FrozenTrial]] | None)

106 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TEVC.2013.2281534
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Optuna Documentation, Release 4.0.0.dev

• child_generation_strategy (Callable[[Study, dict[str,
BaseDistribution], list[FrozenTrial]], dict[str, Any]] | None)

• after_trial_strategy (Callable[[Study, FrozenTrial, TrialState,
Sequence[float] | None], None] | None)

Note: Other parameters than reference_points and dividing_parameter are the same as
NSGAIISampler.

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Sequence[float] | None) – Resulting trial values. Guaranteed to not be None
if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

7.3. API Reference 107

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.2.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

108 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.3.0
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
dict[str, Any]

optuna.samplers.QMCSampler

class optuna.samplers.QMCSampler(*, qmc_type='sobol', scramble=False, seed=None,
independent_sampler=None, warn_asynchronous_seeding=True,
warn_independent_sampling=True)

A Quasi Monte Carlo Sampler that generates low-discrepancy sequences.

Quasi Monte Carlo (QMC) sequences are designed to have lower discrepancies than standard random sequences.
They are known to perform better than the standard random sequences in hyperparameter optimization.

7.3. API Reference 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

For further information about the use of QMC sequences for hyperparameter optimization, please refer to the
following paper:

• Bergstra, James, and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research 13.2, 2012.

We use the QMC implementations in Scipy. For the details of the QMC algorithm, see the Scipy API references
on scipy.stats.qmc.

Note: The search space of the sampler is determined by either previous trials in the study or the first trial that
this sampler samples.

If there are previous trials in the study, QMCSampler infers its search space using the trial which was created first
in the study.

Otherwise (if the study has no previous trials), QMCSampler samples the first trial using its independent_sampler
and then infers the search space in the second trial.

As mentioned above, the search space of the QMCSampler is determined by the first trial of the study. Once the
search space is determined, it cannot be changed afterwards.

Parameters
• qmc_type (str) – The type of QMC sequence to be sampled. This must be one of “halton”

and “sobol”. Default is “sobol”.

Note: Sobol’ sequence is designed to have low-discrepancy property when the number of
samples is 𝑛 = 2𝑚 for each positive integer𝑚. When it is possible to pre-specify the number
of trials suggested by QMCSampler, it is recommended that the number of trials should be
set as power of two.

• scramble (bool) – If this option is True, scrambling (randomization) is applied to the QMC
sequences.

• seed (Optional[int]) – A seed for QMCSampler. This argument is used only when
scramble is True. If this is None, the seed is initialized randomly. Default is None.

Note: When using multiple QMCSampler’s in parallel and/or distributed optimization, all
the samplers must share the same seed when the scrambling is enabled. Otherwise, the low-
discrepancy property of the samples will be degraded.

• independent_sampler (Optional[BaseSampler]) – A BaseSampler instance that is
used for independent sampling. The first trial of the study and the parameters not contained
in the relative search space are sampled by this sampler.

If None is specified, RandomSampler is used as the default.

See also:
samplers module provides built-in independent samplers such as RandomSampler and
TPESampler.

• warn_independent_sampling (bool) – If this is True, a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

110 Chapter 7. Reference

https://jmlr.org/papers/v13/bergstra12a.html
https://jmlr.org/papers/v13/bergstra12a.html
https://scipy.github.io/devdocs/reference/stats.qmc.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 4.0.0.dev

Note that the parameters of the first trial in a study are sampled via an independent sampler
in most cases, so no warning messages are emitted in such cases.

• warn_asynchronous_seeding (bool) – If this is True, a warning message is emitted when
the scrambling (randomization) is applied to the QMC sequence and the random seed of the
sampler is not set manually.

Note: When using parallel and/or distributed optimization without manually setting the
seed, the seed is set randomly for each instances of QMCSampler for different workers, which
ends up asynchronous seeding for multiple samplers used in the optimization.

See also:
See parameter seed in QMCSampler.

Example

Optimize a simple quadratic function by using QMCSampler.

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)
y = trial.suggest_int("y", -1, 1)
return x**2 + y

sampler = optuna.samplers.QMCSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=8)

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

7.3. API Reference 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (optuna.trial.FrozenTrial) – Target trial object. Take a copy before modify-
ing this object.

• state (TrialState) – Resulting trial state.

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

112 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters

7.3. API Reference 113

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

optuna.samplers.BruteForceSampler

class optuna.samplers.BruteForceSampler(seed=None)
Sampler using brute force.

This sampler performs exhaustive search on the defined search space.

Example

import optuna

def objective(trial):
c = trial.suggest_categorical("c", ["float", "int"])
if c == "float":

return trial.suggest_float("x", 1, 3, step=0.5)
elif c == "int":

a = trial.suggest_int("a", 1, 3)
b = trial.suggest_int("b", a, 3)
return a + b

study = optuna.create_study(sampler=optuna.samplers.BruteForceSampler())
study.optimize(objective)

Note: The defined search space must be finite. Therefore, when using FloatDistribution or
suggest_float(), step=None is not allowed.

Note: The sampler may fail to try the entire search space in when the suggestion ranges or parameters are
changed in the same Study.

Parameters
seed (Optional[int]) – A seed to fix the order of trials as the search order randomly shuffled.
Please note that it is not recommended using this option in distributed optimization settings since
this option cannot ensure the order of trials and may increase the number of duplicate suggestions
during distributed optimization.

114 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Note: Added in v3.1.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Optional[Sequence[float]]) – Resulting trial values. Guaranteed to not be
None if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters

7.3. API Reference 115

https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
Dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

116 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (Dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
Dict[str, Any]

Note: The following optuna.samplers.nsgaii module defines crossover operations used by NSGAIISampler.

optuna.samplers.nsgaii

The nsgaii module defines crossover operations used by NSGAIISampler.

optuna.samplers.nsgaii.BaseCrossover Base class for crossovers.
optuna.samplers.nsgaii.UniformCrossover Uniform Crossover operation used by NSGAIISampler.
optuna.samplers.nsgaii.BLXAlphaCrossover Blend Crossover operation used by NSGAIISampler.
optuna.samplers.nsgaii.SPXCrossover Simplex Crossover operation used by NSGAIISampler.
optuna.samplers.nsgaii.SBXCrossover Simulated Binary Crossover operation used by

NSGAIISampler.
optuna.samplers.nsgaii.VSBXCrossover Modified Simulated Binary Crossover operation used by

NSGAIISampler.
optuna.samplers.nsgaii.UNDXCrossover Unimodal Normal Distribution Crossover used by

NSGAIISampler.

7.3. API Reference 117

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.BaseCrossover

class optuna.samplers.nsgaii.BaseCrossover

Base class for crossovers.

A crossover operation is used by NSGAIISampler to create new parameter combination from parameters of n
parent individuals.

Note: Concrete implementations of this class are expected to only accept parameters from numerical distribu-
tions. At the moment, only crossover operation for categorical parameters (uniform crossover) is built-in into
NSGAIISampler.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents Number of parent individuals required to perform
crossover.

abstract crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

Return type
np.ndarray

abstract property n_parents: int

Number of parent individuals required to perform crossover.

118 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.UniformCrossover

class optuna.samplers.nsgaii.UniformCrossover(swapping_prob=0.5)
Uniform Crossover operation used by NSGAIISampler.

Select each parameter with equal probability from the two parent individuals. For further information about
uniform crossover, please refer to the following paper:

• Gilbert Syswerda. 1989. Uniform Crossover in Genetic Algorithms. In Proceedings of the 3rd International
Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2-9.

Parameters
swapping_prob (float) – Probability of swapping each parameter of the parents during
crossover.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents

crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

Return type
np.ndarray

7.3. API Reference 119

https://www.researchgate.net/publication/201976488_Uniform_Crossover_in_Genetic_Algorithms
https://www.researchgate.net/publication/201976488_Uniform_Crossover_in_Genetic_Algorithms
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.BLXAlphaCrossover

class optuna.samplers.nsgaii.BLXAlphaCrossover(alpha=0.5)
Blend Crossover operation used by NSGAIISampler.

Uniformly samples child individuals from the hyper-rectangles created by the two parent individuals. For further
information about BLX-alpha crossover, please refer to the following paper:

• Eshelman, L. and J. D. Schaffer. Real-Coded Genetic Algorithms and Interval-Schemata. FOGA (1992).

Parameters
alpha (float) – Parametrizes blend operation.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents

crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

Return type
np.ndarray

120 Chapter 7. Reference

https://doi.org/10.1016/B978-0-08-094832-4.50018-0
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.SPXCrossover

class optuna.samplers.nsgaii.SPXCrossover(epsilon=None)
Simplex Crossover operation used by NSGAIISampler.

Uniformly samples child individuals from within a single simplex that is similar to the simplex produced by the
parent individual. For further information about SPX crossover, please refer to the following paper:

• Shigeyoshi Tsutsui and Shigeyoshi Tsutsui and David E. Goldberg and David E. Goldberg and Kumara
Sastry and Kumara Sastry Progress Toward Linkage Learning in Real-Coded GAs with Simplex Crossover.
IlliGAL Report. 2000.

Parameters
epsilon (Optional[float]) – Expansion rate. If not specified, defaults to
sqrt(len(search_space) + 2).

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents

crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

Return type
np.ndarray

7.3. API Reference 121

https://www.researchgate.net/publication/2388486_Progress_Toward_Linkage_Learning_in_Real-Coded_GAs_with_Simplex_Crossover
https://www.researchgate.net/publication/2388486_Progress_Toward_Linkage_Learning_in_Real-Coded_GAs_with_Simplex_Crossover
https://www.researchgate.net/publication/2388486_Progress_Toward_Linkage_Learning_in_Real-Coded_GAs_with_Simplex_Crossover
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.SBXCrossover

class optuna.samplers.nsgaii.SBXCrossover(eta=None)
Simulated Binary Crossover operation used by NSGAIISampler.

Generates a child from two parent individuals according to the polynomial probability distribution.

• Deb, K. and R. Agrawal. “Simulated Binary Crossover for Continuous Search Space.” Complex Syst. 9
(1995): n. pag.

Parameters
eta (Optional[float]) – Distribution index. A small value of eta allows distant solutions
to be selected as children solutions. If not specified, takes default value of 2 for single objective
functions and 20 for multi objective.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents

crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

Return type
np.ndarray

122 Chapter 7. Reference

https://www.complex-systems.com/abstracts/v09_i02_a02/
https://www.complex-systems.com/abstracts/v09_i02_a02/
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.VSBXCrossover

class optuna.samplers.nsgaii.VSBXCrossover(eta=None)
Modified Simulated Binary Crossover operation used by NSGAIISampler.

vSBX generates child individuals without excluding any region of the parameter space, while maintaining the
excellent properties of SBX.

• Pedro J. Ballester, Jonathan N. Carter. Real-Parameter Genetic Algorithms for Finding Multiple Optimal
Solutions in Multi-modal Optimization. GECCO 2003: 706-717

Parameters
eta (Optional[float]) – Distribution index. A small value of eta allows distant solutions
to be selected as children solutions. If not specified, takes default value of 2 for single objective
functions and 20 for multi objective.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents

crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

Return type
np.ndarray

7.3. API Reference 123

https://doi.org/10.1007/3-540-45105-6_86
https://doi.org/10.1007/3-540-45105-6_86
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

optuna.samplers.nsgaii.UNDXCrossover

class optuna.samplers.nsgaii.UNDXCrossover(sigma_xi=0.5, sigma_eta=None)
Unimodal Normal Distribution Crossover used by NSGAIISampler.

Generates child individuals from the three parents using a multivariate normal distribution.

• H. Kita, I. Ono and S. Kobayashi, Multi-parental extension of the unimodal normal distribution crossover
for real-coded genetic algorithms, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), 1999, pp. 1581-1588 Vol. 2

Parameters
• sigma_xi (float) – Parametrizes normal distribution from which xi is drawn.

• sigma_eta (Optional[float]) – Parametrizes normal distribution from which etas are
drawn. If not specified, defaults to 0.35 / sqrt(len(search_space)).

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Methods

crossover(parents_params, rng, study, ...) Perform crossover of selected parent individuals.

Attributes

n_parents

crossover(parents_params, rng, study, search_space_bounds)
Perform crossover of selected parent individuals.

This method is called in sample_relative().

Parameters
• parents_params (np.ndarray) – A numpy.ndarray with dimensions num_parents
x num_parameters. Represents a parameter space for each parent individual. This space
is continuous for numerical parameters.

• rng (np.random.RandomState) – An instance of numpy.random.RandomState.

• study (Study) – Target study object.

• search_space_bounds (np.ndarray) – A numpy.ndarray with dimensions
len_search_space x 2 representing numerical distribution bounds constructed
from transformed search space.

Returns
A 1-dimensional numpy.ndarray containing new parameter combination.

124 Chapter 7. Reference

https://doi.org/10.1109/CEC.1999.782672
https://doi.org/10.1109/CEC.1999.782672
https://doi.org/10.1109/CEC.1999.782672
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

Return type
np.ndarray

7.3.11 optuna.search_space

The search_space module provides functionality for controlling search space of parameters.

optuna.search_space.
IntersectionSearchSpace

A class to calculate the intersection search space of a
Study.

optuna.search_space.
intersection_search_space

Return the intersection search space of the given trials.

optuna.search_space.IntersectionSearchSpace

class optuna.search_space.IntersectionSearchSpace(include_pruned=False)
A class to calculate the intersection search space of a Study.

Intersection search space contains the intersection of parameter distributions that have been suggested in the
completed trials of the study so far. If there are multiple parameters that have the same name but different
distributions, neither is included in the resulting search space (i.e., the parameters with dynamic value ranges are
excluded).

Note that an instance of this class is supposed to be used for only one study. If different studies are passed to
calculate(), a ValueError is raised.

Parameters
include_pruned (bool) – Whether pruned trials should be included in the search space.

Methods

calculate(study) Returns the intersection search space of the Study.

calculate(study)
Returns the intersection search space of the Study.

Parameters
study (Study) – A study with completed trials. The same study must be passed for one
instance of this class through its lifetime.

Returns
A dictionary containing the parameter names and parameter’s distributions sorted by param-
eter names.

Return type
Dict[str, BaseDistribution]

7.3. API Reference 125

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.search_space.intersection_search_space

optuna.search_space.intersection_search_space(trials, include_pruned=False)
Return the intersection search space of the given trials.

Intersection search space contains the intersection of parameter distributions that have been suggested in the
completed trials of the study so far. If there are multiple parameters that have the same name but different
distributions, neither is included in the resulting search space (i.e., the parameters with dynamic value ranges are
excluded).

Note: IntersectionSearchSpace provides the same functionality with a much faster way. Please consider
using it if you want to reduce execution time as much as possible.

Parameters
• trials (list[FrozenTrial]) – A list of trials.

• include_pruned (bool) – Whether pruned trials should be included in the search space.

Returns
A dictionary containing the parameter names and parameter’s distributions sorted by parameter
names.

Return type
Dict[str, BaseDistribution]

7.3.12 optuna.storages

The storages module defines a BaseStorage class which abstracts a backend database and provides library-internal
interfaces to the read/write histories of the studies and trials. Library users who wish to use storage solutions other
than the default in-memory storage should use one of the child classes of BaseStorage documented below.

optuna.storages.RDBStorage Storage class for RDB backend.
optuna.storages.RetryFailedTrialCallback Retry a failed trial up to a maximum number of times.
optuna.storages.fail_stale_trials Fail stale trials and run their failure callbacks.
optuna.storages.JournalStorage Storage class for Journal storage backend.
optuna.storages.JournalFileStorage File storage class for Journal log backend.
optuna.storages.JournalFileSymlinkLock Lock class for synchronizing processes for NFSv2 or

later.
optuna.storages.JournalFileOpenLock Lock class for synchronizing processes for NFSv3 or

later.
optuna.storages.JournalRedisStorage Redis storage class for Journal log backend.

126 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.storages.RDBStorage

class optuna.storages.RDBStorage(url, engine_kwargs=None, skip_compatibility_check=False, *,
heartbeat_interval=None, grace_period=None,
failed_trial_callback=None, skip_table_creation=False)

Storage class for RDB backend.

Note that library users can instantiate this class, but the attributes provided by this class are not supposed to be
directly accessed by them.

Example

Create an RDBStorage instance with customized pool_size and timeout settings.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
return x**2

storage = optuna.storages.RDBStorage(
url="sqlite:///:memory:",
engine_kwargs={"pool_size": 20, "connect_args": {"timeout": 10}},

)

study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=10)

Parameters
• url (str) – URL of the storage.

• engine_kwargs (Optional[Dict[str, Any]]) – A dictionary of keyword arguments
that is passed to sqlalchemy.engine.create_engine function.

• skip_compatibility_check (bool) – Flag to skip schema compatibility check if set to
True.

• heartbeat_interval (Optional[int]) – Interval to record the heartbeat. It is recorded
every interval seconds. heartbeat_interval must be None or a positive integer.

Note: The heartbeat is supposed to be used with optimize(). If you use ask() and
tell() instead, it will not work.

• grace_period (Optional[int]) – Grace period before a running trial is failed from the
last heartbeat. grace_period must be None or a positive integer. If it is None, the grace
period will be 2 * heartbeat_interval.

• failed_trial_callback (Optional[Callable[['optuna.study.Study',
FrozenTrial], None]]) – A callback function that is invoked after failing each
stale trial. The function must accept two parameters with the following types in this order:
Study and FrozenTrial.

7.3. API Reference 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Note: The procedure to fail existing stale trials is called just before asking the study for a
new trial.

• skip_table_creation (bool) – Flag to skip table creation if set to True.

Note: If you use MySQL, pool_pre_ping will be set to True by default to prevent connection timeout. You
can turn it off with engine_kwargs['pool_pre_ping']=False, but it is recommended to keep the setting if
execution time of your objective function is longer than the wait_timeout of your MySQL configuration.

Note: We would never recommend SQLite3 for parallel optimization. Please see the FAQ How can I solve the
error that occurs when performing parallel optimization with SQLite3? for details.

Note: Mainly in a cluster environment, running trials are often killed unexpectedly. If you want to de-
tect a failure of trials, please use the heartbeat mechanism. Set heartbeat_interval, grace_period, and
failed_trial_callback appropriately according to your use case. For more details, please refer to the tuto-
rial and Example page.

See also:
You can use RetryFailedTrialCallback to automatically retry failed trials detected by heartbeat.

Methods

check_trial_is_updatable(trial_id, trial_state) Check whether a trial state is updatable.
create_new_study(directions[, study_name]) Create a new study from a name.
create_new_trial(study_id[, template_trial]) Create and add a new trial to a study.
delete_study(study_id) Delete a study.
get_all_studies() Read a list of FrozenStudy objects.
get_all_trials(study_id[, deepcopy, states]) Read all trials in a study.
get_all_versions() Return the schema version list.
get_best_trial(study_id) Return the trial with the best value in a study.
get_current_version() Return the schema version currently used by this stor-

age.
get_failed_trial_callback() Get the failed trial callback function.
get_head_version() Return the latest schema version.
get_heartbeat_interval() Get the heartbeat interval if it is set.
get_n_trials(study_id[, state]) Count the number of trials in a study.
get_study_directions(study_id) Read whether a study maximizes or minimizes an ob-

jective.
get_study_id_from_name(study_name) Read the ID of a study.
get_study_name_from_id(study_id) Read the study name of a study.
get_study_system_attrs(study_id) Read the optuna-internal attributes of a study.
get_study_user_attrs(study_id) Read the user-defined attributes of a study.
get_trial(trial_id) Read a trial.
get_trial_id_from_study_id_trial_number(...) Read the trial ID of a trial.
get_trial_number_from_id(trial_id) Read the trial number of a trial.

continues on next page

128 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.sqlalchemy.org/en/13/core/engines.html#sqlalchemy.create_engine.params.pool_pre_ping
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_checkpoint.py

Optuna Documentation, Release 4.0.0.dev

Table 1 – continued from previous page
get_trial_param(trial_id, param_name) Read the parameter of a trial.
get_trial_params(trial_id) Read the parameter dictionary of a trial.
get_trial_system_attrs(trial_id) Read the optuna-internal attributes of a trial.
get_trial_user_attrs(trial_id) Read the user-defined attributes of a trial.
record_heartbeat(trial_id) Record the heartbeat of the trial.
remove_session() Removes the current session.
set_study_system_attr(study_id, key, value) Register an optuna-internal attribute to a study.
set_study_user_attr(study_id, key, value) Register a user-defined attribute to a study.
set_trial_intermediate_value(trial_id, step,
...)

Report an intermediate value of an objective function.

set_trial_param(trial_id, param_name, ...) Set a parameter to a trial.
set_trial_state_values(trial_id, state[, values]) Update the state and values of a trial.
set_trial_system_attr(trial_id, key, value) Set an optuna-internal attribute to a trial.
set_trial_user_attr(trial_id, key, value) Set a user-defined attribute to a trial.
upgrade() Upgrade the storage schema.

check_trial_is_updatable(trial_id, trial_state)
Check whether a trial state is updatable.

Parameters
• trial_id (int) – ID of the trial. Only used for an error message.

• trial_state (TrialState) – Trial state to check.

Raises
RuntimeError – If the trial is already finished.

Return type
None

create_new_study(directions, study_name=None)
Create a new study from a name.

If no name is specified, the storage class generates a name. The returned study ID is unique among all
current and deleted studies.

Parameters
• directions (Sequence[StudyDirection]) – A sequence of direction whose element

is either MAXIMIZE or MINIMIZE.

• study_name (str | None) – Name of the new study to create.

Returns
ID of the created study.

Raises
optuna.exceptions.DuplicatedStudyError – If a study with the same study_name
already exists.

Return type
int

create_new_trial(study_id, template_trial=None)
Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.

Parameters

7.3. API Reference 129

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

• study_id (int) – ID of the study.

• template_trial (FrozenTrial | None) – Template FrozenTrial with default user-
attributes, system-attributes, intermediate-values, and a state.

Returns
ID of the created trial.

Raises
KeyError – If no study with the matching study_id exists.

Return type
int

delete_study(study_id)
Delete a study.

Parameters
study_id (int) – ID of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
None

get_all_studies()

Read a list of FrozenStudy objects.

Returns
A list of FrozenStudy objects, sorted by study_id.

Return type
List[FrozenStudy]

get_all_trials(study_id, deepcopy=True, states=None)
Read all trials in a study.

Parameters
• study_id (int) – ID of the study.

• deepcopy (bool) – Whether to copy the list of trials before returning. Set to True if you
intend to update the list or elements of the list.

• states (Container[TrialState] | None) – Trial states to filter on. If None, include
all states.

Returns
List of trials in the study, sorted by trial_id.

Raises
KeyError – If no study with the matching study_id exists.

Return type
List[FrozenTrial]

get_all_versions()

Return the schema version list.

Return type
List[str]

130 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

get_best_trial(study_id)
Return the trial with the best value in a study.

This method is valid only during single-objective optimization.

Parameters
study_id (int) – ID of the study.

Returns
The trial with the best objective value among all finished trials in the study.

Raises
• KeyError – If no study with the matching study_id exists.

• RuntimeError – If the study has more than one direction.

• ValueError – If no trials have been completed.

Return type
FrozenTrial

get_current_version()

Return the schema version currently used by this storage.

Return type
str

get_failed_trial_callback()

Get the failed trial callback function.

Returns
The failed trial callback function if it is set, otherwise None.

Return type
Callable[[Study, FrozenTrial], None] | None

get_head_version()

Return the latest schema version.

Return type
str

get_heartbeat_interval()

Get the heartbeat interval if it is set.

Returns
The heartbeat interval if it is set, otherwise None.

Return type
int | None

get_n_trials(study_id, state=None)
Count the number of trials in a study.

Parameters
• study_id (int) – ID of the study.

• state (tuple[TrialState, ...] | TrialState | None) – Trial states to filter on.
If None, include all states.

Returns
Number of trials in the study.

7.3. API Reference 131

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Raises
KeyError – If no study with the matching study_id exists.

Return type
int

get_study_directions(study_id)
Read whether a study maximizes or minimizes an objective.

Parameters
study_id (int) – ID of a study.

Returns
Optimization directions list of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
List[StudyDirection]

get_study_id_from_name(study_name)
Read the ID of a study.

Parameters
study_name (str) – Name of the study.

Returns
ID of the study.

Raises
KeyError – If no study with the matching study_name exists.

Return type
int

get_study_name_from_id(study_id)
Read the study name of a study.

Parameters
study_id (int) – ID of the study.

Returns
Name of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
str

get_study_system_attrs(study_id)
Read the optuna-internal attributes of a study.

Parameters
study_id (int) – ID of the study.

Returns
Dictionary with the optuna-internal attributes of the study.

Raises
KeyError – If no study with the matching study_id exists.

132 Chapter 7. Reference

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError

Optuna Documentation, Release 4.0.0.dev

Return type
Dict[str, Any]

get_study_user_attrs(study_id)
Read the user-defined attributes of a study.

Parameters
study_id (int) – ID of the study.

Returns
Dictionary with the user attributes of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
Dict[str, Any]

get_trial(trial_id)
Read a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Trial with a matching trial ID.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
FrozenTrial

get_trial_id_from_study_id_trial_number(study_id, trial_number)
Read the trial ID of a trial.

Parameters
• study_id (int) – ID of the study.

• trial_number (int) – Number of the trial.

Returns
ID of the trial.

Raises
KeyError – If no trial with the matching study_id and trial_number exists.

Return type
int

get_trial_number_from_id(trial_id)
Read the trial number of a trial.

Note: The trial number is only unique within a study, and is sequential.

Parameters
trial_id (int) – ID of the trial.

Returns
Number of the trial.

7.3. API Reference 133

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
int

get_trial_param(trial_id, param_name)
Read the parameter of a trial.

Parameters
• trial_id (int) – ID of the trial.

• param_name (str) – Name of the parameter.

Returns
Internal representation of the parameter.

Raises
KeyError – If no trial with the matching trial_id exists. If no such parameter exists.

Return type
float

get_trial_params(trial_id)
Read the parameter dictionary of a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Dictionary of a parameters. Keys are parameter names and values are internal representations
of the parameter values.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
dict[str, Any]

get_trial_system_attrs(trial_id)
Read the optuna-internal attributes of a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Dictionary with the optuna-internal attributes of the trial.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
Dict[str, Any]

get_trial_user_attrs(trial_id)
Read the user-defined attributes of a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Dictionary with the user-defined attributes of the trial.

134 Chapter 7. Reference

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
Dict[str, Any]

record_heartbeat(trial_id)
Record the heartbeat of the trial.

Parameters
trial_id (int) – ID of the trial.

Return type
None

remove_session()

Removes the current session.

A session is stored in SQLAlchemy’s ThreadLocalRegistry for each thread. This method closes and re-
moves the session which is associated to the current thread. Particularly, under multi-thread use cases, it is
important to call this method from each thread. Otherwise, all sessions and their associated DB connections
are destructed by a thread that occasionally invoked the garbage collector. By default, it is not allowed to
touch a SQLite connection from threads other than the thread that created the connection. Therefore, we
need to explicitly close the connection from each thread.

Return type
None

set_study_system_attr(study_id, key, value)
Register an optuna-internal attribute to a study.

This method overwrites any existing attribute.

Parameters
• study_id (int) – ID of the study.

• key (str) – Attribute key.

• value (Mapping[str, JSONSerializable] | Sequence[JSONSerializable] |
str | int | float | bool | None) – Attribute value. It should be JSON serializ-
able.

Raises
KeyError – If no study with the matching study_id exists.

Return type
None

set_study_user_attr(study_id, key, value)
Register a user-defined attribute to a study.

This method overwrites any existing attribute.

Parameters
• study_id (int) – ID of the study.

• key (str) – Attribute key.

• value (Any) – Attribute value. It should be JSON serializable.

Raises
KeyError – If no study with the matching study_id exists.

7.3. API Reference 135

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError

Optuna Documentation, Release 4.0.0.dev

Return type
None

set_trial_intermediate_value(trial_id, step, intermediate_value)
Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.

Parameters
• trial_id (int) – ID of the trial.

• step (int) – Step of the trial (e.g., the epoch when training a neural network).

• intermediate_value (float) – Intermediate value corresponding to the step.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

set_trial_param(trial_id, param_name, param_value_internal, distribution)
Set a parameter to a trial.

Parameters
• trial_id (int) – ID of the trial.

• param_name (str) – Name of the parameter.

• param_value_internal (float) – Internal representation of the parameter value.

• distribution (BaseDistribution) – Sampled distribution of the parameter.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

set_trial_state_values(trial_id, state, values=None)
Update the state and values of a trial.

Set return values of an objective function to values argument. If values argument is not None, this method
overwrites any existing trial values.

Parameters
• trial_id (int) – ID of the trial.

• state (TrialState) – New state of the trial.

• values (Sequence[float] | None) – Values of the objective function.

Returns
True if the state is successfully updated. False if the state is kept the same. The latter
happens when this method tries to update the state of RUNNING trial to RUNNING .

Raises
• KeyError – If no trial with the matching trial_id exists.

136 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#KeyError

Optuna Documentation, Release 4.0.0.dev

• RuntimeError – If the trial is already finished.

Return type
bool

set_trial_system_attr(trial_id, key, value)
Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.

Parameters
• trial_id (int) – ID of the trial.

• key (str) – Attribute key.

• value (Mapping[str, JSONSerializable] | Sequence[JSONSerializable] |
str | int | float | bool | None) – Attribute value. It should be JSON serializ-
able.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

set_trial_user_attr(trial_id, key, value)
Set a user-defined attribute to a trial.

This method overwrites any existing attribute.

Parameters
• trial_id (int) – ID of the trial.

• key (str) – Attribute key.

• value (Any) – Attribute value. It should be JSON serializable.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

upgrade()

Upgrade the storage schema.

Return type
None

7.3. API Reference 137

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 4.0.0.dev

optuna.storages.RetryFailedTrialCallback

class optuna.storages.RetryFailedTrialCallback(max_retry=None, inherit_intermediate_values=False)
Retry a failed trial up to a maximum number of times.

When a trial fails, this callback can be used with a class in optuna.storages to recreate the trial in
TrialState.WAITING to queue up the trial to be run again.

The failed trial can be identified by the retried_trial_number() function. Even if repetitive failure occurs
(a retried trial fails again), this method returns the number of the original trial. To get a full list including the
numbers of the retried trials as well as their original trial, call the retry_history() function.

This callback is helpful in environments where trials may fail due to external conditions, such as being preempted
by other processes.

Usage:

import optuna
from optuna.storages import RetryFailedTrialCallback

storage = optuna.storages.RDBStorage(
url="sqlite:///:memory:",
heartbeat_interval=60,
grace_period=120,
failed_trial_callback=RetryFailedTrialCallback(max_retry=3),

)

study = optuna.create_study(
storage=storage,

)

See also:
See RDBStorage.

Parameters
• max_retry (int | None) – The max number of times a trial can be retried. Must be set

to None or an integer. If set to the default value of None will retry indefinitely. If set to an
integer, will only retry that many times.

• inherit_intermediate_values (bool) – Option to inherit trial.intermediate_values re-
ported by optuna.trial.Trial.report() from the failed trial. Default is False.

Note: Added in v2.8.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.

138 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://github.com/optuna/optuna/releases/tag/v2.8.0

Optuna Documentation, Release 4.0.0.dev

Methods

retried_trial_number(trial) Return the number of the original trial being retried.
retry_history(trial) Return the list of retried trial numbers with respect to

the specified trial.

static retried_trial_number(trial)
Return the number of the original trial being retried.

Parameters
trial (FrozenTrial) – The trial object.

Returns
The number of the first failed trial. If not retry of a previous trial, returns None.

Return type
int | None

Note: Added in v2.8.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.

static retry_history(trial)
Return the list of retried trial numbers with respect to the specified trial.

Parameters
trial (FrozenTrial) – The trial object.

Returns
A list of trial numbers in ascending order of the series of retried trials. The first item of the
list indicates the original trial which is identical to the retried_trial_number(), and the
last item is the one right before the specified trial in the retry series. If the specified trial is
not a retry of any trial, returns an empty list.

Return type
List[int]

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

optuna.storages.fail_stale_trials

optuna.storages.fail_stale_trials(study)
Fail stale trials and run their failure callbacks.

The running trials whose heartbeat has not been updated for a long time will be failed, that is, those states will
be changed to FAIL.

See also:
See RDBStorage.

Parameters
study (Study) – Study holding the trials to check.

7.3. API Reference 139

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://github.com/optuna/optuna/releases/tag/v2.8.0
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

Return type
None

Note: Added in v2.9.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.9.0.

optuna.storages.JournalStorage

class optuna.storages.JournalStorage(log_storage)
Storage class for Journal storage backend.

Note that library users can instantiate this class, but the attributes provided by this class are not supposed to be
directly accessed by them.

Journal storage writes a record of every operation to the database as it is executed and at the same time, keeps
a latest snapshot of the database in-memory. If the database crashes for any reason, the storage can re-establish
the contents in memory by replaying the operations stored from the beginning.

Journal storage has several benefits over the conventional value logging storages.

1. The number of IOs can be reduced because of larger granularity of logs.

2. Journal storage has simpler backend API than value logging storage.

3. Journal storage keeps a snapshot in-memory so no need to add more cache.

Example

import optuna

def objective(trial): ...

storage = optuna.storages.JournalStorage(
optuna.storages.JournalFileStorage("./journal.log"),

)

study = optuna.create_study(storage=storage)
study.optimize(objective)

In a Windows environment, an error message “A required privilege is not held by the client” may appear. In this
case, you can solve the problem with creating storage by specifying JournalFileOpenLock as follows.

file_path = "./journal.log"
lock_obj = optuna.storages.JournalFileOpenLock(file_path)

storage = optuna.storages.JournalStorage(
optuna.storages.JournalFileStorage(file_path, lock_obj=lock_obj),

)

140 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v2.9.0

Optuna Documentation, Release 4.0.0.dev

Note: Added in v3.1.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.

Methods

check_trial_is_updatable(trial_id, trial_state) Check whether a trial state is updatable.
create_new_study(directions[, study_name]) Create a new study from a name.
create_new_trial(study_id[, template_trial]) Create and add a new trial to a study.
delete_study(study_id) Delete a study.
get_all_studies() Read a list of FrozenStudy objects.
get_all_trials(study_id[, deepcopy, states]) Read all trials in a study.
get_best_trial(study_id) Return the trial with the best value in a study.
get_n_trials(study_id[, state]) Count the number of trials in a study.
get_study_directions(study_id) Read whether a study maximizes or minimizes an ob-

jective.
get_study_id_from_name(study_name) Read the ID of a study.
get_study_name_from_id(study_id) Read the study name of a study.
get_study_system_attrs(study_id) Read the optuna-internal attributes of a study.
get_study_user_attrs(study_id) Read the user-defined attributes of a study.
get_trial(trial_id) Read a trial.
get_trial_id_from_study_id_trial_number(...) Read the trial ID of a trial.
get_trial_number_from_id(trial_id) Read the trial number of a trial.
get_trial_param(trial_id, param_name) Read the parameter of a trial.
get_trial_params(trial_id) Read the parameter dictionary of a trial.
get_trial_system_attrs(trial_id) Read the optuna-internal attributes of a trial.
get_trial_user_attrs(trial_id) Read the user-defined attributes of a trial.
remove_session() Clean up all connections to a database.
restore_replay_result(snapshot)

set_study_system_attr(study_id, key, value) Register an optuna-internal attribute to a study.
set_study_user_attr(study_id, key, value) Register a user-defined attribute to a study.
set_trial_intermediate_value(trial_id, step,
...)

Report an intermediate value of an objective function.

set_trial_param(trial_id, param_name, ...) Set a parameter to a trial.
set_trial_state_values(trial_id, state[, values]) Update the state and values of a trial.
set_trial_system_attr(trial_id, key, value) Set an optuna-internal attribute to a trial.
set_trial_user_attr(trial_id, key, value) Set a user-defined attribute to a trial.

Parameters
log_storage (BaseJournalLogStorage)

check_trial_is_updatable(trial_id, trial_state)
Check whether a trial state is updatable.

Parameters
• trial_id (int) – ID of the trial. Only used for an error message.

• trial_state (TrialState) – Trial state to check.

Raises
RuntimeError – If the trial is already finished.

7.3. API Reference 141

https://github.com/optuna/optuna/releases/tag/v3.1.0
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 4.0.0.dev

Return type
None

create_new_study(directions, study_name=None)
Create a new study from a name.

If no name is specified, the storage class generates a name. The returned study ID is unique among all
current and deleted studies.

Parameters
• directions (Sequence[StudyDirection]) – A sequence of direction whose element

is either MAXIMIZE or MINIMIZE.

• study_name (str | None) – Name of the new study to create.

Returns
ID of the created study.

Raises
optuna.exceptions.DuplicatedStudyError – If a study with the same study_name
already exists.

Return type
int

create_new_trial(study_id, template_trial=None)
Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.

Parameters
• study_id (int) – ID of the study.

• template_trial (FrozenTrial | None) – Template FrozenTrial with default user-
attributes, system-attributes, intermediate-values, and a state.

Returns
ID of the created trial.

Raises
KeyError – If no study with the matching study_id exists.

Return type
int

delete_study(study_id)
Delete a study.

Parameters
study_id (int) – ID of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
None

get_all_studies()

Read a list of FrozenStudy objects.

Returns
A list of FrozenStudy objects, sorted by study_id.

142 Chapter 7. Reference

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError

Optuna Documentation, Release 4.0.0.dev

Return type
List[FrozenStudy]

get_all_trials(study_id, deepcopy=True, states=None)
Read all trials in a study.

Parameters
• study_id (int) – ID of the study.

• deepcopy (bool) – Whether to copy the list of trials before returning. Set to True if you
intend to update the list or elements of the list.

• states (Container[TrialState] | None) – Trial states to filter on. If None, include
all states.

Returns
List of trials in the study, sorted by trial_id.

Raises
KeyError – If no study with the matching study_id exists.

Return type
List[FrozenTrial]

get_best_trial(study_id)
Return the trial with the best value in a study.

This method is valid only during single-objective optimization.

Parameters
study_id (int) – ID of the study.

Returns
The trial with the best objective value among all finished trials in the study.

Raises
• KeyError – If no study with the matching study_id exists.

• RuntimeError – If the study has more than one direction.

• ValueError – If no trials have been completed.

Return type
FrozenTrial

get_n_trials(study_id, state=None)
Count the number of trials in a study.

Parameters
• study_id (int) – ID of the study.

• state (tuple[TrialState, ...] | TrialState | None) – Trial states to filter on.
If None, include all states.

Returns
Number of trials in the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
int

7.3. API Reference 143

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

get_study_directions(study_id)
Read whether a study maximizes or minimizes an objective.

Parameters
study_id (int) – ID of a study.

Returns
Optimization directions list of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
List[StudyDirection]

get_study_id_from_name(study_name)
Read the ID of a study.

Parameters
study_name (str) – Name of the study.

Returns
ID of the study.

Raises
KeyError – If no study with the matching study_name exists.

Return type
int

get_study_name_from_id(study_id)
Read the study name of a study.

Parameters
study_id (int) – ID of the study.

Returns
Name of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
str

get_study_system_attrs(study_id)
Read the optuna-internal attributes of a study.

Parameters
study_id (int) – ID of the study.

Returns
Dictionary with the optuna-internal attributes of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
Dict[str, Any]

get_study_user_attrs(study_id)
Read the user-defined attributes of a study.

144 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

Parameters
study_id (int) – ID of the study.

Returns
Dictionary with the user attributes of the study.

Raises
KeyError – If no study with the matching study_id exists.

Return type
Dict[str, Any]

get_trial(trial_id)
Read a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Trial with a matching trial ID.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
FrozenTrial

get_trial_id_from_study_id_trial_number(study_id, trial_number)
Read the trial ID of a trial.

Parameters
• study_id (int) – ID of the study.

• trial_number (int) – Number of the trial.

Returns
ID of the trial.

Raises
KeyError – If no trial with the matching study_id and trial_number exists.

Return type
int

get_trial_number_from_id(trial_id)
Read the trial number of a trial.

Note: The trial number is only unique within a study, and is sequential.

Parameters
trial_id (int) – ID of the trial.

Returns
Number of the trial.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
int

7.3. API Reference 145

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

get_trial_param(trial_id, param_name)
Read the parameter of a trial.

Parameters
• trial_id (int) – ID of the trial.

• param_name (str) – Name of the parameter.

Returns
Internal representation of the parameter.

Raises
KeyError – If no trial with the matching trial_id exists. If no such parameter exists.

Return type
float

get_trial_params(trial_id)
Read the parameter dictionary of a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Dictionary of a parameters. Keys are parameter names and values are internal representations
of the parameter values.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
dict[str, Any]

get_trial_system_attrs(trial_id)
Read the optuna-internal attributes of a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Dictionary with the optuna-internal attributes of the trial.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
dict[str, Any]

get_trial_user_attrs(trial_id)
Read the user-defined attributes of a trial.

Parameters
trial_id (int) – ID of the trial.

Returns
Dictionary with the user-defined attributes of the trial.

Raises
KeyError – If no trial with the matching trial_id exists.

Return type
dict[str, Any]

146 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

remove_session()

Clean up all connections to a database.

Return type
None

set_study_system_attr(study_id, key, value)
Register an optuna-internal attribute to a study.

This method overwrites any existing attribute.

Parameters
• study_id (int) – ID of the study.

• key (str) – Attribute key.

• value (Mapping[str, Mapping[str, JSONSerializable] |
Sequence[JSONSerializable] | str | int | float | bool
| None] | Sequence[Mapping[str, JSONSerializable] |
Sequence[JSONSerializable] | str | int | float | bool | None] | str
| int | float | bool | None) – Attribute value. It should be JSON serializable.

Raises
KeyError – If no study with the matching study_id exists.

Return type
None

set_study_user_attr(study_id, key, value)
Register a user-defined attribute to a study.

This method overwrites any existing attribute.

Parameters
• study_id (int) – ID of the study.

• key (str) – Attribute key.

• value (Any) – Attribute value. It should be JSON serializable.

Raises
KeyError – If no study with the matching study_id exists.

Return type
None

set_trial_intermediate_value(trial_id, step, intermediate_value)
Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.

Parameters
• trial_id (int) – ID of the trial.

• step (int) – Step of the trial (e.g., the epoch when training a neural network).

• intermediate_value (float) – Intermediate value corresponding to the step.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

7.3. API Reference 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 4.0.0.dev

Return type
None

set_trial_param(trial_id, param_name, param_value_internal, distribution)
Set a parameter to a trial.

Parameters
• trial_id (int) – ID of the trial.

• param_name (str) – Name of the parameter.

• param_value_internal (float) – Internal representation of the parameter value.

• distribution (BaseDistribution) – Sampled distribution of the parameter.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

set_trial_state_values(trial_id, state, values=None)
Update the state and values of a trial.

Set return values of an objective function to values argument. If values argument is not None, this method
overwrites any existing trial values.

Parameters
• trial_id (int) – ID of the trial.

• state (TrialState) – New state of the trial.

• values (Sequence[float] | None) – Values of the objective function.

Returns
True if the state is successfully updated. False if the state is kept the same. The latter
happens when this method tries to update the state of RUNNING trial to RUNNING .

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
bool

set_trial_system_attr(trial_id, key, value)
Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.

Parameters
• trial_id (int) – ID of the trial.

• key (str) – Attribute key.

• value (Mapping[str, Mapping[str, JSONSerializable] |
Sequence[JSONSerializable] | str | int | float | bool
| None] | Sequence[Mapping[str, JSONSerializable] |

148 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Sequence[JSONSerializable] | str | int | float | bool | None] | str
| int | float | bool | None) – Attribute value. It should be JSON serializable.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

set_trial_user_attr(trial_id, key, value)
Set a user-defined attribute to a trial.

This method overwrites any existing attribute.

Parameters
• trial_id (int) – ID of the trial.

• key (str) – Attribute key.

• value (Any) – Attribute value. It should be JSON serializable.

Raises
• KeyError – If no trial with the matching trial_id exists.

• RuntimeError – If the trial is already finished.

Return type
None

optuna.storages.JournalFileStorage

class optuna.storages.JournalFileStorage(file_path, lock_obj=None)
File storage class for Journal log backend.

Parameters
• file_path (str) – Path of file to persist the log to.

• lock_obj (JournalFileBaseLock | None) – Lock object for process exclusivity.

Methods

append_logs(logs) Append logs to the backend.
read_logs(log_number_from) Read logs with a log number greater than or equal to

log_number_from.

append_logs(logs)
Append logs to the backend.

Parameters
logs (List[Dict[str, Any]]) – A list that contains json-serializable logs.

Return type
None

7.3. API Reference 149

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

read_logs(log_number_from)

Read logs with a log number greater than or equal to log_number_from.

If log_number_from is 0, read all the logs.

Parameters
log_number_from (int) – A non-negative integer value indicating which logs to read.

Returns
Logs with log number greater than or equal to log_number_from.

Return type
List[Dict[str, Any]]

optuna.storages.JournalFileSymlinkLock

class optuna.storages.JournalFileSymlinkLock(filepath)
Lock class for synchronizing processes for NFSv2 or later.

On acquiring the lock, link system call is called to create an exclusive file. The file is deleted when the lock is
released. In NFS environments prior to NFSv3, use this instead of JournalFileOpenLock

Parameters
filepath (str) – The path of the file whose race condition must be protected.

Methods

acquire() Acquire a lock in a blocking way by creating a sym-
bolic link of a file.

release() Release a lock by removing the symbolic link.

acquire()

Acquire a lock in a blocking way by creating a symbolic link of a file.

Returns
True if it succeeded in creating a symbolic link of self._lock_target_file.

Return type
bool

release()

Release a lock by removing the symbolic link.

Return type
None

150 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

optuna.storages.JournalFileOpenLock

class optuna.storages.JournalFileOpenLock(filepath)
Lock class for synchronizing processes for NFSv3 or later.

On acquiring the lock, open system call is called with the O_EXCL option to create an exclusive file. The file is
deleted when the lock is released. This class is only supported when using NFSv3 or later on kernel 2.6 or later.
In prior NFS environments, use JournalFileSymlinkLock .

Parameters
filepath (str) – The path of the file whose race condition must be protected.

Methods

acquire() Acquire a lock in a blocking way by creating a lock
file.

release() Release a lock by removing the created file.

acquire()

Acquire a lock in a blocking way by creating a lock file.

Returns
True if it succeeded in creating a self._lock_file.

Return type
bool

release()

Release a lock by removing the created file.

Return type
None

optuna.storages.JournalRedisStorage

class optuna.storages.JournalRedisStorage(url, use_cluster=False, prefix='')
Redis storage class for Journal log backend.

Parameters
• url (str) – URL of the redis storage, password and db are optional. (ie: redis://
localhost:6379)

• use_cluster (bool) – Flag whether you use the Redis cluster. If this is False, it is assumed
that you use the standalone Redis server and ensured that a write operation is atomic. This
provides the consistency of the preserved logs. If this is True, it is assumed that you use the
Redis cluster and not ensured that a write operation is atomic. This means the preserved logs
can be inconsistent due to network errors, and may cause errors.

• prefix (str) – Prefix of the preserved key of logs. This is useful when multiple users work
on one Redis server.

Note: Added in v3.1.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.1.0.

7.3. API Reference 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v3.1.0

Optuna Documentation, Release 4.0.0.dev

Methods

append_logs(logs) Append logs to the backend.
load_snapshot() Load snapshot from the backend.
read_logs(log_number_from) Read logs with a log number greater than or equal to

log_number_from.
save_snapshot(snapshot) Save snapshot to the backend.

append_logs(logs)
Append logs to the backend.

Parameters
logs (List[Dict[str, Any]]) – A list that contains json-serializable logs.

Return type
None

load_snapshot()

Load snapshot from the backend.

Returns
A serialized snapshot (bytes) if found, otherwise None.

Return type
bytes | None

read_logs(log_number_from)

Read logs with a log number greater than or equal to log_number_from.

If log_number_from is 0, read all the logs.

Parameters
log_number_from (int) – A non-negative integer value indicating which logs to read.

Returns
Logs with log number greater than or equal to log_number_from.

Return type
List[Dict[str, Any]]

save_snapshot(snapshot)
Save snapshot to the backend.

Parameters
snapshot (bytes) – A serialized snapshot (bytes)

Return type
None

152 Chapter 7. Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#bytes

Optuna Documentation, Release 4.0.0.dev

7.3.13 optuna.study

The study module implements the Study object and related functions. A public constructor is available for the Study
class, but direct use of this constructor is not recommended. Instead, library users should create and load a Study using
create_study() and load_study() respectively.

optuna.study.Study A study corresponds to an optimization task, i.e., a set
of trials.

optuna.study.create_study Create a new Study.
optuna.study.load_study Load the existing Study that has the specified name.
optuna.study.delete_study Delete a Study object.
optuna.study.copy_study Copy study from one storage to another.
optuna.study.get_all_study_names Get all study names stored in a specified storage.
optuna.study.get_all_study_summaries Get all history of studies stored in a specified storage.
optuna.study.MaxTrialsCallback Set a maximum number of trials before ending the study.
optuna.study.StudyDirection Direction of a Study.
optuna.study.StudySummary Basic attributes and aggregated results of a Study.

optuna.study.Study

class optuna.study.Study(study_name, storage, sampler=None, pruner=None)
A study corresponds to an optimization task, i.e., a set of trials.

This object provides interfaces to run a new Trial, access trials’ history, set/get user-defined attributes of the
study itself.

Note that the direct use of this constructor is not recommended. To create and load a study, please refer to the
documentation of create_study() and load_study() respectively.

Methods

add_trial(trial) Add trial to study.
add_trials(trials) Add trials to study.
ask([fixed_distributions]) Create a new trial from which hyperparameters can

be suggested.
enqueue_trial(params[, user_attrs, ...]) Enqueue a trial with given parameter values.
get_trials([deepcopy, states]) Return all trials in the study.
optimize(func[, n_trials, timeout, n_jobs, ...]) Optimize an objective function.
set_metric_names(metric_names) Set metric names.
set_system_attr(key, value) Set a system attribute to the study.
set_user_attr(key, value) Set a user attribute to the study.
stop() Exit from the current optimization loop after the run-

ning trials finish.
tell(trial[, values, state, skip_if_finished]) Finish a trial created with ask().
trials_dataframe([attrs, multi_index]) Export trials as a pandas DataFrame.

7.3. API Reference 153

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Optuna Documentation, Release 4.0.0.dev

Attributes

best_params Return parameters of the best trial in the study.
best_trial Return the best trial in the study.
best_trials Return trials located at the Pareto front in the study.
best_value Return the best objective value in the study.
direction Return the direction of the study.
directions Return the directions of the study.
metric_names Return metric names.
system_attrs Return system attributes.
trials Return all trials in the study.
user_attrs Return user attributes.

Parameters
• study_name (str)

• storage (str | storages.BaseStorage)

• sampler ('samplers.BaseSampler' | None)

• pruner (pruners.BasePruner | None)

add_trial(trial)
Add trial to study.

The trial is validated before being added.

Example

import optuna
from optuna.distributions import FloatDistribution

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study()
assert len(study.trials) == 0

trial = optuna.trial.create_trial(
params={"x": 2.0},
distributions={"x": FloatDistribution(0, 10)},
value=4.0,

)

study.add_trial(trial)
assert len(study.trials) == 1

study.optimize(objective, n_trials=3)
assert len(study.trials) == 4

(continues on next page)

154 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

other_study = optuna.create_study()

for trial in study.trials:
other_study.add_trial(trial)

assert len(other_study.trials) == len(study.trials)

other_study.optimize(objective, n_trials=2)
assert len(other_study.trials) == len(study.trials) + 2

See also:
This method should in general be used to add already evaluated trials (trial.state.is_finished()
== True). To queue trials for evaluation, please refer to enqueue_trial().

See also:
See create_trial() for how to create trials.

See also:
Please refer to add_trial_tutorial for the tutorial of specifying hyperparameters with the evaluated value
manually.

Parameters
trial (FrozenTrial) – Trial to add.

Return type
None

add_trials(trials)
Add trials to study.

The trials are validated before being added.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)
assert len(study.trials) == 3

other_study = optuna.create_study()
other_study.add_trials(study.trials)
assert len(other_study.trials) == len(study.trials)

other_study.optimize(objective, n_trials=2)
assert len(other_study.trials) == len(study.trials) + 2

7.3. API Reference 155

Optuna Documentation, Release 4.0.0.dev

See also:
See add_trial() for addition of each trial.

Parameters
trials (Iterable[FrozenTrial]) – Trials to add.

Return type
None

ask(fixed_distributions=None)
Create a new trial from which hyperparameters can be suggested.

This method is part of an alternative to optimize() that allows controlling the lifetime of a trial outside
the scope of func. Each call to this method should be followed by a call to tell() to finish the created
trial.

See also:
The ask_and_tell tutorial provides use-cases with examples.

Example

Getting the trial object with the ask() method.

import optuna

study = optuna.create_study()

trial = study.ask()

x = trial.suggest_float("x", -1, 1)

study.tell(trial, x**2)

Example

Passing previously defined distributions to the ask() method.

import optuna

study = optuna.create_study()

distributions = {
"optimizer": optuna.distributions.CategoricalDistribution(["adam", "sgd"]),
"lr": optuna.distributions.FloatDistribution(0.0001, 0.1, log=True),

}

You can pass the distributions previously defined.
trial = study.ask(fixed_distributions=distributions)

`optimizer` and `lr` are already suggested and accessible with `trial.params`.
(continues on next page)

156 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

assert "optimizer" in trial.params
assert "lr" in trial.params

Parameters
fixed_distributions (dict[str, BaseDistribution] | None) – A dictionary con-
taining the parameter names and parameter’s distributions. Each parameter in this dictionary
is automatically suggested for the returned trial, even when the suggest method is not ex-
plicitly invoked by the user. If this argument is set to None, no parameter is automatically
suggested.

Returns
A Trial.

Return type
Trial

property best_params: dict[str, Any]

Return parameters of the best trial in the study.

Note: This feature can only be used for single-objective optimization.

Returns
A dictionary containing parameters of the best trial.

property best_trial: FrozenTrial

Return the best trial in the study.

Note: This feature can only be used for single-objective optimization. If your study is multi-objective, use
best_trials instead.

Returns
A FrozenTrial object of the best trial.

See also:
The reuse_best_trial tutorial provides a detailed example of how to use this method.

property best_trials: list[FrozenTrial]

Return trials located at the Pareto front in the study.

A trial is located at the Pareto front if there are no trials that dominate the trial. It’s called that a trial
t0 dominates another trial t1 if all(v0 <= v1) for v0, v1 in zip(t0.values, t1.values) and
any(v0 < v1) for v0, v1 in zip(t0.values, t1.values) are held.

Returns
A list of FrozenTrial objects.

property best_value: float

Return the best objective value in the study.

7.3. API Reference 157

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

Note: This feature can only be used for single-objective optimization.

Returns
A float representing the best objective value.

property direction: StudyDirection

Return the direction of the study.

Note: This feature can only be used for single-objective optimization. If your study is multi-objective, use
directions instead.

Returns
A StudyDirection object.

property directions: list[StudyDirection]

Return the directions of the study.

Returns
A list of StudyDirection objects.

enqueue_trial(params, user_attrs=None, skip_if_exists=False)
Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your objective function.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study()
study.enqueue_trial({"x": 5})
study.enqueue_trial({"x": 0}, user_attrs={"memo": "optimal"})
study.optimize(objective, n_trials=2)

assert study.trials[0].params == {"x": 5}
assert study.trials[1].params == {"x": 0}
assert study.trials[1].user_attrs == {"memo": "optimal"}

Parameters
• params (dict[str, Any]) – Parameter values to pass your objective function.

• user_attrs (dict[str, Any] | None) – A dictionary of user-specific attributes other
than params.

158 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

• skip_if_exists (bool) – When True, prevents duplicate trials from being enqueued
again.

Note: This method might produce duplicated trials if called simultaneously by multiple
processes at the same time with same params dict.

Return type
None

See also:
Please refer to enqueue_trial_tutorial for the tutorial of specifying hyperparameters manually.

get_trials(deepcopy=True, states=None)
Return all trials in the study.

The returned trials are ordered by trial number.

See also:
See trials for related property.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

trials = study.get_trials()
assert len(trials) == 3

Parameters
• deepcopy (bool) – Flag to control whether to apply copy.deepcopy() to the trials. Note

that if you set the flag to False, you shouldn’t mutate any fields of the returned trial.
Otherwise the internal state of the study may corrupt and unexpected behavior may happen.

• states (Container[TrialState] | None) – Trial states to filter on. If None, include
all states.

Returns
A list of FrozenTrial objects.

Return type
list[FrozenTrial]

7.3. API Reference 159

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

Optuna Documentation, Release 4.0.0.dev

property metric_names: list[str] | None

Return metric names.

Note: Use set_metric_names() to set the metric names first.

Returns
A list with names for each dimension of the returned values of the objective function.

optimize(func, n_trials=None, timeout=None, n_jobs=1, catch=(), callbacks=None, gc_after_trial=False,
show_progress_bar=False)

Optimize an objective function.

Optimization is done by choosing a suitable set of hyperparameter values from a given range. Uses a
sampler which implements the task of value suggestion based on a specified distribution. The sampler is
specified in create_study() and the default choice for the sampler is TPE. See also TPESampler for
more details on ‘TPE’.

Optimization will be stopped when receiving a termination signal such as SIGINT and SIGTERM. Unlike
other signals, a trial is automatically and cleanly failed when receiving SIGINT (Ctrl+C). If n_jobs is
greater than one or if another signal than SIGINT is used, the interrupted trial state won’t be properly
updated.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

Parameters
• func (ObjectiveFuncType) – A callable that implements objective function.

• n_trials (int | None) – The number of trials for each process. None represents no
limit in terms of the number of trials. The study continues to create trials until the number
of trials reaches n_trials, timeout period elapses, stop() is called, or a termination
signal such as SIGTERM or Ctrl+C is received.

See also:
optuna.study.MaxTrialsCallback can ensure how many times trials will be per-
formed across all processes.

• timeout (float | None) – Stop study after the given number of second(s). None rep-
resents no limit in terms of elapsed time. The study continues to create trials until the
number of trials reaches n_trials, timeout period elapses, stop() is called or, a termi-
nation signal such as SIGTERM or Ctrl+C is received.

160 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

• n_jobs (int) – The number of parallel jobs. If this argument is set to -1, the number is
set to CPU count.

Note: n_jobs allows parallelization using threading and may suffer from Python’s GIL.
It is recommended to use process-based parallelization if func is CPU bound.

• catch (Iterable[type[Exception]] | type[Exception]) – A study continues to
run even when a trial raises one of the exceptions specified in this argument. Default is an
empty tuple, i.e. the study will stop for any exception except for TrialPruned .

• callbacks (list[Callable[[Study, FrozenTrial], None]] | None) – List of
callback functions that are invoked at the end of each trial. Each function must accept
two parameters with the following types in this order: Study and FrozenTrial.

See also:
See the tutorial of optuna_callback for how to use and implement callback functions.

• gc_after_trial (bool) – Flag to determine whether to automatically run garbage col-
lection after each trial. Set to True to run the garbage collection, False otherwise. When
it runs, it runs a full collection by internally calling gc.collect(). If you see an increase
in memory consumption over several trials, try setting this flag to True.

See also:
How do I avoid running out of memory (OOM) when optimizing studies?

• show_progress_bar (bool) – Flag to show progress bars or not. To show progress bar,
set this True. Note that it is disabled when n_trials is None, timeout is not None, and
n_jobs ̸= 1.

Raises
RuntimeError – If nested invocation of this method occurs.

Return type
None

set_metric_names(metric_names)
Set metric names.

This method names each dimension of the returned values of the objective function. It is particularly useful
in multi-objective optimization. The metric names are mainly referenced by the visualization functions.

Example

import optuna
import pandas

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2, x + 1

study = optuna.create_study(directions=["minimize", "minimize"])
study.set_metric_names(["x**2", "x+1"])

(continues on next page)

7.3. API Reference 161

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#module-threading
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/gc.html#gc.collect
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study.optimize(objective, n_trials=3)

df = study.trials_dataframe(multi_index=True)
assert isinstance(df, pandas.DataFrame)
assert list(df.get("values").keys()) == ["x**2", "x+1"]

See also:
The names set by this method are used in trials_dataframe() and plot_pareto_front().

Parameters
metric_names (list[str]) – A list of metric names for the objective function.

Return type
None

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

set_system_attr(key, value)
Set a system attribute to the study.

Note that Optuna internally uses this method to save system messages. Please use set_user_attr() to
set users’ attributes.

Parameters
• key (str) – A key string of the attribute.

• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type
None

Warning: Deprecated in v3.1.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.1.0.

set_user_attr(key, value)
Set a user attribute to the study.

See also:
See user_attrs for related attribute.

See also:
See the recipe on attributes.

162 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v3.2.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0

Optuna Documentation, Release 4.0.0.dev

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 1)
y = trial.suggest_float("y", 0, 1)
return x**2 + y**2

study = optuna.create_study()

study.set_user_attr("objective function", "quadratic function")
study.set_user_attr("dimensions", 2)
study.set_user_attr("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
"objective function": "quadratic function",
"dimensions": 2,
"contributors": ["Akiba", "Sano"],

}

Parameters
• key (str) – A key string of the attribute.

• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type
None

stop()

Exit from the current optimization loop after the running trials finish.

This method lets the running optimize()method return immediately after all trials which the optimize()
method spawned finishes. This method does not affect any behaviors of parallel or successive study pro-
cesses. This method only works when it is called inside an objective function or callback.

Example

import optuna

def objective(trial):
if trial.number == 4:

trial.study.stop()
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=10)
assert len(study.trials) == 5

7.3. API Reference 163

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

Return type
None

property system_attrs: dict[str, Any]

Return system attributes.

Returns
A dictionary containing all system attributes.

Warning: Deprecated in v3.1.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.1.0.

tell(trial, values=None, state=None, skip_if_finished=False)
Finish a trial created with ask().

See also:
The ask_and_tell tutorial provides use-cases with examples.

Example

import optuna
from optuna.trial import TrialState

def f(x):
return (x - 2) ** 2

def df(x):
return 2 * x - 4

study = optuna.create_study()

n_trials = 30

for _ in range(n_trials):
trial = study.ask()

lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)

Iterative gradient descent objective function.
x = 3 # Initial value.
for step in range(128):

y = f(x)

trial.report(y, step=step)

if trial.should_prune():
Finish the trial with the pruned state.

(continues on next page)

164 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study.tell(trial, state=TrialState.PRUNED)
break

gy = df(x)
x -= gy * lr

else:
Finish the trial with the final value after all iterations.
study.tell(trial, y)

Parameters
• trial (Trial | int) – A Trial object or a trial number.

• values (float | Sequence[float] | None) – Optional objective value or a sequence
of such values in case the study is used for multi-objective optimization. Argument must
be provided if state is COMPLETE and should be None if state is FAIL or PRUNED.

• state (TrialState | None) – State to be reported. Must be None, COMPLETE, FAIL or
PRUNED. If state is None, it will be updated to COMPLETE or FAIL depending on whether
validation for values reported succeed or not.

• skip_if_finished (bool) – Flag to control whether exception should be raised when
values for already finished trial are told. If True, tell is skipped without any error when
the trial is already finished.

Returns
A FrozenTrial representing the resulting trial. A returned trial is deep copied thus user can
modify it as needed.

Return type
FrozenTrial

property trials: list[FrozenTrial]

Return all trials in the study.

The returned trials are ordered by trial number.

This is a short form of self.get_trials(deepcopy=True, states=None).

Returns
A list of FrozenTrial objects.

See also:
See get_trials() for related method.

trials_dataframe(attrs=('number', 'value', 'datetime_start', 'datetime_complete', 'duration', 'params',
'user_attrs', 'system_attrs', 'state'), multi_index=False)

Export trials as a pandas DataFrame.

The DataFrame provides various features to analyze studies. It is also useful to draw a histogram of objective
values and to export trials as a CSV file. If there are no trials, an empty DataFrame is returned.

7.3. API Reference 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Optuna Documentation, Release 4.0.0.dev

Example

import optuna
import pandas

def objective(trial):
x = trial.suggest_float("x", -1, 1)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

Create a dataframe from the study.
df = study.trials_dataframe()
assert isinstance(df, pandas.DataFrame)
assert df.shape[0] == 3 # n_trials.

Parameters
• attrs (tuple[str, ...]) – Specifies field names of FrozenTrial to include them to

a DataFrame of trials.

• multi_index (bool) – Specifies whether the returned DataFrame employs MultiIndex or
not. Columns that are hierarchical by nature such as (params, x) will be flattened to
params_x when set to False.

Returns
A pandas DataFrame of trials in the Study.

Return type
pd.DataFrame

Note: If value is in attrs during multi-objective optimization, it is implicitly replaced with values.

Note: If set_metric_names() is called, the value or values is implicitly replaced with the dictionary
with the objective name as key and the objective value as value.

property user_attrs: dict[str, Any]

Return user attributes.

See also:
See set_user_attr() for related method.

166 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/advanced.html
https://docs.python.org/3/library/constants.html#False
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 1)
y = trial.suggest_float("y", 0, 1)
return x**2 + y**2

study = optuna.create_study()

study.set_user_attr("objective function", "quadratic function")
study.set_user_attr("dimensions", 2)
study.set_user_attr("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
"objective function": "quadratic function",
"dimensions": 2,
"contributors": ["Akiba", "Sano"],

}

Returns
A dictionary containing all user attributes.

optuna.study.create_study

optuna.study.create_study(*, storage=None, sampler=None, pruner=None, study_name=None,
direction=None, load_if_exists=False, directions=None)

Create a new Study.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

Parameters
• storage (str | storages.BaseStorage | None) – Database URL. If this argument is

set to None, in-memory storage is used, and the Study will not be persistent.

Note:

7.3. API Reference 167

https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

When a database URL is passed, Optuna internally uses SQLAlchemy to handle the
database. Please refer to SQLAlchemy’s document for further details. If you want to
specify non-default options to SQLAlchemy Engine, you can instantiate RDBStorage
with your desired options and pass it to the storage argument instead of a URL.

• sampler ('samplers.BaseSampler' | None) – A sampler object that implements back-
ground algorithm for value suggestion. If None is specified, TPESampler is used during
single-objective optimization and NSGAIISampler during multi-objective optimization. See
also samplers.

• pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of
unpromising trials. If None is specified, MedianPruner is used as the default. See also
pruners.

• study_name (str | None) – Study’s name. If this argument is set to None, a unique name
is generated automatically.

• direction (str | StudyDirection | None) – Direction of optimization. Set
minimize for minimization and maximize for maximization. You can also pass the cor-
responding StudyDirection object. direction and directions must not be specified
at the same time.

Note: If none of direction and directions are specified, the direction of the study is set to
“minimize”.

• load_if_exists (bool) – Flag to control the behavior to handle a conflict of study
names. In the case where a study named study_name already exists in the storage, a
DuplicatedStudyError is raised if load_if_exists is set to False. Otherwise, the
creation of the study is skipped, and the existing one is returned.

• directions (Sequence[str | StudyDirection] | None) – A sequence of directions
during multi-objective optimization. direction and directions must not be specified at
the same time.

Returns
A Study object.

Return type
Study

See also:
optuna.create_study() is an alias of optuna.study.create_study().

See also:
The rdb tutorial provides concrete examples to save and resume optimization using RDB.

168 Chapter 7. Reference

https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.study.load_study

optuna.study.load_study(*, study_name, storage, sampler=None, pruner=None)
Load the existing Study that has the specified name.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 10)
return x**2

study = optuna.create_study(storage="sqlite:///example.db", study_name="my_study")
study.optimize(objective, n_trials=3)

loaded_study = optuna.load_study(study_name="my_study", storage="sqlite:///example.
→˓db")
assert len(loaded_study.trials) == len(study.trials)

Parameters
• study_name (str | None) – Study’s name. Each study has a unique name as an identi-

fier. If None, checks whether the storage contains a single study, and if so loads that study.
study_name is required if there are multiple studies in the storage.

• storage (str | storages.BaseStorage) – Database URL such as sqlite:///
example.db. Please see also the documentation of create_study() for further details.

• sampler ('samplers.BaseSampler' | None) – A sampler object that implements back-
ground algorithm for value suggestion. If None is specified, TPESampler is used as the
default. See also samplers.

• pruner (pruners.BasePruner | None) – A pruner object that decides early stopping of
unpromising trials. If None is specified, MedianPruner is used as the default. See also
pruners.

Return type
Study

See also:
optuna.load_study() is an alias of optuna.study.load_study().

7.3. API Reference 169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

optuna.study.delete_study

optuna.study.delete_study(*, study_name, storage)
Delete a Study object.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.
→˓db")
study.optimize(objective, n_trials=3)

optuna.delete_study(study_name="example-study", storage="sqlite:///example.db")

Parameters
• study_name (str) – Study’s name.

• storage (str | BaseStorage) – Database URL such as sqlite:///example.db.
Please see also the documentation of create_study() for further details.

Return type
None

See also:
optuna.delete_study() is an alias of optuna.study.delete_study().

optuna.study.copy_study

optuna.study.copy_study(*, from_study_name, from_storage, to_storage, to_study_name=None)
Copy study from one storage to another.

The direction(s) of the objective(s) in the study, trials, user attributes and system attributes are copied.

Note: copy_study() copies a study even if the optimization is working on. It means users will get a copied
study that contains a trial that is not finished.

170 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(
study_name="example-study",
storage="sqlite:///example.db",

)
study.optimize(objective, n_trials=3)

optuna.copy_study(
from_study_name="example-study",
from_storage="sqlite:///example.db",
to_storage="sqlite:///example_copy.db",

)

study = optuna.load_study(
study_name=None,
storage="sqlite:///example_copy.db",

)

Parameters
• from_study_name (str) – Name of study.

• from_storage (str | BaseStorage) – Source database URL such as sqlite:///
example.db. Please see also the documentation of create_study() for further details.

• to_storage (str | BaseStorage) – Destination database URL.

• to_study_name (str | None) – Name of the created study. If omitted,
from_study_name is used.

Raises
DuplicatedStudyError – If a study with a conflicting name already exists in the destination
storage.

Return type
None

7.3. API Reference 171

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

optuna.study.get_all_study_names

optuna.study.get_all_study_names(storage)
Get all study names stored in a specified storage.

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.
→˓db")
study.optimize(objective, n_trials=3)

study_names = optuna.study.get_all_study_names(storage="sqlite:///example.db")
assert len(study_names) == 1

assert study_names[0] == "example-study"

Parameters
storage (str | BaseStorage) – Database URL such as sqlite:///example.db. Please
see also the documentation of create_study() for further details.

Returns
List of all study names in the storage.

Return type
list[str]

See also:
optuna.get_all_study_names() is an alias of optuna.study.get_all_study_names().

optuna.study.get_all_study_summaries

optuna.study.get_all_study_summaries(storage, include_best_trial=True)
Get all history of studies stored in a specified storage.

172 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

Example

import optuna

def objective(trial):
x = trial.suggest_float("x", -10, 10)
return (x - 2) ** 2

study = optuna.create_study(study_name="example-study", storage="sqlite:///example.
→˓db")
study.optimize(objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries(storage="sqlite:///example.db
→˓")
assert len(study_summaries) == 1

study_summary = study_summaries[0]
assert study_summary.study_name == "example-study"

Parameters
• storage (str | BaseStorage) – Database URL such as sqlite:///example.db.

Please see also the documentation of create_study() for further details.

• include_best_trial (bool) – Include the best trials if exist. It potentially increases the
number of queries and may take longer to fetch summaries depending on the storage.

Returns
List of study history summarized as StudySummary objects.

Return type
list[StudySummary]

See also:
optuna.get_all_study_summaries() is an alias of optuna.study.get_all_study_summaries().

optuna.study.MaxTrialsCallback

class optuna.study.MaxTrialsCallback(n_trials, states=(1,))
Set a maximum number of trials before ending the study.

While the n_trials argument of optuna.study.Study.optimize() sets the number of trials that will be
run, you may want to continue running until you have a certain number of successfully completed trials or stop
the study when you have a certain number of trials that fail. This MaxTrialsCallback class allows you to set
a maximum number of trials for a particular TrialState before stopping the study.

7.3. API Reference 173

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Optuna Documentation, Release 4.0.0.dev

Example

import optuna
from optuna.study import MaxTrialsCallback
from optuna.trial import TrialState

def objective(trial):
x = trial.suggest_float("x", -1, 1)
return x**2

study = optuna.create_study()
study.optimize(

objective,
callbacks=[MaxTrialsCallback(10, states=(TrialState.COMPLETE,))],

)

Parameters
• n_trials (int) – The max number of trials. Must be set to an integer.

• states (Container[TrialState] | None) – Tuple of the TrialState to be counted
towards the max trials limit. Default value is (TrialState.COMPLETE,). If None, count
all states.

optuna.study.StudyDirection

class optuna.study.StudyDirection(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Direction of a Study.

NOT_SET

Direction has not been set.

MINIMIZE

Study minimizes the objective function.

MAXIMIZE

Study maximizes the objective function.

Methods

conjugate Returns self, the complex conjugate of any int.
bit_length () Number of bits necessary to represent self in binary.
bit_count() Number of ones in the binary representation of the

absolute value of self.
to_bytes([length, byteorder, signed]) Return an array of bytes representing an integer.
from_bytes([byteorder, signed]) Return the integer represented by the given array of

bytes.
as_integer_ratio() Return integer ratio.

174 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Container
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Attributes

real the real part of a complex number
imag the imaginary part of a complex number
numerator the numerator of a rational number in lowest terms
denominator the denominator of a rational number in lowest terms
NOT_SET

MINIMIZE

MAXIMIZE

as_integer_ratio()

Return integer ratio.

Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator.

>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)

bit_count()

Number of ones in the binary representation of the absolute value of self.

Also known as the population count.

>>> bin(13)
'0b1101'
>>> (13).bit_count()
3

bit_length()

Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6

conjugate()

Returns self, the complex conjugate of any int.

denominator

the denominator of a rational number in lowest terms

from_bytes(byteorder='big', *, signed=False)
Return the integer represented by the given array of bytes.

bytes
Holds the array of bytes to convert. The argument must either support the buffer protocol or be an

7.3. API Reference 175

Optuna Documentation, Release 4.0.0.dev

iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the
buffer protocol.

byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the
beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte
array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
Default is to use ‘big’.

signed
Indicates whether two’s complement is used to represent the integer.

imag

the imaginary part of a complex number

numerator

the numerator of a rational number in lowest terms

real

the real part of a complex number

to_bytes(length=1, byteorder='big', *, signed=False)
Return an array of bytes representing an integer.

length
Length of bytes object to use. An OverflowError is raised if the integer is not representable with the
given number of bytes. Default is length 1.

byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the
beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte
array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
Default is to use ‘big’.

signed
Determines whether two’s complement is used to represent the integer. If signed is False and a negative
integer is given, an OverflowError is raised.

optuna.study.StudySummary

class optuna.study.StudySummary(study_name, direction, best_trial, user_attrs, system_attrs, n_trials,
datetime_start, study_id, *, directions=None)

Basic attributes and aggregated results of a Study.

See also optuna.study.get_all_study_summaries().

Parameters
• study_name (str)

• direction (StudyDirection | None)

• best_trial (trial.FrozenTrial | None)

• user_attrs (dict[str, Any])

• system_attrs (dict[str, Any])

• n_trials (int)

• datetime_start (datetime.datetime | None)

176 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime

Optuna Documentation, Release 4.0.0.dev

• study_id (int)

• directions (Sequence[StudyDirection] | None)

study_name

Name of the Study.

direction

StudyDirection of the Study.

Note: This attribute is only available during single-objective optimization.

directions

A sequence of StudyDirection objects.

best_trial

optuna.trial.FrozenTrial with best objective value in the Study.

user_attrs

Dictionary that contains the attributes of the Study set with optuna.study.Study.set_user_attr().

system_attrs

Dictionary that contains the attributes of the Study internally set by Optuna.

Warning: Deprecated in v3.1.0. system_attrs argument will be removed in the future. The removal
of this feature is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.
com/optuna/optuna/releases/tag/v3.1.0.

n_trials

The number of trials ran in the Study.

datetime_start

Datetime where the Study started.

Attributes

direction

directions

system_attrs

7.3. API Reference 177

https://docs.python.org/3/library/functions.html#int
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0

Optuna Documentation, Release 4.0.0.dev

7.3.14 optuna.terminator

The terminator module implements a mechanism for automatically terminating the optimization process, accompa-
nied by a callback class for the termination and evaluators for the estimated room for improvement in the optimization
and statistical error of the objective function. The terminator stops the optimization process when the estimated poten-
tial improvement is smaller than the statistical error.

optuna.terminator.BaseTerminator Base class for terminators.
optuna.terminator.Terminator Automatic stopping mechanism for Optuna studies.
optuna.terminator.BaseImprovementEvaluator Base class for improvement evaluators.
optuna.terminator.RegretBoundEvaluator An error evaluator for upper bound on the regret with

high-probability confidence.
optuna.terminator.
BestValueStagnationEvaluator

Evaluates the stagnation period of the best value in an
optimization process.

optuna.terminator.BaseErrorEvaluator Base class for error evaluators.
optuna.terminator.
CrossValidationErrorEvaluator

An error evaluator for objective functions based on
cross-validation.

optuna.terminator.StaticErrorEvaluator An error evaluator that always returns a constant value.
optuna.terminator.TerminatorCallback A callback that terminates the optimization using Termi-

nator.
optuna.terminator.
report_cross_validation_scores

A function to report cross-validation scores of a trial.

optuna.terminator.BaseTerminator

class optuna.terminator.BaseTerminator

Base class for terminators.

Methods

should_terminate(study)

optuna.terminator.Terminator

class optuna.terminator.Terminator(improvement_evaluator=None, error_evaluator=None,
min_n_trials=20)

Automatic stopping mechanism for Optuna studies.

This class implements an automatic stopping mechanism for Optuna studies, aiming to prevent unnecessary
computation. The study is terminated when the statistical error, e.g. cross-validation error, exceeds the room left
for optimization.

For further information about the algorithm, please refer to the following paper:

• A. Makarova et al. Automatic termination for hyperparameter optimization.

Parameters

178 Chapter 7. Reference

https://proceedings.mlr.press/v188/makarova22a.html

Optuna Documentation, Release 4.0.0.dev

• improvement_evaluator (Optional[BaseImprovementEvaluator]) – An evaluator
object for assessing the room left for optimization. Defaults to a RegretBoundEvaluator
object.

• error_evaluator (Optional[BaseErrorEvaluator]) – An evaluator for
calculating the statistical error, e.g. cross-validation error. Defaults to a
CrossValidationErrorEvaluator object.

• min_n_trials (int) – The minimum number of trials before termination is considered.
Defaults to 20.

Raises
ValueError – If min_n_trials is not a positive integer.

Example

import logging
import sys

from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

import optuna
from optuna.terminator import Terminator
from optuna.terminator import report_cross_validation_scores

study = optuna.create_study(direction="maximize")
terminator = Terminator()
min_n_trials = 20

while True:
trial = study.ask()

X, y = load_wine(return_X_y=True)

clf = RandomForestClassifier(
max_depth=trial.suggest_int("max_depth", 2, 32),
min_samples_split=trial.suggest_float("min_samples_split", 0, 1),
criterion=trial.suggest_categorical("criterion", ("gini", "entropy")),

)

scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
report_cross_validation_scores(trial, scores)

value = scores.mean()
logging.info(f"Trial #{trial.number} finished with value {value}.")
study.tell(trial, value)

if trial.number > min_n_trials and terminator.should_terminate(study):
logging.info("Terminated by Optuna Terminator!")
break

7.3. API Reference 179

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 4.0.0.dev

See also:
Please refer to TerminatorCallback for how to use the terminator mechanism with the optimize() method.

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Methods

should_terminate(study) Judge whether the study should be terminated based
on the reported values.

should_terminate(study)
Judge whether the study should be terminated based on the reported values.

Parameters
study (Study)

Return type
bool

optuna.terminator.BaseImprovementEvaluator

class optuna.terminator.BaseImprovementEvaluator(*args, **kwargs)
Base class for improvement evaluators.

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Methods

evaluate(trials, study_direction)

optuna.terminator.RegretBoundEvaluator

class optuna.terminator.RegretBoundEvaluator(top_trials_ratio=0.5, min_n_trials=20, seed=None)
An error evaluator for upper bound on the regret with high-probability confidence.

This evaluator evaluates the regret of current best solution, which defined as the difference between the objective
value of the best solution and of the global optimum. To be specific, this evaluator calculates the upper bound
on the regret based on the fact that empirical estimator of the objective function is bounded by lower and upper
confidence bounds with high probability under the Gaussian process model assumption.

Parameters
• gp – A Gaussian process model on which evaluation base. If not specified, the default Gaus-

sian process model is used.

180 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.2.0
https://docs.python.org/3/library/functions.html#bool
https://github.com/optuna/optuna/releases/tag/v3.2.0

Optuna Documentation, Release 4.0.0.dev

• top_trials_ratio (float) – A ratio of top trials to be considered when estimating the
regret. Default to 0.5.

• min_n_trials (int) – A minimum number of complete trials to estimate the regret. Default
to 20.

• min_lcb_n_additional_samples – A minimum number of additional samples to esti-
mate the lower confidence bound. Default to 2000.

• seed (int | None)

For further information about this evaluator, please refer to the following paper:

• Automatic Termination for Hyperparameter Optimization

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Methods

evaluate(trials, study_direction)

optuna.terminator.BestValueStagnationEvaluator

class optuna.terminator.BestValueStagnationEvaluator(max_stagnation_trials=30)
Evaluates the stagnation period of the best value in an optimization process.

This class is initialized with a maximum stagnation period (max_stagnation_trials) and is designed to evaluate
the remaining trials before reaching this maximum period of allowed stagnation. If this remaining trials reach
zero, the trial terminates. Therefore, the default error evaluator is instantiated by StaticErrorEvaluator(const=0).

Parameters
max_stagnation_trials (int) – The maximum number of trials allowed for stagnation.

Note: Added in v3.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.4.0.

Methods

evaluate(trials, study_direction)

7.3. API Reference 181

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://proceedings.mlr.press/v188/makarova22a.html
https://github.com/optuna/optuna/releases/tag/v3.2.0
https://docs.python.org/3/library/functions.html#int
https://github.com/optuna/optuna/releases/tag/v3.4.0

Optuna Documentation, Release 4.0.0.dev

optuna.terminator.BaseErrorEvaluator

class optuna.terminator.BaseErrorEvaluator

Base class for error evaluators.

Methods

evaluate(trials, study_direction)

optuna.terminator.CrossValidationErrorEvaluator

class optuna.terminator.CrossValidationErrorEvaluator(*args, **kwargs)
An error evaluator for objective functions based on cross-validation.

This evaluator evaluates the objective function’s statistical error, which comes from the randomness of dataset.
This evaluator assumes that the objective function is the average of the cross-validation and uses the scaled
variance of the cross-validation scores in the best trial at the moment as the statistical error.

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Methods

evaluate(trials, study_direction) Evaluate the statistical error of the objective function
based on cross-validation.

evaluate(trials, study_direction)
Evaluate the statistical error of the objective function based on cross-validation.

Parameters
• trials (list[FrozenTrial]) – A list of trials to consider. The best trial in trials is

used to compute the statistical error.

• study_direction (StudyDirection) – The direction of the study.

Returns
A float representing the statistical error of the objective function.

Return type
float

182 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.2.0
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

optuna.terminator.StaticErrorEvaluator

class optuna.terminator.StaticErrorEvaluator(constant)
An error evaluator that always returns a constant value.

This evaluator can be used to terminate the optimization when the evaluated improvement potential is below the
fixed threshold.

Parameters
constant (float) – A user-specified constant value to always return as an error estimate.

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

Methods

evaluate(trials, study_direction)

optuna.terminator.TerminatorCallback

class optuna.terminator.TerminatorCallback(terminator=None)
A callback that terminates the optimization using Terminator.

This class implements a callback which wraps Terminator so that it can be used with the optimize()method.

Parameters
terminator (Optional[BaseTerminator]) – A terminator object which determines whether
to terminate the optimization by assessing the room for optimization and statistical error. Defaults
to a Terminator object with default improvement_evaluator and error_evaluator.

Example

from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

import optuna
from optuna.terminator import TerminatorCallback
from optuna.terminator import report_cross_validation_scores

def objective(trial):
X, y = load_wine(return_X_y=True)

clf = RandomForestClassifier(
max_depth=trial.suggest_int("max_depth", 2, 32),
min_samples_split=trial.suggest_float("min_samples_split", 0, 1),

(continues on next page)

7.3. API Reference 183

https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.2.0

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

criterion=trial.suggest_categorical("criterion", ("gini", "entropy")),
)

scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
report_cross_validation_scores(trial, scores)
return scores.mean()

study = optuna.create_study(direction="maximize")
terminator = TerminatorCallback()
study.optimize(objective, n_trials=50, callbacks=[terminator])

See also:
Please refer to Terminator for the details of the terminator mechanism.

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

optuna.terminator.report_cross_validation_scores

optuna.terminator.report_cross_validation_scores(trial, scores)
A function to report cross-validation scores of a trial.

This function should be called within the objective function to report the cross-validation scores. The reported
scores are used to evaluate the statistical error for termination judgement.

Parameters
• trial (Trial) – A Trial object to report the cross-validation scores.

• scores (list[float]) – The cross-validation scores of the trial.

Return type
None

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

For an example of using this module, please refer to this example.

7.3.15 optuna.trial

The trial module contains Trial related classes and functions.

A Trial instance represents a process of evaluating an objective function. This instance is passed to an objective
function and provides interfaces to get parameter suggestion, manage the trial’s state, and set/get user-defined attributes
of the trial, so that Optuna users can define a custom objective function through the interfaces. Basically, Optuna users
only use it in their custom objective functions.

184 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.2.0
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.2.0
https://github.com/optuna/optuna-examples/tree/main/terminator

Optuna Documentation, Release 4.0.0.dev

optuna.trial.Trial A trial is a process of evaluating an objective function.
optuna.trial.FixedTrial A trial class which suggests a fixed value for each param-

eter.
optuna.trial.FrozenTrial Status and results of a Trial.
optuna.trial.TrialState State of a Trial.
optuna.trial.create_trial Create a new FrozenTrial.

optuna.trial.Trial

class optuna.trial.Trial(study, trial_id)
A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter suggestion, manage the
trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended. This object is seamlessly instantiated and passed
to the objective function behind the optuna.study.Study.optimize() method; hence library users do not
care about instantiation of this object.

Parameters
• study (optuna.study.Study) – A Study object.

• trial_id (int) – A trial ID that is automatically generated.

Methods

report(value, step) Report an objective function value for a given step.
set_system_attr(key, value) Set system attributes to the trial.
set_user_attr(key, value) Set user attributes to the trial.
should_prune() Suggest whether the trial should be pruned or not.
suggest_categorical() Suggest a value for the categorical parameter.
suggest_discrete_uniform(name, low, high, q) Suggest a value for the discrete parameter.
suggest_float(name, low, high, *[, step, log]) Suggest a value for the floating point parameter.
suggest_int(name, low, high, *[, step, log]) Suggest a value for the integer parameter.
suggest_loguniform(name, low, high) Suggest a value for the continuous parameter.
suggest_uniform(name, low, high) Suggest a value for the continuous parameter.

Attributes

datetime_start Return start datetime.
distributions Return distributions of parameters to be optimized.
number Return trial's number which is consecutive and

unique in a study.
params Return parameters to be optimized.
relative_params

system_attrs Return system attributes.
user_attrs Return user attributes.

7.3. API Reference 185

https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

property datetime_start: datetime | None

Return start datetime.

Returns
Datetime where the Trial started.

property distributions: Dict[str, BaseDistribution]

Return distributions of parameters to be optimized.

Returns
A dictionary containing all distributions.

property number: int

Return trial’s number which is consecutive and unique in a study.

Returns
A trial number.

property params: Dict[str, Any]

Return parameters to be optimized.

Returns
A dictionary containing all parameters.

report(value, step)
Report an objective function value for a given step.

The reported values are used by the pruners to determine whether this trial should be pruned.

See also:
Please refer to BasePruner.

Note: The reported value is converted to float type by applying float() function internally. Thus, it
accepts all float-like types (e.g., numpy.float32). If the conversion fails, a TypeError is raised.

Note: If this method is called multiple times at the same step in a trial, the reported value only the first
time is stored and the reported values from the second time are ignored.

Note: report() does not support multi-objective optimization.

Example

Report intermediate scores of SGDClassifier training.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

import optuna

(continues on next page)

186 Chapter 7. Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
clf = SGDClassifier(random_state=0)
for step in range(100):

clf.partial_fit(X_train, y_train, np.unique(y))
intermediate_value = clf.score(X_valid, y_valid)
trial.report(intermediate_value, step=step)
if trial.should_prune():

raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters
• value (float) – A value returned from the objective function.

• step (int) – Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example, MedianPruner simply checks if step is
less than n_warmup_steps as the warmup mechanism. step must be a positive integer.

Return type
None

set_system_attr(key, value)
Set system attributes to the trial.

Note that Optuna internally uses this method to save system messages such as failure reason of trials. Please
use set_user_attr() to set users’ attributes.

Parameters
• key (str) – A key string of the attribute.

• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type
None

Warning: Deprecated in v3.1.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.1.0.

set_user_attr(key, value)
Set user attributes to the trial.

The user attributes in the trial can be access via optuna.trial.Trial.user_attrs().

7.3. API Reference 187

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0

Optuna Documentation, Release 4.0.0.dev

See also:
See the recipe on attributes.

Example

Save fixed hyperparameters of neural network training.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

def objective(trial):
trial.set_user_attr("BATCHSIZE", 128)
momentum = trial.suggest_float("momentum", 0, 1.0)
clf = MLPClassifier(

hidden_layer_sizes=(100, 50),
batch_size=trial.user_attrs["BATCHSIZE"],
momentum=momentum,
solver="sgd",
random_state=0,

)
clf.fit(X_train, y_train)

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)
assert "BATCHSIZE" in study.best_trial.user_attrs.keys()
assert study.best_trial.user_attrs["BATCHSIZE"] == 128

Parameters
• key (str) – A key string of the attribute.

• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type
None

should_prune()

Suggest whether the trial should be pruned or not.

The suggestion is made by a pruning algorithm associated with the trial and is based on previously reported
values. The algorithm can be specified when constructing a Study.

188 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

Note: If no values have been reported, the algorithm cannot make meaningful suggestions. Similarly, if
this method is called multiple times with the exact same set of reported values, the suggestions will be the
same.

See also:
Please refer to the example code in optuna.trial.Trial.report().

Note: should_prune() does not support multi-objective optimization.

Returns
A boolean value. If True, the trial should be pruned according to the configured pruning
algorithm. Otherwise, the trial should continue.

Return type
bool

suggest_categorical(name: str, choices: Sequence[None])→ None
suggest_categorical(name: str, choices: Sequence[bool])→ bool
suggest_categorical(name: str, choices: Sequence[int])→ int
suggest_categorical(name: str, choices: Sequence[float])→ float
suggest_categorical(name: str, choices: Sequence[str])→ str
suggest_categorical(name: str, choices: Sequence[None | bool | int | float | str])→ None | bool | int |

float | str
Suggest a value for the categorical parameter.

The value is sampled from choices.

Example

Suggest a kernel function of SVC.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
kernel = trial.suggest_categorical("kernel", ["linear", "poly", "rbf"])
clf = SVC(kernel=kernel, gamma="scale", random_state=0)
clf.fit(X_train, y_train)
return clf.score(X_valid, y_valid)

(continues on next page)

7.3. API Reference 189

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters
• name – A parameter name.

• choices – Parameter value candidates.

See also:
CategoricalDistribution.

Returns
A suggested value.

See also:
configurations tutorial describes more details and flexible usages.

suggest_discrete_uniform(name, low, high, q)
Suggest a value for the discrete parameter.

The value is sampled from the range [low, high], and the step of discretization is 𝑞. More specifically, this
method returns one of the values in the sequence low, low + 𝑞, low + 2𝑞, . . . , low + 𝑘𝑞 ≤ high, where 𝑘
denotes an integer. Note that ℎ𝑖𝑔ℎ may be changed due to round-off errors if 𝑞 is not an integer. Please
check warning messages to find the changed values.

Parameters
• name (str) – A parameter name.

• low (float) – Lower endpoint of the range of suggested values. low is included in the
range.

• high (float) – Upper endpoint of the range of suggested values. high is included in the
range.

• q (float) – A step of discretization.

Returns
A suggested float value.

Return type
float

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float(. . . , step=. . .) instead.

suggest_float(name, low, high, *, step=None, log=False)
Suggest a value for the floating point parameter.

190 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

Example

Suggest a momentum, learning rate and scaling factor of learning rate for neural network training.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

def objective(trial):
momentum = trial.suggest_float("momentum", 0.0, 1.0)
learning_rate_init = trial.suggest_float(

"learning_rate_init", 1e-5, 1e-3, log=True
)
power_t = trial.suggest_float("power_t", 0.2, 0.8, step=0.1)
clf = MLPClassifier(

hidden_layer_sizes=(100, 50),
momentum=momentum,
learning_rate_init=learning_rate_init,
solver="sgd",
random_state=0,
power_t=power_t,

)
clf.fit(X_train, y_train)

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters
• name (str) – A parameter name.

• low (float) – Lower endpoint of the range of suggested values. low is included in the
range. low must be less than or equal to high. If log is True, low must be larger than 0.

• high (float) – Upper endpoint of the range of suggested values. high is included in the
range. high must be greater than or equal to low.

• step (float | None) – A step of discretization.

Note: The step and log arguments cannot be used at the same time. To set the step
argument to a float number, set the log argument to False.

• log (bool) – A flag to sample the value from the log domain or not. If log is true, the
value is sampled from the range in the log domain. Otherwise, the value is sampled from
the range in the linear domain.

7.3. API Reference 191

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

Note: The step and log arguments cannot be used at the same time. To set the log
argument to True, set the step argument to None.

Returns
A suggested float value.

Return type
float

See also:
configurations tutorial describes more details and flexible usages.

suggest_int(name, low, high, *, step=1, log=False)
Suggest a value for the integer parameter.

The value is sampled from the integers in [low, high].

Example

Suggest the number of trees in RandomForestClassifier.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)

def objective(trial):
n_estimators = trial.suggest_int("n_estimators", 50, 400)
clf = RandomForestClassifier(n_estimators=n_estimators, random_state=0)
clf.fit(X_train, y_train)
return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=3)

Parameters
• name (str) – A parameter name.

• low (int) – Lower endpoint of the range of suggested values. low is included in the range.
low must be less than or equal to high. If log is True, low must be larger than 0.

• high (int) – Upper endpoint of the range of suggested values. high is included in the
range. high must be greater than or equal to low.

• step (int) – A step of discretization.

192 Chapter 7. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Note: Note that high is modified if the range is not divisible by step. Please check the
warning messages to find the changed values.

Note: The method returns one of the values in the sequence low, low + step, low + 2 *
step, . . . , low + 𝑘 * step ≤ high, where 𝑘 denotes an integer.

Note: The step != 1 and log arguments cannot be used at the same time. To set the
step argument step ≥ 2, set the log argument to False.

• log (bool) – A flag to sample the value from the log domain or not.

Note: If log is true, at first, the range of suggested values is divided into grid points of
width 1. The range of suggested values is then converted to a log domain, from which a
value is sampled. The uniformly sampled value is re-converted to the original domain and
rounded to the nearest grid point that we just split, and the suggested value is determined.
For example, if low = 2 and high = 8, then the range of suggested values is [2, 3, 4, 5, 6,
7, 8] and lower values tend to be more sampled than higher values.

Note: The step != 1 and log arguments cannot be used at the same time. To set the
log argument to True, set the step argument to 1.

Return type
int

See also:
configurations tutorial describes more details and flexible usages.

suggest_loguniform(name, low, high)
Suggest a value for the continuous parameter.

The value is sampled from the range [low, high) in the log domain. When low = high, the value of low will
be returned.

Parameters
• name (str) – A parameter name.

• low (float) – Lower endpoint of the range of suggested values. low is included in the
range.

• high (float) – Upper endpoint of the range of suggested values. high is included in the
range.

Returns
A suggested float value.

Return type
float

7.3. API Reference 193

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float(. . . , log=True) instead.

suggest_uniform(name, low, high)
Suggest a value for the continuous parameter.

The value is sampled from the range [low, high) in the linear domain. When low = high, the value of low
will be returned.

Parameters
• name (str) – A parameter name.

• low (float) – Lower endpoint of the range of suggested values. low is included in the
range.

• high (float) – Upper endpoint of the range of suggested values. high is included in the
range.

Returns
A suggested float value.

Return type
float

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float instead.

property system_attrs: Dict[str, Any]

Return system attributes.

Returns
A dictionary containing all system attributes.

Warning: Deprecated in v3.1.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.1.0.

property user_attrs: Dict[str, Any]

Return user attributes.

Returns
A dictionary containing all user attributes.

194 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

optuna.trial.FixedTrial

class optuna.trial.FixedTrial(params, number=0)
A trial class which suggests a fixed value for each parameter.

This object has the same methods as Trial, and it suggests pre-defined parameter values. The parameter values
can be determined at the construction of the FixedTrial object. In contrast to Trial, FixedTrial does not
depend on Study, and it is useful for deploying optimization results.

Example

Evaluate an objective function with parameter values given by a user.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x**2 + y

assert objective(optuna.trial.FixedTrial({"x": 1, "y": 0})) == 1

Note: Please refer to Trial for details of methods and properties.

Parameters
• params (Dict[str, Any]) – A dictionary containing all parameters.

• number (int) – A trial number. Defaults to 0.

7.3. API Reference 195

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Methods

report(value, step)

set_system_attr(key, value)

set_user_attr(key, value)

should_prune()

suggest_categorical()

suggest_discrete_uniform(name, low, high, q)

suggest_float(name, low, high, *[, step, log])

suggest_int(name, low, high, *[, step, log])

suggest_loguniform(name, low, high)

suggest_uniform(name, low, high)

Attributes

datetime_start

distributions

number

params

system_attrs

user_attrs

set_system_attr(key, value)

Warning: Deprecated in v3.1.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.1.0.

Parameters
• key (str)

• value (Any)

196 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Optuna Documentation, Release 4.0.0.dev

Return type
None

suggest_discrete_uniform(name, low, high, q)

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float(. . . , step=. . .) instead.

Parameters
• name (str)

• low (float)

• high (float)

• q (float)

Return type
float

suggest_loguniform(name, low, high)

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float(. . . , log=True) instead.

Parameters
• name (str)

• low (float)

• high (float)

Return type
float

suggest_uniform(name, low, high)

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float instead.

Parameters
• name (str)

• low (float)

7.3. API Reference 197

https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

• high (float)

Return type
float

optuna.trial.FrozenTrial

class optuna.trial.FrozenTrial(number, state, value, datetime_start, datetime_complete, params,
distributions, user_attrs, system_attrs, intermediate_values, trial_id, *,
values=None)

Status and results of a Trial.

An object of this class has the same methods as Trial, but is not associated with, nor has any references to a
Study.

It is therefore not possible to make persistent changes to a storage from this object by itself, for instance by using
set_user_attr().

It will suggest the parameter values stored in params and will not sample values from any distributions.

It can be passed to objective functions (see optimize()) and is useful for deploying optimization results.

Example

Re-evaluate an objective function with parameter values optimized study.

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)
return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

assert objective(study.best_trial) == study.best_value

Note: Instances are mutable, despite the name. For instance, set_user_attr() will update user attributes of
objects in-place.

Example:

Overwritten attributes.

import copy
import datetime

import optuna

def objective(trial):
x = trial.suggest_float("x", -1, 1)

(continues on next page)

198 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

this user attribute always differs
trial.set_user_attr("evaluation time", datetime.datetime.now())

return x**2

study = optuna.create_study()
study.optimize(objective, n_trials=3)

best_trial = study.best_trial
best_trial_copy = copy.deepcopy(best_trial)

re-evaluate
objective(best_trial)

the user attribute is overwritten by re-evaluation
assert best_trial.user_attrs != best_trial_copy.user_attrs

Note: Please refer to Trial for details of methods and properties.

Parameters
• number (int)

• state (TrialState)

• value (float | None)

• datetime_start (datetime | None)

• datetime_complete (datetime | None)

• params (Dict[str, Any])

• distributions (Dict[str, BaseDistribution])

• user_attrs (Dict[str, Any])

• system_attrs (Dict[str, Any])

• intermediate_values (Dict[int, float])

• trial_id (int)

• values (Sequence[float] | None)

number

Unique and consecutive number of Trial for each Study. Note that this field uses zero-based numbering.

state

TrialState of the Trial.

value

Objective value of the Trial. value and values must not be specified at the same time.

7.3. API Reference 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

values

Sequence of objective values of the Trial. The length is greater than 1 if the problem is multi-objective
optimization. value and values must not be specified at the same time.

datetime_start

Datetime where the Trial started.

datetime_complete

Datetime where the Trial finished.

params

Dictionary that contains suggested parameters.

distributions

Dictionary that contains the distributions of params.

user_attrs

Dictionary that contains the attributes of the Trial set with optuna.trial.Trial.set_user_attr().

system_attrs

Dictionary that contains the attributes of the Trial set with optuna.trial.Trial.
set_system_attr().

intermediate_values

Intermediate objective values set with optuna.trial.Trial.report().

Methods

report(value, step) Interface of report function.
set_system_attr(key, value)

set_user_attr(key, value)

should_prune() Suggest whether the trial should be pruned or not.
suggest_categorical()

suggest_discrete_uniform(name, low, high, q)

suggest_float(name, low, high, *[, step, log])

suggest_int(name, low, high, *[, step, log])

suggest_loguniform(name, low, high)

suggest_uniform(name, low, high)

200 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

Attributes

datetime_start

distributions

duration Return the elapsed time taken to complete the trial.
last_step Return the maximum step of

intermediate_values in the trial.
number

params

system_attrs

user_attrs

value

values

property duration: timedelta | None

Return the elapsed time taken to complete the trial.

Returns
The duration.

property last_step: int | None

Return the maximum step of intermediate_values in the trial.

Returns
The maximum step of intermediates.

report(value, step)
Interface of report function.

Since FrozenTrial is not pruned, this report function does nothing.

See also:
Please refer to should_prune().

Parameters
• value (float) – A value returned from the objective function.

• step (int) – Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example, MedianPruner simply checks if step is
less than n_warmup_steps as the warmup mechanism.

Return type
None

set_system_attr(key, value)

7.3. API Reference 201

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 4.0.0.dev

Warning: Deprecated in v3.1.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v5.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.1.0.

Parameters
• key (str)

• value (Any)

Return type
None

should_prune()

Suggest whether the trial should be pruned or not.

The suggestion is always False regardless of a pruning algorithm.

Note: FrozenTrial only samples one combination of parameters.

Returns
False.

Return type
bool

suggest_discrete_uniform(name, low, high, q)

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float(. . . , step=. . .) instead.

Parameters
• name (str)

• low (float)

• high (float)

• q (float)

Return type
float

suggest_loguniform(name, low, high)

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

202 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.1.0
https://github.com/optuna/optuna/releases/tag/v3.1.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0

Optuna Documentation, Release 4.0.0.dev

Use suggest_float(. . . , log=True) instead.

Parameters
• name (str)

• low (float)

• high (float)

Return type
float

suggest_uniform(name, low, high)

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal of this feature
is currently scheduled for v6.0.0, but this schedule is subject to change. See https://github.com/optuna/
optuna/releases/tag/v3.0.0.

Use suggest_float instead.

Parameters
• name (str)

• low (float)

• high (float)

Return type
float

optuna.trial.TrialState

class optuna.trial.TrialState(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

State of a Trial.

RUNNING

The Trial is running.

WAITING

The Trial is waiting and unfinished.

COMPLETE

The Trial has been finished without any error.

PRUNED

The Trial has been pruned with TrialPruned .

FAIL

The Trial has failed due to an uncaught error.

7.3. API Reference 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

Methods

conjugate Returns self, the complex conjugate of any int.
bit_length () Number of bits necessary to represent self in binary.
bit_count() Number of ones in the binary representation of the

absolute value of self.
to_bytes([length, byteorder, signed]) Return an array of bytes representing an integer.
from_bytes([byteorder, signed]) Return the integer represented by the given array of

bytes.
as_integer_ratio() Return integer ratio.
is_finished() Return a bool value to represent whether the trial state

is unfinished or not.

Attributes

real the real part of a complex number
imag the imaginary part of a complex number
numerator the numerator of a rational number in lowest terms
denominator the denominator of a rational number in lowest terms
RUNNING

COMPLETE

PRUNED

FAIL

WAITING

as_integer_ratio()

Return integer ratio.

Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator.

>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)

bit_count()

Number of ones in the binary representation of the absolute value of self.

Also known as the population count.

>>> bin(13)
'0b1101'
>>> (13).bit_count()
3

204 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

bit_length()

Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6

conjugate()

Returns self, the complex conjugate of any int.

denominator

the denominator of a rational number in lowest terms

from_bytes(byteorder='big', *, signed=False)
Return the integer represented by the given array of bytes.

bytes
Holds the array of bytes to convert. The argument must either support the buffer protocol or be an
iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the
buffer protocol.

byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the
beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte
array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
Default is to use ‘big’.

signed
Indicates whether two’s complement is used to represent the integer.

imag

the imaginary part of a complex number

is_finished()

Return a bool value to represent whether the trial state is unfinished or not.

The unfinished state is either RUNNING or WAITING.

Return type
bool

numerator

the numerator of a rational number in lowest terms

real

the real part of a complex number

to_bytes(length=1, byteorder='big', *, signed=False)
Return an array of bytes representing an integer.

length
Length of bytes object to use. An OverflowError is raised if the integer is not representable with the
given number of bytes. Default is length 1.

byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the
beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte

7.3. API Reference 205

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
Default is to use ‘big’.

signed
Determines whether two’s complement is used to represent the integer. If signed is False and a negative
integer is given, an OverflowError is raised.

optuna.trial.create_trial

optuna.trial.create_trial(*, state=1, value=None, values=None, params=None, distributions=None,
user_attrs=None, system_attrs=None, intermediate_values=None)

Create a new FrozenTrial.

Example

import optuna
from optuna.distributions import CategoricalDistribution
from optuna.distributions import FloatDistribution

trial = optuna.trial.create_trial(
params={"x": 1.0, "y": 0},
distributions={

"x": FloatDistribution(0, 10),
"y": CategoricalDistribution([-1, 0, 1]),

},
value=5.0,

)

assert isinstance(trial, optuna.trial.FrozenTrial)
assert trial.value == 5.0
assert trial.params == {"x": 1.0, "y": 0}

See also:
See add_trial() for how this function can be used to create a study from existing trials.

Note: Please note that this is a low-level API. In general, trials that are passed to objective functions are created
inside optimize().

Note: When state is TrialState.COMPLETE, the following parameters are required:

• params

• distributions

• value or values

Parameters
• state (TrialState) – Trial state.

• value (float | None) – Trial objective value. Must be specified if state is
TrialState.COMPLETE. value and values must not be specified at the same time.

206 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

• values (Sequence[float] | None) – Sequence of the trial objective values. The length
is greater than 1 if the problem is multi-objective optimization. Must be specified if state
is TrialState.COMPLETE. value and values must not be specified at the same time.

• params (Dict[str, Any] | None) – Dictionary with suggested parameters of the trial.

• distributions (Dict[str, BaseDistribution] | None) – Dictionary with parame-
ter distributions of the trial.

• user_attrs (Dict[str, Any] | None) – Dictionary with user attributes.

• system_attrs (Dict[str, Any] | None) – Dictionary with system attributes. Should
not have to be used for most users.

• intermediate_values (Dict[int, float] | None) – Dictionary with intermediate
objective values of the trial.

Returns
Created trial.

Return type
FrozenTrial

7.3.16 optuna.visualization

The visualization module provides utility functions for plotting the optimization process using plotly and mat-
plotlib. Plotting functions generally take a Study object and optional parameters are passed as a list to the params
argument.

Note: In the optuna.visualization module, the following functions use plotly to create figures, but JupyterLab
cannot render them by default. Please follow this installation guide to show figures in JupyterLab.

Note: The plot_param_importances() requires the Python package of scikit-learn.

7.3. API Reference 207

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://github.com/jupyterlab/jupyterlab
https://github.com/plotly/plotly.py#jupyterlab-support
https://github.com/jupyterlab/jupyterlab
https://github.com/scikit-learn/scikit-learn

Optuna Documentation, Release 4.0.0.dev

optuna.visualization.plot_contour Plot the parameter relationship as contour plot in a study.
optuna.visualization.plot_edf Plot the objective value EDF (empirical distribution

function) of a study.
optuna.visualization.
plot_hypervolume_history

Plot hypervolume history of all trials in a study.

optuna.visualization.
plot_intermediate_values

Plot intermediate values of all trials in a study.

optuna.visualization.
plot_optimization_history

Plot optimization history of all trials in a study.

optuna.visualization.
plot_parallel_coordinate

Plot the high-dimensional parameter relationships in a
study.

optuna.visualization.
plot_param_importances

Plot hyperparameter importances.

optuna.visualization.plot_pareto_front Plot the Pareto front of a study.
optuna.visualization.plot_rank Plot parameter relations as scatter plots with colors indi-

cating ranks of target value.
optuna.visualization.plot_slice Plot the parameter relationship as slice plot in a study.
optuna.visualization.
plot_terminator_improvement

Plot the potentials for future objective improvement.

optuna.visualization.plot_timeline Plot the timeline of a study.
optuna.visualization.is_available Returns whether visualization with plotly is available or

not.

optuna.visualization.plot_contour

optuna.visualization.plot_contour(study, params=None, *, target=None, target_name='Objective Value')
Plot the parameter relationship as contour plot in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

fig = optuna.visualization.plot_contour(study, params=["x", "y"])
fig.show()

Parameters

208 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the color bar.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

Note: The colormap is reversed when the target argument isn’t None or direction of Study is minimize.

optuna.visualization.plot_edf

optuna.visualization.plot_edf(study, *, target=None, target_name='Objective Value')
Plot the objective value EDF (empirical distribution function) of a study.

Note that only the complete trials are considered when plotting the EDF.

Note: EDF is useful to analyze and improve search spaces. For instance, you can see a practical use case of
EDF in the paper Designing Network Design Spaces.

Note: The plotted EDF assumes that the value of the objective function is in accordance with the uniform
distribution over the objective space.

Example

The following code snippet shows how to plot EDF.

import math

import optuna

def ackley(x, y):
a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2)))
b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
return -a - b + math.e + 20

(continues on next page)

7.3. API Reference 209

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://docs.python.org/3/library/constants.html#None
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01044

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

def objective(trial, low, high):
x = trial.suggest_float("x", low, high)
y = trial.suggest_float("y", low, high)
return ackley(x, y)

sampler = optuna.samplers.RandomSampler(seed=10)

Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)

Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)

Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)

fig = optuna.visualization.plot_edf([study0, study1, study2])
fig.show()

Parameters
• study (Study | Sequence[Study]) – A target Study object. You can pass multiple stud-

ies if you want to compare those EDFs.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

optuna.visualization.plot_hypervolume_history

optuna.visualization.plot_hypervolume_history(study, reference_point)
Plot hypervolume history of all trials in a study.

210 Chapter 7. Reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure

Optuna Documentation, Release 4.0.0.dev

Example

The following code snippet shows how to plot optimization history.

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1

study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

reference_point=[100., 50.]
fig = optuna.visualization.plot_hypervolume_history(study, reference_point)
fig.show()

Parameters
• study (Study) – A Study object whose trials are plotted for their hypervolumes. The num-

ber of objectives must be 2 or more.

• reference_point (Sequence[float]) – A reference point to use for hypervolume com-
putation. The dimension of the reference point must be the same as the number of objectives.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

optuna.visualization.plot_intermediate_values

optuna.visualization.plot_intermediate_values(study)
Plot intermediate values of all trials in a study.

7.3. API Reference 211

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Documentation, Release 4.0.0.dev

Example

The following code snippet shows how to plot intermediate values.

import optuna

def f(x):
return (x - 2) ** 2

def df(x):
return 2 * x - 4

def objective(trial):
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)

x = 3
for step in range(128):

y = f(x)

trial.report(y, step=step)
if trial.should_prune():

raise optuna.TrialPruned()

gy = df(x)
x -= gy * lr

return y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)

fig = optuna.visualization.plot_intermediate_values(study)
fig.show()

Parameters
study (Study) – A Study object whose trials are plotted for their intermediate values.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

212 Chapter 7. Reference

https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure

Optuna Documentation, Release 4.0.0.dev

optuna.visualization.plot_optimization_history

optuna.visualization.plot_optimization_history(study, *, target=None, target_name='Objective Value',
error_bar=False)

Plot optimization history of all trials in a study.

Example

The following code snippet shows how to plot optimization history.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

fig = optuna.visualization.plot_optimization_history(study)
fig.show()

Parameters
• study (Study | Sequence[Study]) – A Study object whose trials are plotted for their

target values. You can pass multiple studies if you want to compare those optimization his-
tories.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label and the legend.

• error_bar (bool) – A flag to show the error bar.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

7.3. API Reference 213

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure

Optuna Documentation, Release 4.0.0.dev

optuna.visualization.plot_parallel_coordinate

optuna.visualization.plot_parallel_coordinate(study, params=None, *, target=None,
target_name='Objective Value')

Plot the high-dimensional parameter relationships in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the high-dimensional parameter relationships.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

fig = optuna.visualization.plot_parallel_coordinate(study, params=["x", "y"])
fig.show()

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label and the legend.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

Note: The colormap is reversed when the target argument isn’t None or direction of Study is minimize.

214 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

optuna.visualization.plot_param_importances

optuna.visualization.plot_param_importances(study, evaluator=None, params=None, *, target=None,
target_name='Objective Value')

Plot hyperparameter importances.

Example

The following code snippet shows how to plot hyperparameter importances.

import optuna

def objective(trial):
x = trial.suggest_int("x", 0, 2)
y = trial.suggest_float("y", -1.0, 1.0)
z = trial.suggest_float("z", 0.0, 1.5)
return x ** 2 + y ** 3 - z ** 4

sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)

fig = optuna.visualization.plot_param_importances(study)
fig.show()

See also:
This function visualizes the results of optuna.importance.get_param_importances().

Parameters
• study (Study) – An optimized study.

• evaluator (BaseImportanceEvaluator | None) – An importance evaluator object
that specifies which algorithm to base the importance assessment on. Defaults to
FanovaImportanceEvaluator.

Note: FanovaImportanceEvaluator takes over 1 minute when given a study that con-
tains 1000+ trials. We published optuna-fast-fanova library, that is a Cython accelerated
fANOVA implementation. By using it, you can get hyperparameter importances within a
few seconds.

• params (list[str] | None) – A list of names of parameters to assess. If None, all pa-
rameters that are present in all of the completed trials are assessed.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted. For multi-objective optimization, all objectives will be plotted if
target is None.

Note: This argument can be used to specify which objective to plot if study is being used
for multi-objective optimization. For example, to get only the hyperparameter importance of

7.3. API Reference 215

https://github.com/optuna/optuna-fast-fanova
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

the first objective, use target=lambda t: t.values[0] for the target parameter.

• target_name (str) – Target’s name to display on the legend. Names set via
set_metric_names() will be used if target is None, overriding this argument.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

optuna.visualization.plot_pareto_front

optuna.visualization.plot_pareto_front(study, *, target_names=None, include_dominated_trials=True,
axis_order=None, constraints_func=None, targets=None)

Plot the Pareto front of a study.

See also:
Please refer to multi_objective for the tutorial of the Pareto front visualization.

Example

The following code snippet shows how to plot the Pareto front of a study.

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1

study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

fig = optuna.visualization.plot_pareto_front(study)
fig.show()

Example

The following code snippet shows how to plot a 2-dimensional Pareto front of a 3-dimensional study. This
example is scalable, e.g., for plotting a 2- or 3-dimensional Pareto front of a 4-dimensional study and so on.

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 5)

(continues on next page)

216 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

y = trial.suggest_float("y", 0, 3)
v0 = 5 * x ** 2 + 3 * y ** 2
v1 = (x - 10) ** 2 + (y - 10) ** 2
v2 = x + y

return v0, v1, v2

study = optuna.create_study(directions=["minimize", "minimize", "minimize"])

study.optimize(objective, n_trials=100)

fig = optuna.visualization.plot_pareto_front(
study,
targets=lambda t: (t.values[0], t.values[1]),
target_names=["Objective 0", "Objective 1"],

)

fig.show()

Parameters
• study (Study) – A Study object whose trials are plotted for their objective values. The

number of objectives must be either 2 or 3 when targets is None.

• target_names (list[str] | None) – Objective name list used as the axis titles. If None
is specified, “Objective {objective_index}” is used instead. If targets is specified for a
study that does not contain any completed trial, target_name must be specified.

• include_dominated_trials (bool) – A flag to include all dominated trial’s objective
values.

• axis_order (list[int] | None) – A list of indices indicating the axis order. If None is
specified, default order is used. axis_order and targets cannot be used at the same time.

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal
of this feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

• constraints_func (Callable[[FrozenTrial], Sequence[float]] | None) – An
optional function that computes the objective constraints. It must take a FrozenTrial and
return the constraints. The return value must be a sequence of float s. A value strictly larger
than 0 means that a constraint is violated. A value equal to or smaller than 0 is considered
feasible. This specification is the same as in, for example, NSGAIISampler.

If given, trials are classified into three categories: feasible and best, feasible but non-best,
and infeasible. Categories are shown in different colors. Here, whether a trial is best (on
Pareto front) or not is determined ignoring all infeasible trials.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

• targets (Callable[[FrozenTrial], Sequence[float]] | None) – A function that

7.3. API Reference 217

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 4.0.0.dev

returns targets values to display. The argument to this function is FrozenTrial.
axis_order and targets cannot be used at the same time. If study.n_objectives is
neither 2 nor 3, targets must be specified.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

optuna.visualization.plot_rank

optuna.visualization.plot_rank(study, params=None, *, target=None, target_name='Objective Value')
Plot parameter relations as scatter plots with colors indicating ranks of target value.

Note that trials missing the specified parameters will not be plotted.

Example

The following code snippet shows how to plot the parameter relationship as a rank plot.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])

c0 = 400 - (x + y)**2
trial.set_user_attr("constraint", [c0])

return x ** 2 + y

def constraints(trial):
return trial.user_attrs["constraint"]

sampler = optuna.samplers.TPESampler(seed=10, constraints_func=constraints)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

fig = optuna.visualization.plot_rank(study, params=["x", "y"])
fig.show()

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

218 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.0.0
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the color bar.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

Note: This function requires plotly >= 5.0.0.

optuna.visualization.plot_slice

optuna.visualization.plot_slice(study, params=None, *, target=None, target_name='Objective Value')
Plot the parameter relationship as slice plot in a study.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

fig = optuna.visualization.plot_slice(study, params=["x", "y"])
fig.show()

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

7.3. API Reference 219

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

optuna.visualization.plot_terminator_improvement

optuna.visualization.plot_terminator_improvement(study, plot_error=False,
improvement_evaluator=None,
error_evaluator=None, min_n_trials=20)

Plot the potentials for future objective improvement.

This function visualizes the objective improvement potentials, evaluated with improvement_evaluator. It
helps to determine whether we should continue the optimization or not. You can also plot the error evaluated
with error_evaluator if the plot_error argument is set to True. Note that this function may take some time
to compute the improvement potentials.

Example

The following code snippet shows how to plot improvement potentials, together with cross-validation errors.

from lightgbm import LGBMClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
import optuna
from optuna.terminator import report_cross_validation_scores
from optuna.visualization import plot_terminator_improvement

def objective(trial):
X, y = load_wine(return_X_y=True)
clf = LGBMClassifier(

reg_alpha=trial.suggest_float("reg_alpha", 1e-8, 10.0, log=True),
reg_lambda=trial.suggest_float("reg_lambda", 1e-8, 10.0, log=True),
num_leaves=trial.suggest_int("num_leaves", 2, 256),
colsample_bytree=trial.suggest_float("colsample_bytree", 0.4, 1.0),
subsample=trial.suggest_float("subsample", 0.4, 1.0),
subsample_freq=trial.suggest_int("subsample_freq", 1, 7),
min_child_samples=trial.suggest_int("min_child_samples", 5, 100),

)
scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
report_cross_validation_scores(trial, scores)
return scores.mean()

study = optuna.create_study()
(continues on next page)

220 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study.optimize(objective, n_trials=30)

fig = plot_terminator_improvement(study, plot_error=True)
fig.show()

Parameters
• study (Study) – A Study object whose trials are plotted for their improvement.

• plot_error (bool) – A flag to show the error. If it is set to True, errors evaluated by
error_evaluator are also plotted as line graph. Defaults to False.

• improvement_evaluator (BaseImprovementEvaluator | None) – An object that
evaluates the improvement of the objective function. Defaults to RegretBoundEvaluator.

• error_evaluator (BaseErrorEvaluator | None) – An object that evaluates the error
inherent in the objective function. Defaults to CrossValidationErrorEvaluator.

• min_n_trials (int) – The minimum number of trials before termination is considered.
Terminator improvements for trials below this value are shown in a lighter color. Defaults to
20.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

optuna.visualization.plot_timeline

optuna.visualization.plot_timeline(study)
Plot the timeline of a study.

Example

The following code snippet shows how to plot the timeline of a study. Timeline plot can visualize trials with
overlapping execution time (e.g., in distributed environments).

import time

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 1)
time.sleep(x * 0.1)
if x > 0.8:

raise ValueError()
(continues on next page)

7.3. API Reference 221

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://github.com/optuna/optuna/releases/tag/v3.2.0

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

if x > 0.4:
raise optuna.TrialPruned()

return x ** 2

study = optuna.create_study(direction="minimize")
study.optimize(

objective, n_trials=50, n_jobs=2, catch=(ValueError,)
)

fig = optuna.visualization.plot_timeline(study)
fig.show()

Parameters
study (Study) – A Study object whose trials are plotted with their lifetime.

Returns
A plotly.graph_objects.Figure object.

Return type
Figure

optuna.visualization.is_available

optuna.visualization.is_available()

Returns whether visualization with plotly is available or not.

Note: visualization module depends on plotly version 4.0.0 or higher. If a supported version of plotly isn’t
installed in your environment, this function will return False. In such case, please execute $ pip install -U
plotly>=4.0.0 to install plotly.

Returns
True if visualization with plotly is available, False otherwise.

Return type
bool

Note: The following optuna.visualization.matplotlib module uses Matplotlib as a backend.

222 Chapter 7. Reference

https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 4.0.0.dev

optuna.visualization.matplotlib

Note: The following functions use Matplotlib as a backend.

optuna.visualization.matplotlib.
plot_contour

Plot the parameter relationship as contour plot in a study
with Matplotlib.

optuna.visualization.matplotlib.plot_edf Plot the objective value EDF (empirical distribution
function) of a study with Matplotlib.

optuna.visualization.matplotlib.
plot_hypervolume_history

Plot hypervolume history of all trials in a study with Mat-
plotlib.

optuna.visualization.matplotlib.
plot_intermediate_values

Plot intermediate values of all trials in a study with Mat-
plotlib.

optuna.visualization.matplotlib.
plot_optimization_history

Plot optimization history of all trials in a study with Mat-
plotlib.

optuna.visualization.matplotlib.
plot_parallel_coordinate

Plot the high-dimensional parameter relationships in a
study with Matplotlib.

optuna.visualization.matplotlib.
plot_param_importances

Plot hyperparameter importances with Matplotlib.

optuna.visualization.matplotlib.
plot_pareto_front

Plot the Pareto front of a study.

optuna.visualization.matplotlib.plot_rank Plot parameter relations as scatter plots with colors indi-
cating ranks of target value.

optuna.visualization.matplotlib.plot_slice Plot the parameter relationship as slice plot in a study
with Matplotlib.

optuna.visualization.matplotlib.
plot_terminator_improvement

Plot the potentials for future objective improvement.

optuna.visualization.matplotlib.
plot_timeline

Plot the timeline of a study.

optuna.visualization.matplotlib.
is_available

Returns whether visualization with Matplotlib is avail-
able or not.

optuna.visualization.matplotlib.plot_contour

optuna.visualization.matplotlib.plot_contour(study, params=None, *, target=None,
target_name='Objective Value')

Plot the parameter relationship as contour plot in a study with Matplotlib.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

See also:
Please refer to optuna.visualization.plot_contour() for an example.

Warning: Output figures of this Matplotlib-based plot_contour() function would be different from those
of the Plotly-based plot_contour().

7.3. API Reference 223

Optuna Documentation, Release 4.0.0.dev

Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.matplotlib.plot_contour(study, params=["x", "y"])

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

224 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 4.0.0.dev

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the color bar.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: The colormap is reversed when the target argument isn’t None or direction of Study is minimize.

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_edf

optuna.visualization.matplotlib.plot_edf(study, *, target=None, target_name='Objective Value')
Plot the objective value EDF (empirical distribution function) of a study with Matplotlib.

Note that only the complete trials are considered when plotting the EDF.

See also:
Please refer to optuna.visualization.plot_edf() for an example, where this function can be replaced with
it.

Note: Please refer to matplotlib.pyplot.legend to adjust the style of the generated legend.

Example

The following code snippet shows how to plot EDF.

import math

import optuna

def ackley(x, y):
a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x ** 2 + y ** 2)))
b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
return -a - b + math.e + 20

(continues on next page)

7.3. API Reference 225

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.2.0
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

def objective(trial, low, high):
x = trial.suggest_float("x", low, high)
y = trial.suggest_float("y", low, high)
return ackley(x, y)

sampler = optuna.samplers.RandomSampler(seed=10)

Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)

Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)

Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)

optuna.visualization.matplotlib.plot_edf([study0, study1, study2])

226 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

Parameters
• study (Study | Sequence[Study]) – A target Study object. You can pass multiple stud-

ies if you want to compare those EDFs.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_hypervolume_history

optuna.visualization.matplotlib.plot_hypervolume_history(study, reference_point)
Plot hypervolume history of all trials in a study with Matplotlib.

Example

The following code snippet shows how to plot optimization history.

import optuna
import matplotlib.pyplot as plt

def objective(trial):
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1

study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

reference_point=[100, 50]
optuna.visualization.matplotlib.plot_hypervolume_history(study, reference_point)
plt.tight_layout()

7.3. API Reference 227

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 4.0.0.dev

228 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

Note: You need to adjust the size of the plot by yourself using plt.tight_layout() or plt.
savefig(IMAGE_NAME, bbox_inches='tight').

Parameters
• study (Study) – A Study object whose trials are plotted for their hypervolumes. The num-

ber of objectives must be 2 or more.

• reference_point (Sequence[float]) – A reference point to use for hypervolume com-
putation. The dimension of the reference point must be the same as the number of objectives.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

optuna.visualization.matplotlib.plot_intermediate_values

optuna.visualization.matplotlib.plot_intermediate_values(study)
Plot intermediate values of all trials in a study with Matplotlib.

Note: Please refer to matplotlib.pyplot.legend to adjust the style of the generated legend.

Example

The following code snippet shows how to plot intermediate values.

import optuna

def f(x):
return (x - 2) ** 2

def df(x):
return 2 * x - 4

def objective(trial):
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)

x = 3
for step in range(128):

y = f(x)
(continues on next page)

7.3. API Reference 229

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v3.3.0
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

trial.report(y, step=step)
if trial.should_prune():

raise optuna.TrialPruned()

gy = df(x)
x -= gy * lr

return y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)

optuna.visualization.matplotlib.plot_intermediate_values(study)

See also:
Please refer to optuna.visualization.plot_intermediate_values() for an example.

Parameters
study (Study) – A Study object whose trials are plotted for their intermediate values.

230 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_optimization_history

optuna.visualization.matplotlib.plot_optimization_history(study, *, target=None,
target_name='Objective Value',
error_bar=False)

Plot optimization history of all trials in a study with Matplotlib.

See also:
Please refer to optuna.visualization.plot_optimization_history() for an example.

Example

The following code snippet shows how to plot optimization history.

import optuna
import matplotlib.pyplot as plt

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_optimization_history(study)
plt.tight_layout()

Note: You need to adjust the size of the plot by yourself using plt.tight_layout() or plt.
savefig(IMAGE_NAME, bbox_inches='tight').

Parameters
• study (Study | Sequence[Study]) – A Study object whose trials are plotted for their

target values. You can pass multiple studies if you want to compare those optimization his-
tories.

7.3. API Reference 231

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

Optuna Documentation, Release 4.0.0.dev

232 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label and the legend.

• error_bar (bool) – A flag to show the error bar.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_parallel_coordinate

optuna.visualization.matplotlib.plot_parallel_coordinate(study, params=None, *, target=None,
target_name='Objective Value')

Plot the high-dimensional parameter relationships in a study with Matplotlib.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

See also:
Please refer to optuna.visualization.plot_parallel_coordinate() for an example.

Example

The following code snippet shows how to plot the high-dimensional parameter relationships.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_parallel_coordinate(study, params=["x", "y"])

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

7.3. API Reference 233

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 4.0.0.dev

234 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label and the legend.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: The colormap is reversed when the target argument isn’t None or direction of Study is minimize.

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_param_importances

optuna.visualization.matplotlib.plot_param_importances(study, evaluator=None, params=None, *,
target=None, target_name='Objective
Value')

Plot hyperparameter importances with Matplotlib.

See also:
Please refer to optuna.visualization.plot_param_importances() for an example.

Example

The following code snippet shows how to plot hyperparameter importances.

import optuna

def objective(trial):
x = trial.suggest_int("x", 0, 2)
y = trial.suggest_float("y", -1.0, 1.0)
z = trial.suggest_float("z", 0.0, 1.5)
return x ** 2 + y ** 3 - z ** 4

sampler = optuna.samplers.RandomSampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)

(continues on next page)

7.3. API Reference 235

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

optuna.visualization.matplotlib.plot_param_importances(study)

Parameters
• study (Study) – An optimized study.

• evaluator (BaseImportanceEvaluator | None) – An importance evaluator object
that specifies which algorithm to base the importance assessment on. Defaults to
FanovaImportanceEvaluator.

• params (list[str] | None) – A list of names of parameters to assess. If None, all pa-
rameters that are present in all of the completed trials are assessed.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted. For multi-objective optimization, all objectives will be plotted if
target is None.

Note: This argument can be used to specify which objective to plot if study is being used
for multi-objective optimization. For example, to get only the hyperparameter importance of
the first objective, use target=lambda t: t.values[0] for the target parameter.

236 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

• target_name (str) – Target’s name to display on the axis label. Names set via
set_metric_names() will be used if target is None, overriding this argument.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_pareto_front

optuna.visualization.matplotlib.plot_pareto_front(study, *, target_names=None,
include_dominated_trials=True, axis_order=None,
constraints_func=None, targets=None)

Plot the Pareto front of a study.

See also:
Please refer to optuna.visualization.plot_pareto_front() for an example.

Example

The following code snippet shows how to plot the Pareto front of a study.

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1

study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

optuna.visualization.matplotlib.plot_pareto_front(study)

Parameters
• study (Study) – A Study object whose trials are plotted for their objective values. study.
n_objectives must be either 2 or 3 when targets is None.

• target_names (list[str] | None) – Objective name list used as the axis titles. If None
is specified, “Objective {objective_index}” is used instead. If targets is specified for a
study that does not contain any completed trial, target_name must be specified.

7.3. API Reference 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 4.0.0.dev

238 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

• include_dominated_trials (bool) – A flag to include all dominated trial’s objective
values.

• axis_order (list[int] | None) – A list of indices indicating the axis order. If None is
specified, default order is used. axis_order and targets cannot be used at the same time.

Warning: Deprecated in v3.0.0. This feature will be removed in the future. The removal
of this feature is currently scheduled for v5.0.0, but this schedule is subject to change.
See https://github.com/optuna/optuna/releases/tag/v3.0.0.

• constraints_func (Callable[[FrozenTrial], Sequence[float]] | None) – An
optional function that computes the objective constraints. It must take a FrozenTrial and
return the constraints. The return value must be a sequence of float s. A value strictly larger
than 0 means that a constraint is violated. A value equal to or smaller than 0 is considered
feasible. This specification is the same as in, for example, NSGAIISampler.

If given, trials are classified into three categories: feasible and best, feasible but non-best,
and infeasible. Categories are shown in different colors. Here, whether a trial is best (on
Pareto front) or not is determined ignoring all infeasible trials.

• targets (Callable[[FrozenTrial], Sequence[float]] | None) – A function that
returns a tuple of target values to display. The argument to this function is FrozenTrial.
targets must be None or return 2 or 3 values. axis_order and targets cannot be used
at the same time. If the number of objectives is neither 2 nor 3, targets must be specified.

Note: Added in v3.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.0.0.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v2.8.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.8.0.

optuna.visualization.matplotlib.plot_rank

optuna.visualization.matplotlib.plot_rank(study, params=None, *, target=None,
target_name='Objective Value')

Plot parameter relations as scatter plots with colors indicating ranks of target value.

Note that trials missing the specified parameters will not be plotted.

See also:
Please refer to optuna.visualization.plot_rank() for an example.

7.3. API Reference 239

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v3.0.0
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v2.8.0

Optuna Documentation, Release 4.0.0.dev

Warning: Output figures of this Matplotlib-based plot_rank() function would be different from those of
the Plotly-based plot_rank().

Example

The following code snippet shows how to plot the parameter relationship as a rank plot.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])

c0 = 400 - (x + y)**2
trial.set_user_attr("constraint", [c0])

return x ** 2 + y

def constraints(trial):
return trial.user_attrs["constraint"]

sampler = optuna.samplers.TPESampler(seed=10, constraints_func=constraints)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=30)

optuna.visualization.matplotlib.plot_rank(study, params=["x", "y"])

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the color bar.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior

240 Chapter 7. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes

Optuna Documentation, Release 4.0.0.dev

7.3. API Reference 241

Optuna Documentation, Release 4.0.0.dev

notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

optuna.visualization.matplotlib.plot_slice

optuna.visualization.matplotlib.plot_slice(study, params=None, *, target=None,
target_name='Objective Value')

Plot the parameter relationship as slice plot in a study with Matplotlib.

See also:
Please refer to optuna.visualization.plot_slice() for an example.

Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x ** 2 + y

sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=10)

optuna.visualization.matplotlib.plot_slice(study, params=["x", "y"])

Parameters
• study (Study) – A Study object whose trials are plotted for their target values.

• params (list[str] | None) – Parameter list to visualize. The default is all parameters.

• target (Callable[[FrozenTrial], float] | None) – A function to specify the value
to display. If it is None and study is being used for single-objective optimization, the ob-
jective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

• target_name (str) – Target’s name to display on the axis label.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

242 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v3.2.0
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes

Optuna Documentation, Release 4.0.0.dev

7.3. API Reference 243

Optuna Documentation, Release 4.0.0.dev

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_terminator_improvement

optuna.visualization.matplotlib.plot_terminator_improvement(study, plot_error=False,
improvement_evaluator=None,
error_evaluator=None,
min_n_trials=20)

Plot the potentials for future objective improvement.

This function visualizes the objective improvement potentials, evaluated with improvement_evaluator. It
helps to determine whether we should continue the optimization or not. You can also plot the error evaluated
with error_evaluator if the plot_error argument is set to True. Note that this function may take some time
to compute the improvement potentials.

See also:
Please refer to optuna.visualization.plot_terminator_improvement().

Example

The following code snippet shows how to plot improvement potentials, together with cross-validation errors.

from lightgbm import LGBMClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
import optuna
from optuna.terminator import report_cross_validation_scores
from optuna.visualization.matplotlib import plot_terminator_improvement

def objective(trial):
X, y = load_wine(return_X_y=True)
clf = LGBMClassifier(

reg_alpha=trial.suggest_float("reg_alpha", 1e-8, 10.0, log=True),
reg_lambda=trial.suggest_float("reg_lambda", 1e-8, 10.0, log=True),
num_leaves=trial.suggest_int("num_leaves", 2, 256),
colsample_bytree=trial.suggest_float("colsample_bytree", 0.4, 1.0),
subsample=trial.suggest_float("subsample", 0.4, 1.0),
subsample_freq=trial.suggest_int("subsample_freq", 1, 7),
min_child_samples=trial.suggest_int("min_child_samples", 5, 100),

)
scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
report_cross_validation_scores(trial, scores)
return scores.mean()

study = optuna.create_study()
study.optimize(objective, n_trials=30)

plot_terminator_improvement(study, plot_error=True)

244 Chapter 7. Reference

https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 4.0.0.dev

7.3. API Reference 245

Optuna Documentation, Release 4.0.0.dev

Parameters
• study (Study) – A Study object whose trials are plotted for their improvement.

• plot_error (bool) – A flag to show the error. If it is set to True, errors evaluated by
error_evaluator are also plotted as line graph. Defaults to False.

• improvement_evaluator (BaseImprovementEvaluator | None) – An object that
evaluates the improvement of the objective function. Default to RegretBoundEvaluator.

• error_evaluator (BaseErrorEvaluator | None) – An object that evaluates the error
inherent in the objective function. Default to CrossValidationErrorEvaluator.

• min_n_trials (int) – The minimum number of trials before termination is considered.
Terminator improvements for trials below this value are shown in a lighter color. Defaults to
20.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

optuna.visualization.matplotlib.plot_timeline

optuna.visualization.matplotlib.plot_timeline(study)
Plot the timeline of a study.

See also:
Please refer to optuna.visualization.plot_timeline() for an example.

Example

The following code snippet shows how to plot the timeline of a study.

import time

import optuna

def objective(trial):
x = trial.suggest_float("x", 0, 1)
time.sleep(x * 0.1)
if x > 0.8:

raise ValueError()
if x > 0.4:

raise optuna.TrialPruned()
return x ** 2

(continues on next page)

246 Chapter 7. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v3.2.0

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

study = optuna.create_study(direction="minimize")
study.optimize(

objective, n_trials=50, n_jobs=2, catch=(ValueError,)
)

optuna.visualization.matplotlib.plot_timeline(study)

Parameters
study (Study) – A Study object whose trials are plotted with their lifetime.

Returns
A matplotlib.axes.Axes object.

Return type
Axes

Note: Added in v3.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v3.2.0.

7.3. API Reference 247

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://github.com/optuna/optuna/releases/tag/v3.2.0

Optuna Documentation, Release 4.0.0.dev

optuna.visualization.matplotlib.is_available

optuna.visualization.matplotlib.is_available()

Returns whether visualization with Matplotlib is available or not.

Note: matplotlib module depends on Matplotlib version 3.0.0 or higher. If a supported version of Mat-
plotlib isn’t installed in your environment, this function will return False. In such a case, please execute $ pip
install -U matplotlib>=3.0.0 to install Matplotlib.

Returns
True if visualization with Matplotlib is available, False otherwise.

Return type
bool

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

See also:
The visualization tutorial provides use-cases with examples.

7.4 FAQ

• Can I use Optuna with X? (where X is your favorite ML library)

• How to define objective functions that have own arguments?

• Can I use Optuna without remote RDB servers?

• How can I save and resume studies?

• How to suppress log messages of Optuna?

• How to save machine learning models trained in objective functions?

• How can I obtain reproducible optimization results?

• How are exceptions from trials handled?

• How are NaNs returned by trials handled?

• What happens when I dynamically alter a search space?

• How can I use two GPUs for evaluating two trials simultaneously?

• How can I test my objective functions?

• How do I avoid running out of memory (OOM) when optimizing studies?

• How can I output a log only when the best value is updated?

• How do I suggest variables which represent the proportion, that is, are in accordance with Dirichlet distribu-
tion?

248 Chapter 7. Reference

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 4.0.0.dev

• How can I optimize a model with some constraints?

• How can I parallelize optimization?

– 1. Multi-threading parallelization with a single node

– 2. Multi-processing parallelization with single node

– 3. Multi-processing parallelization with multiple nodes

• How can I solve the error that occurs when performing parallel optimization with SQLite3?

• Can I monitor trials and make them failed automatically when they are killed unexpectedly?

• How can I deal with permutation as a parameter?

• How can I ignore duplicated samples?

7.4.1 Can I use Optuna with X? (where X is your favorite ML library)

Optuna is compatible with most ML libraries, and it’s easy to use Optuna with those. Please refer to examples.

7.4.2 How to define objective functions that have own arguments?

There are two ways to realize it.

First, callable classes can be used for that purpose as follows:

import optuna

class Objective:
def __init__(self, min_x, max_x):

Hold this implementation specific arguments as the fields of the class.
self.min_x = min_x
self.max_x = max_x

def __call__(self, trial):
Calculate an objective value by using the extra arguments.
x = trial.suggest_float("x", self.min_x, self.max_x)
return (x - 2) ** 2

Execute an optimization by using an `Objective` instance.
study = optuna.create_study()
study.optimize(Objective(-100, 100), n_trials=100)

Second, you can use lambda or functools.partial for creating functions (closures) that hold extra arguments.
Below is an example that uses lambda:

import optuna

Objective function that takes three arguments.
def objective(trial, min_x, max_x):

x = trial.suggest_float("x", min_x, max_x)
(continues on next page)

7.4. FAQ 249

https://github.com/optuna/optuna-examples/

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

return (x - 2) ** 2

Extra arguments.
min_x = -100
max_x = 100

Execute an optimization by using the above objective function wrapped by `lambda`.
study = optuna.create_study()
study.optimize(lambda trial: objective(trial, min_x, max_x), n_trials=100)

Please also refer to sklearn_additional_args.py example, which reuses the dataset instead of loading it in each trial
execution.

7.4.3 Can I use Optuna without remote RDB servers?

Yes, it’s possible.

In the simplest form, Optuna works with in-memory storage:

study = optuna.create_study()
study.optimize(objective)

If you want to save and resume studies, it’s handy to use SQLite as the local storage:

study = optuna.create_study(study_name="foo_study", storage="sqlite:///example.db")
study.optimize(objective) # The state of `study` will be persisted to the local SQLite␣
→˓file.

Please see rdb for more details.

7.4.4 How can I save and resume studies?

There are two ways of persisting studies, which depend if you are using in-memory storage (default) or remote databases
(RDB). In-memory studies can be saved and loaded like usual Python objects using pickle or joblib. For example,
using joblib:

study = optuna.create_study()
joblib.dump(study, "study.pkl")

And to resume the study:

study = joblib.load("study.pkl")
print("Best trial until now:")
print(" Value: ", study.best_trial.value)
print(" Params: ")
for key, value in study.best_trial.params.items():

print(f" {key}: {value}")

Note that Optuna does not support saving/reloading across different Optuna versions with pickle. To save/reload a
study across different Optuna versions, please use RDBs and upgrade storage schema if necessary. If you are using
RDBs, see rdb for more details.

250 Chapter 7. Reference

https://github.com/optuna/optuna-examples/tree/main/sklearn/sklearn_additional_args.py
reference/cli.html#storage-upgrade

Optuna Documentation, Release 4.0.0.dev

7.4.5 How to suppress log messages of Optuna?

By default, Optuna shows log messages at the optuna.logging.INFO level. You can change logging levels by using
optuna.logging.set_verbosity().

For instance, you can stop showing each trial result as follows:

optuna.logging.set_verbosity(optuna.logging.WARNING)

study = optuna.create_study()
study.optimize(objective)
Logs like '[I 2020-07-21 13:41:45,627] Trial 0 finished with value:...' are disabled.

Please refer to optuna.logging for further details.

7.4.6 How to save machine learning models trained in objective functions?

Optuna saves hyperparameter values with its corresponding objective value to storage, but it discards intermediate
objects such as machine learning models and neural network weights. To save models or weights, please use features
of the machine learning library you used.

We recommend saving optuna.trial.Trial.number with a model in order to identify its corresponding trial. For
example, you can save SVM models trained in the objective function as follows:

def objective(trial):
svc_c = trial.suggest_float("svc_c", 1e-10, 1e10, log=True)
clf = sklearn.svm.SVC(C=svc_c)
clf.fit(X_train, y_train)

Save a trained model to a file.
with open("{}.pickle".format(trial.number), "wb") as fout:

pickle.dump(clf, fout)
return 1.0 - accuracy_score(y_valid, clf.predict(X_valid))

study = optuna.create_study()
study.optimize(objective, n_trials=100)

Load the best model.
with open("{}.pickle".format(study.best_trial.number), "rb") as fin:

best_clf = pickle.load(fin)
print(accuracy_score(y_valid, best_clf.predict(X_valid)))

7.4.7 How can I obtain reproducible optimization results?

To make the parameters suggested by Optuna reproducible, you can specify a fixed random seed via seed argument of
an instance of samplers as follows:

sampler = TPESampler(seed=10) # Make the sampler behave in a deterministic way.
study = optuna.create_study(sampler=sampler)
study.optimize(objective)

However, there are two caveats.

7.4. FAQ 251

Optuna Documentation, Release 4.0.0.dev

First, when optimizing a study in distributed or parallel mode, there is inherent non-determinism. Thus it is very difficult
to reproduce the same results in such condition. We recommend executing optimization of a study sequentially if you
would like to reproduce the result.

Second, if your objective function behaves in a non-deterministic way (i.e., it does not return the same value even if
the same parameters were suggested), you cannot reproduce an optimization. To deal with this problem, please set an
option (e.g., random seed) to make the behavior deterministic if your optimization target (e.g., an ML library) provides
it.

7.4.8 How are exceptions from trials handled?

Trials that raise exceptions without catching them will be treated as failures, i.e. with the FAIL status.

By default, all exceptions except TrialPruned raised in objective functions are propagated to the caller of
optimize(). In other words, studies are aborted when such exceptions are raised. It might be desirable to con-
tinue a study with the remaining trials. To do so, you can specify in optimize() which exception types to catch using
the catch argument. Exceptions of these types are caught inside the study and will not propagate further.

You can find the failed trials in log messages.

[W 2018-12-07 16:38:36,889] Setting status of trial#0 as TrialState.FAIL because of \
the following error: ValueError('A sample error in objective.')

You can also find the failed trials by checking the trial states as follows:

study.trials_dataframe()

num-
ber

state value . . . paramssystem_attrs

0 Trial-
State.FAIL

. . . 0 Setting status of trial#0 as TrialState.FAIL because of the following
error: ValueError(‘A test error in objective.’)

1 Trial-
State.COMPLETE

1269 . . . 1

See also:
The catch argument in optimize().

7.4.9 How are NaNs returned by trials handled?

Trials that return NaN (float('nan')) are treated as failures, but they will not abort studies.

Trials which return NaN are shown as follows:

[W 2018-12-07 16:41:59,000] Setting status of trial#2 as TrialState.FAIL because the \
objective function returned nan.

252 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

7.4.10 What happens when I dynamically alter a search space?

Since parameters search spaces are specified in each call to the suggestion API, e.g. suggest_float() and
suggest_int(), it is possible to, in a single study, alter the range by sampling parameters from different search
spaces in different trials. The behavior when altered is defined by each sampler individually.

Note: Discussion about the TPE sampler. https://github.com/optuna/optuna/issues/822

7.4.11 How can I use two GPUs for evaluating two trials simultaneously?

If your optimization target supports GPU (CUDA) acceleration and you want to specify which GPU is used in your
script, main.py, the easiest way is to set CUDA_VISIBLE_DEVICES environment variable:

On a terminal.
#
Specify to use the first GPU, and run an optimization.
$ export CUDA_VISIBLE_DEVICES=0
$ python main.py

On another terminal.
#
Specify to use the second GPU, and run another optimization.
$ export CUDA_VISIBLE_DEVICES=1
$ python main.py

Please refer to CUDA C Programming Guide for further details.

7.4.12 How can I test my objective functions?

When you test objective functions, you may prefer fixed parameter values to sampled ones. In that case, you can use
FixedTrial, which suggests fixed parameter values based on a given dictionary of parameters. For instance, you can
input arbitrary values of 𝑥 and 𝑦 to the objective function 𝑥+ 𝑦 as follows:

def objective(trial):
x = trial.suggest_float("x", -1.0, 1.0)
y = trial.suggest_int("y", -5, 5)
return x + y

objective(FixedTrial({"x": 1.0, "y": -1})) # 0.0
objective(FixedTrial({"x": -1.0, "y": -4})) # -5.0

Using FixedTrial, you can write unit tests as follows:

A test function of pytest
def test_objective():

assert 1.0 == objective(FixedTrial({"x": 1.0, "y": 0}))
assert -1.0 == objective(FixedTrial({"x": 0.0, "y": -1}))
assert 0.0 == objective(FixedTrial({"x": -1.0, "y": 1}))

7.4. FAQ 253

https://github.com/optuna/optuna/issues/822
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars

Optuna Documentation, Release 4.0.0.dev

7.4.13 How do I avoid running out of memory (OOM) when optimizing studies?

If the memory footprint increases as you run more trials, try to periodically run the garbage collector. Specify
gc_after_trial to True when calling optimize() or call gc.collect() inside a callback.

def objective(trial):
x = trial.suggest_float("x", -1.0, 1.0)
y = trial.suggest_int("y", -5, 5)
return x + y

study = optuna.create_study()
study.optimize(objective, n_trials=10, gc_after_trial=True)

`gc_after_trial=True` is more or less identical to the following.
study.optimize(objective, n_trials=10, callbacks=[lambda study, trial: gc.collect()])

There is a performance trade-off for running the garbage collector, which could be non-negligible depending on how fast
your objective function otherwise is. Therefore, gc_after_trial is False by default. Note that the above examples
are similar to running the garbage collector inside the objective function, except for the fact that gc.collect() is
called even when errors, including TrialPruned are raised.

Note: ChainerMNStudy does currently not provide gc_after_trial nor callbacks for optimize(). When using
this class, you will have to call the garbage collector inside the objective function.

7.4.14 How can I output a log only when the best value is updated?

Here’s how to replace the logging feature of optuna with your own logging callback function. The implemented callback
can be passed to optimize(). Here’s an example:

import optuna

Turn off optuna log notes.
optuna.logging.set_verbosity(optuna.logging.WARN)

def objective(trial):
x = trial.suggest_float("x", 0, 1)
return x ** 2

def logging_callback(study, frozen_trial):
previous_best_value = study.user_attrs.get("previous_best_value", None)
if previous_best_value != study.best_value:

study.set_user_attr("previous_best_value", study.best_value)
print(

"Trial {} finished with best value: {} and parameters: {}. ".format(
frozen_trial.number,
frozen_trial.value,
frozen_trial.params,

(continues on next page)

254 Chapter 7. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/gc.html#gc.collect
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/gc.html#gc.collect

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

)
)

study = optuna.create_study()
study.optimize(objective, n_trials=100, callbacks=[logging_callback])

Note that this callback may show incorrect values when you try to optimize an objective function with n_jobs!=1 (or
other forms of distributed optimization) due to its reads and writes to storage that are prone to race conditions.

7.4.15 How do I suggest variables which represent the proportion, that is, are in
accordance with Dirichlet distribution?

When you want to suggest 𝑛 variables which represent the proportion, that is, 𝑝[0], 𝑝[1], ..., 𝑝[𝑛 − 1] which satisfy
0 ≤ 𝑝[𝑘] ≤ 1 for any 𝑘 and 𝑝[0] + 𝑝[1] + ...+ 𝑝[𝑛− 1] = 1, try the below. For example, these variables can be used as
weights when interpolating the loss functions. These variables are in accordance with the flat Dirichlet distribution.

import numpy as np
import matplotlib.pyplot as plt
import optuna

def objective(trial):
n = 5
x = []
for i in range(n):

x.append(- np.log(trial.suggest_float(f"x_{i}", 0, 1)))

p = []
for i in range(n):

p.append(x[i] / sum(x))

for i in range(n):
trial.set_user_attr(f"p_{i}", p[i])

return 0

study = optuna.create_study(sampler=optuna.samplers.RandomSampler())
study.optimize(objective, n_trials=1000)

n = 5
p = []
for i in range(n):

p.append([trial.user_attrs[f"p_{i}"] for trial in study.trials])
axes = plt.subplots(n, n, figsize=(20, 20))[1]

for i in range(n):
for j in range(n):

axes[j][i].scatter(p[i], p[j], marker=".")
axes[j][i].set_xlim(0, 1)
axes[j][i].set_ylim(0, 1)

(continues on next page)

7.4. FAQ 255

https://en.wikipedia.org/wiki/Dirichlet_distribution

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

axes[j][i].set_xlabel(f"p_{i}")
axes[j][i].set_ylabel(f"p_{j}")

plt.savefig("sampled_ps.png")

This method is justified in the following way: First, if we apply the transformation 𝑥 = − log(𝑢) to the variable
𝑢 sampled from the uniform distribution 𝑈𝑛𝑖(0, 1) in the interval [0, 1], the variable 𝑥 will follow the exponential
distribution 𝐸𝑥𝑝(1) with scale parameter 1. Furthermore, for 𝑛 variables 𝑥[0], ..., 𝑥[𝑛− 1] that follow the exponential
distribution of scale parameter 1 independently, normalizing them with 𝑝[𝑖] = 𝑥[𝑖]/

∑︀
𝑖 𝑥[𝑖], the vector 𝑝 follows the

Dirichlet distribution 𝐷𝑖𝑟(𝛼) of scale parameter 𝛼 = (1, ..., 1). You can verify the transformation by calculating the
elements of the Jacobian.

7.4.16 How can I optimize a model with some constraints?

When you want to optimize a model with constraints, you can use the following classes: TPESampler, NSGAIISampler
or BoTorchSampler. The following example is a benchmark of Binh and Korn function, a multi-objective optimization,
with constraints using NSGAIISampler. This one has two constraints 𝑐0 = (𝑥 − 5)2 + 𝑦2 − 25 ≤ 0 and 𝑐1 =
−(𝑥− 8)2 − (𝑦 + 3)2 + 7.7 ≤ 0 and finds the optimal solution satisfying these constraints.

import optuna

def objective(trial):
Binh and Korn function with constraints.
x = trial.suggest_float("x", -15, 30)
y = trial.suggest_float("y", -15, 30)

Constraints which are considered feasible if less than or equal to zero.
The feasible region is basically the intersection of a circle centered at (x=5,␣

→˓y=0)
and the complement to a circle centered at (x=8, y=-3).
c0 = (x - 5) ** 2 + y ** 2 - 25
c1 = -((x - 8) ** 2) - (y + 3) ** 2 + 7.7

Store the constraints as user attributes so that they can be restored after␣
→˓optimization.

trial.set_user_attr("constraint", (c0, c1))

v0 = 4 * x ** 2 + 4 * y ** 2
v1 = (x - 5) ** 2 + (y - 5) ** 2

return v0, v1

def constraints(trial):
return trial.user_attrs["constraint"]

sampler = optuna.samplers.NSGAIISampler(constraints_func=constraints)
study = optuna.create_study(

directions=["minimize", "minimize"],
(continues on next page)

256 Chapter 7. Reference

https://optuna-integration.readthedocs.io/en/stable/reference/generated/optuna_integration.BoTorchSampler.html

Optuna Documentation, Release 4.0.0.dev

(continued from previous page)

sampler=sampler,
)
study.optimize(objective, n_trials=32, timeout=600)

print("Number of finished trials: ", len(study.trials))

print("Pareto front:")

trials = sorted(study.best_trials, key=lambda t: t.values)

for trial in trials:
print(" Trial#{}".format(trial.number))
print(

" Values: Values={}, Constraint={}".format(
trial.values, trial.user_attrs["constraint"][0]

)
)
print(" Params: {}".format(trial.params))

If you are interested in an example for BoTorchSampler, please refer to this sample code.

There are two kinds of constrained optimizations, one with soft constraints and the other with hard constraints. Soft
constraints do not have to be satisfied, but an objective function is penalized if they are unsatisfied. On the other hand,
hard constraints must be satisfied.

Optuna is adopting the soft one and DOES NOT support the hard one. In other words, Optuna DOES NOT have
built-in samplers for the hard constraints.

7.4.17 How can I parallelize optimization?

The variations of parallelization are in the following three cases.

1. Multi-threading parallelization with single node

2. Multi-processing parallelization with single node

3. Multi-processing parallelization with multiple nodes

1. Multi-threading parallelization with a single node

Parallelization can be achieved by setting the argument n_jobs in optuna.study.Study.optimize(). However,
the python code will not be faster due to GIL because optuna.study.Study.optimize() with n_jobs!=1 uses
multi-threading.

While optimizing, it will be faster in limited situations, such as waiting for other server requests or C/C++ processing
with numpy, etc., but it will not be faster in other cases.

For more information about 1., see APIReference.

7.4. FAQ 257

https://optuna-integration.readthedocs.io/en/stable/reference/generated/optuna_integration.BoTorchSampler.html
https://github.com/optuna/optuna-examples/blob/main/multi_objective/botorch_simple.py
https://optuna.readthedocs.io/en/stable/reference/index.html

Optuna Documentation, Release 4.0.0.dev

2. Multi-processing parallelization with single node

This can be achieved by using JournalFileStorage or client/server RDBs (such as PostgreSQL and MySQL).

For more information about 2., see TutorialEasyParallelization.

3. Multi-processing parallelization with multiple nodes

This can be achieved by using client/server RDBs (such as PostgreSQL and MySQL). However, if you are in the
environment where you can not install a client/server RDB, you can not run multi-processing parallelization with
multiple nodes.

For more information about 3., see TutorialEasyParallelization.

7.4.18 How can I solve the error that occurs when performing parallel optimization
with SQLite3?

We would never recommend SQLite3 for parallel optimization in the following reasons.

• To concurrently evaluate trials enqueued by enqueue_trial(), RDBStorage uses SELECT . . . FOR UPDATE
syntax, which is unsupported in SQLite3.

• As described in the SQLAlchemy’s documentation, SQLite3 (and pysqlite driver) does not support a high level of
concurrency. You may get a “database is locked” error, which occurs when one thread or process has an exclusive
lock on a database connection (in reality a file handle) and another thread times out waiting for the lock to be
released. You can increase the default timeout value like optuna.storages.RDBStorage(“sqlite:///example.db”,
engine_kwargs={“connect_args”: {“timeout”: 20.0}}) though.

• For distributed optimization via NFS, SQLite3 does not work as described at FAQ section of sqlite.org.

If you want to use a file-based Optuna storage for these scenarios, please consider using JournalFileStorage instead.

import optuna
from optuna.storages import JournalStorage, JournalFileStorage

storage = JournalStorage(JournalFileStorage("optuna-journal.log"))
study = optuna.create_study(storage=storage)
...

See the Medium blog post for details.

7.4.19 Can I monitor trials and make them failed automatically when they are killed
unexpectedly?

Note: Heartbeat mechanism is experimental. API would change in the future.

A process running a trial could be killed unexpectedly, typically by a job scheduler in a cluster environment. If trials
are killed unexpectedly, they will be left on the storage with their states RUNNING until we remove them or update their
state manually. For such a case, Optuna supports monitoring trials using heartbeat mechanism. Using heartbeat, if a
process running a trial is killed unexpectedly, Optuna will automatically change the state of the trial that was running
on that process to FAIL from RUNNING .

258 Chapter 7. Reference

https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html
https://github.com/sqlalchemy/sqlalchemy/blob/rel_1_4_41/lib/sqlalchemy/dialects/sqlite/base.py#L1265-L1267
https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#sqlite-concurrency
https://docs.python.org/3/library/sqlite3.html#sqlite3.connect
https://www.sqlite.org/faq.html#q5
https://medium.com/optuna/distributed-optimization-via-nfs-using-optunas-new-operation-based-logging-storage-9815f9c3f932
https://en.wikipedia.org/wiki/Heartbeat_(computing)

Optuna Documentation, Release 4.0.0.dev

import optuna

def objective(trial):
(Very time-consuming computation)

Recording heartbeats every 60 seconds.
Other processes' trials where more than 120 seconds have passed
since the last heartbeat was recorded will be automatically failed.
storage = optuna.storages.RDBStorage(url="sqlite:///:memory:", heartbeat_interval=60,␣
→˓grace_period=120)
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)

Note: The heartbeat is supposed to be used with optimize(). If you use ask() and tell(), please change the state
of the killed trials by calling tell() explicitly.

You can also execute a callback function to process the failed trial. Optuna provides a callback to retry failed tri-
als as RetryFailedTrialCallback . Note that a callback is invoked at a beginning of each trial, which means
RetryFailedTrialCallback will retry failed trials when a new trial starts to evaluate.

import optuna
from optuna.storages import RetryFailedTrialCallback

storage = optuna.storages.RDBStorage(
url="sqlite:///:memory:",
heartbeat_interval=60,
grace_period=120,
failed_trial_callback=RetryFailedTrialCallback(max_retry=3),

)

study = optuna.create_study(storage=storage)

7.4.20 How can I deal with permutation as a parameter?

Although it is not straightforward to deal with combinatorial search spaces like permutations with existing API, there
exists a convenient technique for handling them. It involves re-parametrization of permutation search space of 𝑛 items
as an independent 𝑛-dimensional integer search space. This technique is based on the concept of Lehmer code.

A Lehmer code of a sequence is the sequence of integers in the same size, whose 𝑖-th entry denotes how many inversions
the 𝑖-th entry of the permutation has after itself. In other words, the 𝑖-th entry of the Lehmer code represents the number
of entries that are located after and are smaller than the 𝑖-th entry of the original sequence. For instance, the Lehmer
code of the permutation (3, 1, 4, 2, 0) is (3, 1, 2, 1, 0).

Not only does the Lehmer code provide a unique encoding of permutations into an integer space, but it also has some
desirable properties. For example, the sum of Lehmer code entries is equal to the minimum number of adjacent trans-
positions necessary to transform the corresponding permutation into the identity permutation. Additionally, the lexico-
graphical order of the encodings of two permutations is the same as that of the original sequence. Therefore, Lehmer
code preserves “closeness” among permutations in some sense, which is important for the optimization algorithm. An
Optuna implementation example to solve Euclid TSP is as follows:

7.4. FAQ 259

https://en.wikipedia.org/wiki/Lehmer_code

Optuna Documentation, Release 4.0.0.dev

import numpy as np

import optuna

def decode(lehmer_code: list[int]) -> list[int]:
"""Decode Lehmer code to permutation.

This function decodes Lehmer code represented as a list of integers to a permutation.
"""
all_indices = list(range(n))
output = []
for k in lehmer_code:

value = all_indices[k]
output.append(value)
all_indices.remove(value)

return output

Euclidean coordinates of cities for TSP.
city_coordinates = np.array(

[[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0], [2.0, 2.0], [-1.0, -1.0]]
)
n = len(city_coordinates)

def objective(trial: optuna.Trial) -> float:
Suggest a permutation in the Lehmer code representation.
lehmer_code = [trial.suggest_int(f"x{i}", 0, n - i - 1) for i in range(n)]
permutation = decode(lehmer_code)

Calculate the total distance of the suggested path.
total_distance = 0.0
for i in range(n):

total_distance += np.linalg.norm(
city_coordinates[permutation[i]] - city_coordinates[np.roll(permutation,␣

→˓1)[i]]
)

return total_distance

study = optuna.create_study()
study.optimize(objective, n_trials=10)
lehmer_code = study.best_params.values()
print(decode(lehmer_code))

260 Chapter 7. Reference

Optuna Documentation, Release 4.0.0.dev

7.4.21 How can I ignore duplicated samples?

Optuna may sometimes suggest parameters evaluated in the past and if you would like to avoid this problem, you can
try out the following workaround:

import optuna
from optuna.trial import TrialState

def objective(trial):
Sample parameters.
x = trial.suggest_int("x", -5, 5)
y = trial.suggest_int("y", -5, 5)
Fetch all the trials to consider.
In this example, we use only completed trials, but users can specify other states
such as TrialState.PRUNED and TrialState.FAIL.
states_to_consider = (TrialState.COMPLETE,)
trials_to_consider = trial.study.get_trials(deepcopy=False, states=states_to_

→˓consider)
Check whether we already evaluated the sampled `(x, y)`.
for t in reversed(trials_to_consider):

if trial.params == t.params:
Use the existing value as trial duplicated the parameters.
return t.value

Compute the objective function if the parameters are not duplicated.
We use the 2D sphere function in this example.
return x ** 2 + y ** 2

study = optuna.create_study()
study.optimize(objective, n_trials=100)

7.4. FAQ 261

Optuna Documentation, Release 4.0.0.dev

262 Chapter 7. Reference

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

263

Optuna Documentation, Release 4.0.0.dev

264 Chapter 8. Indices and tables

PYTHON MODULE INDEX

o
optuna, 16
optuna.artifacts, 23
optuna.cli, 27
optuna.distributions, 27
optuna.exceptions, 40
optuna.importance, 42
optuna.integration, 48
optuna.logging, 49
optuna.pruners, 54
optuna.samplers, 70
optuna.samplers.nsgaii, 117
optuna.search_space, 125
optuna.storages, 126
optuna.study, 153
optuna.terminator, 178
optuna.trial, 184
optuna.visualization, 207
optuna.visualization.matplotlib, 223

265

Optuna Documentation, Release 4.0.0.dev

266 Python Module Index

INDEX

A
acquire() (optuna.storages.JournalFileOpenLock

method), 151
acquire() (optuna.storages.JournalFileSymlinkLock

method), 150
add_note() (optuna.exceptions.CLIUsageError

method), 41
add_note() (optuna.exceptions.DuplicatedStudyError

method), 41
add_note() (optuna.exceptions.OptunaError method),

40
add_note() (optuna.exceptions.StorageInternalError

method), 41
add_note() (optuna.exceptions.TrialPruned method),

41
add_note() (optuna.TrialPruned method), 23
add_trial() (optuna.study.Study method), 154
add_trials() (optuna.study.Study method), 155
after_trial() (optuna.samplers.BaseSampler

method), 74
after_trial() (optuna.samplers.BruteForceSampler

method), 115
after_trial() (optuna.samplers.CmaEsSampler

method), 93
after_trial() (optuna.samplers.GPSampler method),

96
after_trial() (optuna.samplers.GridSampler

method), 77
after_trial() (optuna.samplers.NSGAIIISampler

method), 107
after_trial() (optuna.samplers.NSGAIISampler

method), 103
after_trial() (optuna.samplers.PartialFixedSampler

method), 99
after_trial() (optuna.samplers.QMCSampler

method), 111
after_trial() (optuna.samplers.RandomSampler

method), 81
after_trial() (optuna.samplers.TPESampler

method), 87
append_logs() (optuna.storages.JournalFileStorage

method), 149

append_logs() (optuna.storages.JournalRedisStorage
method), 152

as_integer_ratio() (optuna.study.StudyDirection
method), 175

as_integer_ratio() (optuna.trial.TrialState method),
204

ask() (optuna.study.Study method), 156

B
Backoff (class in optuna.artifacts), 25
BaseCrossover (class in optuna.samplers.nsgaii), 118
BaseErrorEvaluator (class in optuna.terminator), 182
BaseImprovementEvaluator (class in op-

tuna.terminator), 180
BasePruner (class in optuna.pruners), 54
BaseSampler (class in optuna.samplers), 72
BaseTerminator (class in optuna.terminator), 178
before_trial() (optuna.samplers.BaseSampler

method), 74
before_trial() (optuna.samplers.BruteForceSampler

method), 115
before_trial() (optuna.samplers.CmaEsSampler

method), 93
before_trial() (optuna.samplers.GPSampler

method), 96
before_trial() (optuna.samplers.GridSampler

method), 78
before_trial() (optuna.samplers.NSGAIIISampler

method), 107
before_trial() (optuna.samplers.NSGAIISampler

method), 104
before_trial() (optuna.samplers.PartialFixedSampler

method), 100
before_trial() (optuna.samplers.QMCSampler

method), 112
before_trial() (optuna.samplers.RandomSampler

method), 81
before_trial() (optuna.samplers.TPESampler

method), 87
best_params (optuna.study.Study property), 157
best_trial (optuna.study.Study property), 157
best_trial (optuna.study.StudySummary attribute), 177

267

Optuna Documentation, Release 4.0.0.dev

best_trials (optuna.study.Study property), 157
best_value (optuna.study.Study property), 157
BestValueStagnationEvaluator (class in op-

tuna.terminator), 181
bit_count() (optuna.study.StudyDirection method),

175
bit_count() (optuna.trial.TrialState method), 204
bit_length() (optuna.study.StudyDirection method),

175
bit_length() (optuna.trial.TrialState method), 204
BLXAlphaCrossover (class in optuna.samplers.nsgaii),

120
Boto3ArtifactStore (class in optuna.artifacts), 24
BruteForceSampler (class in optuna.samplers), 114

C
calculate() (optuna.search_space.IntersectionSearchSpace

method), 125
CategoricalDistribution (class in op-

tuna.distributions), 38
check_distribution_compatibility() (in module

optuna.distributions), 39
check_trial_is_updatable() (op-

tuna.storages.JournalStorage method), 141
check_trial_is_updatable() (op-

tuna.storages.RDBStorage method), 129
choices (optuna.distributions.CategoricalDistribution

attribute), 38
CLIUsageError, 41
CmaEsSampler (class in optuna.samplers), 90
COMPLETE (optuna.trial.TrialState attribute), 203
conjugate() (optuna.study.StudyDirection method),

175
conjugate() (optuna.trial.TrialState method), 205
copy_study() (in module optuna), 20
copy_study() (in module optuna.study), 170
create_new_study() (optuna.storages.JournalStorage

method), 142
create_new_study() (optuna.storages.RDBStorage

method), 129
create_new_trial() (optuna.storages.JournalStorage

method), 142
create_new_trial() (optuna.storages.RDBStorage

method), 129
create_study() (in module optuna), 17
create_study() (in module optuna.study), 167
create_trial() (in module optuna.trial), 206
crossover() (optuna.samplers.nsgaii.BaseCrossover

method), 118
crossover() (optuna.samplers.nsgaii.BLXAlphaCrossover

method), 120
crossover() (optuna.samplers.nsgaii.SBXCrossover

method), 122

crossover() (optuna.samplers.nsgaii.SPXCrossover
method), 121

crossover() (optuna.samplers.nsgaii.UNDXCrossover
method), 124

crossover() (optuna.samplers.nsgaii.UniformCrossover
method), 119

crossover() (optuna.samplers.nsgaii.VSBXCrossover
method), 123

CrossValidationErrorEvaluator (class in op-
tuna.terminator), 182

D
datetime_complete (optuna.trial.FrozenTrial at-

tribute), 200
datetime_start (optuna.study.StudySummary at-

tribute), 177
datetime_start (optuna.trial.FrozenTrial attribute),

200
datetime_start (optuna.trial.Trial property), 185
delete_study() (in module optuna), 19
delete_study() (in module optuna.study), 170
delete_study() (optuna.storages.JournalStorage

method), 142
delete_study() (optuna.storages.RDBStorage

method), 130
denominator (optuna.study.StudyDirection attribute),

175
denominator (optuna.trial.TrialState attribute), 205
direction (optuna.study.Study property), 158
direction (optuna.study.StudySummary attribute), 177
directions (optuna.study.Study property), 158
directions (optuna.study.StudySummary attribute), 177
disable_default_handler() (in module op-

tuna.logging), 51
disable_propagation() (in module optuna.logging),

52
DiscreteUniformDistribution (class in op-

tuna.distributions), 33
distribution_to_json() (in module op-

tuna.distributions), 39
distributions (optuna.trial.FrozenTrial attribute), 200
distributions (optuna.trial.Trial property), 186
DuplicatedStudyError, 41
duration (optuna.trial.FrozenTrial property), 201

E
enable_default_handler() (in module op-

tuna.logging), 52
enable_propagation() (in module optuna.logging), 53
enqueue_trial() (optuna.study.Study method), 158
evaluate() (optuna.importance.FanovaImportanceEvaluator

method), 44
evaluate() (optuna.importance.MeanDecreaseImpurityImportanceEvaluator

method), 45

268 Index

Optuna Documentation, Release 4.0.0.dev

evaluate() (optuna.importance.PedAnovaImportanceEvaluator
method), 47

evaluate() (optuna.terminator.CrossValidationErrorEvaluator
method), 182

F
FAIL (optuna.trial.TrialState attribute), 203
fail_stale_trials() (in module optuna.storages),

139
FanovaImportanceEvaluator (class in op-

tuna.importance), 43
FileSystemArtifactStore (class in optuna.artifacts),

23
FixedTrial (class in optuna.trial), 195
FloatDistribution (class in optuna.distributions), 27
from_bytes() (optuna.study.StudyDirection method),

175
from_bytes() (optuna.trial.TrialState method), 205
FrozenTrial (class in optuna.trial), 198

G
GCSArtifactStore (class in optuna.artifacts), 25
get_all_studies() (optuna.storages.JournalStorage

method), 142
get_all_studies() (optuna.storages.RDBStorage

method), 130
get_all_study_names() (in module optuna), 21
get_all_study_names() (in module optuna.study), 172
get_all_study_summaries() (in module optuna), 21
get_all_study_summaries() (in module op-

tuna.study), 172
get_all_trials() (optuna.storages.JournalStorage

method), 143
get_all_trials() (optuna.storages.RDBStorage

method), 130
get_all_versions() (optuna.storages.RDBStorage

method), 130
get_best_trial() (optuna.storages.JournalStorage

method), 143
get_best_trial() (optuna.storages.RDBStorage

method), 130
get_current_version() (op-

tuna.storages.RDBStorage method), 131
get_failed_trial_callback() (op-

tuna.storages.RDBStorage method), 131
get_head_version() (optuna.storages.RDBStorage

method), 131
get_heartbeat_interval() (op-

tuna.storages.RDBStorage method), 131
get_n_trials() (optuna.storages.JournalStorage

method), 143
get_n_trials() (optuna.storages.RDBStorage

method), 131

get_param_importances() (in module op-
tuna.importance), 42

get_study_directions() (op-
tuna.storages.JournalStorage method), 143

get_study_directions() (op-
tuna.storages.RDBStorage method), 132

get_study_id_from_name() (op-
tuna.storages.JournalStorage method), 144

get_study_id_from_name() (op-
tuna.storages.RDBStorage method), 132

get_study_name_from_id() (op-
tuna.storages.JournalStorage method), 144

get_study_name_from_id() (op-
tuna.storages.RDBStorage method), 132

get_study_system_attrs() (op-
tuna.storages.JournalStorage method), 144

get_study_system_attrs() (op-
tuna.storages.RDBStorage method), 132

get_study_user_attrs() (op-
tuna.storages.JournalStorage method), 144

get_study_user_attrs() (op-
tuna.storages.RDBStorage method), 133

get_trial() (optuna.storages.JournalStorage method),
145

get_trial() (optuna.storages.RDBStorage method),
133

get_trial_id_from_study_id_trial_number()
(optuna.storages.JournalStorage method), 145

get_trial_id_from_study_id_trial_number()
(optuna.storages.RDBStorage method), 133

get_trial_number_from_id() (op-
tuna.storages.JournalStorage method), 145

get_trial_number_from_id() (op-
tuna.storages.RDBStorage method), 133

get_trial_param() (optuna.storages.JournalStorage
method), 145

get_trial_param() (optuna.storages.RDBStorage
method), 134

get_trial_params() (optuna.storages.JournalStorage
method), 146

get_trial_params() (optuna.storages.RDBStorage
method), 134

get_trial_system_attrs() (op-
tuna.storages.JournalStorage method), 146

get_trial_system_attrs() (op-
tuna.storages.RDBStorage method), 134

get_trial_user_attrs() (op-
tuna.storages.JournalStorage method), 146

get_trial_user_attrs() (op-
tuna.storages.RDBStorage method), 134

get_trials() (optuna.study.Study method), 159
get_verbosity() (in module optuna.logging), 50
GPSampler (class in optuna.samplers), 95
GridSampler (class in optuna.samplers), 76

Index 269

Optuna Documentation, Release 4.0.0.dev

H
high (optuna.distributions.DiscreteUniformDistribution

attribute), 33
high (optuna.distributions.FloatDistribution attribute),

28
high (optuna.distributions.IntDistribution attribute), 29
high (optuna.distributions.IntLogUniformDistribution

attribute), 36
high (optuna.distributions.IntUniformDistribution

attribute), 35
high (optuna.distributions.LogUniformDistribution at-

tribute), 32
high (optuna.distributions.UniformDistribution at-

tribute), 31
HyperbandPruner (class in optuna.pruners), 63
hyperopt_parameters() (op-

tuna.samplers.TPESampler static method),
88

I
imag (optuna.study.StudyDirection attribute), 176
imag (optuna.trial.TrialState attribute), 205
infer_relative_search_space() (op-

tuna.samplers.BaseSampler method), 74
infer_relative_search_space() (op-

tuna.samplers.BruteForceSampler method),
116

infer_relative_search_space() (op-
tuna.samplers.CmaEsSampler method),
93

infer_relative_search_space() (op-
tuna.samplers.GPSampler method), 97

infer_relative_search_space() (op-
tuna.samplers.GridSampler method), 78

infer_relative_search_space() (op-
tuna.samplers.NSGAIIISampler method),
108

infer_relative_search_space() (op-
tuna.samplers.NSGAIISampler method),
104

infer_relative_search_space() (op-
tuna.samplers.PartialFixedSampler method),
100

infer_relative_search_space() (op-
tuna.samplers.QMCSampler method), 112

infer_relative_search_space() (op-
tuna.samplers.RandomSampler method),
81

infer_relative_search_space() (op-
tuna.samplers.TPESampler method), 88

IntDistribution (class in optuna.distributions), 29
intermediate_values (optuna.trial.FrozenTrial

attribute), 200

intersection_search_space() (in module op-
tuna.search_space), 126

IntersectionSearchSpace (class in op-
tuna.search_space), 125

IntLogUniformDistribution (class in op-
tuna.distributions), 36

IntUniformDistribution (class in op-
tuna.distributions), 35

is_available() (in module optuna.visualization), 222
is_available() (in module op-

tuna.visualization.matplotlib), 248
is_exhausted() (optuna.samplers.GridSampler

method), 79
is_finished() (optuna.trial.TrialState method), 205

J
JournalFileOpenLock (class in optuna.storages), 151
JournalFileStorage (class in optuna.storages), 149
JournalFileSymlinkLock (class in optuna.storages),

150
JournalRedisStorage (class in optuna.storages), 151
JournalStorage (class in optuna.storages), 140
json_to_distribution() (in module op-

tuna.distributions), 39

L
last_step (optuna.trial.FrozenTrial property), 201
load_snapshot() (op-

tuna.storages.JournalRedisStorage method),
152

load_study() (in module optuna), 18
load_study() (in module optuna.study), 169
log (optuna.distributions.FloatDistribution attribute), 28
log (optuna.distributions.IntDistribution attribute), 29
LogUniformDistribution (class in op-

tuna.distributions), 32
low (optuna.distributions.DiscreteUniformDistribution

attribute), 33
low (optuna.distributions.FloatDistribution attribute), 28
low (optuna.distributions.IntDistribution attribute), 29
low (optuna.distributions.IntLogUniformDistribution at-

tribute), 36
low (optuna.distributions.IntUniformDistribution at-

tribute), 35
low (optuna.distributions.LogUniformDistribution

attribute), 32
low (optuna.distributions.UniformDistribution attribute),

30

M
MAXIMIZE (optuna.study.StudyDirection attribute), 174
MaxTrialsCallback (class in optuna.study), 173
MeanDecreaseImpurityImportanceEvaluator (class

in optuna.importance), 45

270 Index

Optuna Documentation, Release 4.0.0.dev

MedianPruner (class in optuna.pruners), 55
metric_names (optuna.study.Study property), 159
MINIMIZE (optuna.study.StudyDirection attribute), 174
module

optuna, 16
optuna.artifacts, 23
optuna.cli, 26
optuna.distributions, 27
optuna.exceptions, 39
optuna.importance, 41
optuna.integration, 48
optuna.logging, 49
optuna.pruners, 53
optuna.samplers, 70
optuna.samplers.nsgaii, 117
optuna.search_space, 125
optuna.storages, 126
optuna.study, 152
optuna.terminator, 177
optuna.trial, 184
optuna.visualization, 207
optuna.visualization.matplotlib, 222

N
n_parents (optuna.samplers.nsgaii.BaseCrossover

property), 118
n_trials (optuna.study.StudySummary attribute), 177
NopPruner (class in optuna.pruners), 57
NOT_SET (optuna.study.StudyDirection attribute), 174
NSGAIIISampler (class in optuna.samplers), 106
NSGAIISampler (class in optuna.samplers), 102
number (optuna.trial.FrozenTrial attribute), 199
number (optuna.trial.Trial property), 186
numerator (optuna.study.StudyDirection attribute), 176
numerator (optuna.trial.TrialState attribute), 205

O
optimize() (optuna.study.Study method), 160
optuna

module, 16
optuna.artifacts

module, 23
optuna.cli

module, 26
optuna.distributions

module, 27
optuna.exceptions

module, 39
optuna.importance

module, 41
optuna.integration

module, 48
optuna.logging

module, 49

optuna.pruners
module, 53

optuna.samplers
module, 70

optuna.samplers.nsgaii
module, 117

optuna.search_space
module, 125

optuna.storages
module, 126

optuna.study
module, 152

optuna.terminator
module, 177

optuna.trial
module, 184

optuna.visualization
module, 207

optuna.visualization.matplotlib
module, 222

OptunaError, 40

P
params (optuna.trial.FrozenTrial attribute), 200
params (optuna.trial.Trial property), 186
PartialFixedSampler (class in optuna.samplers), 98
PatientPruner (class in optuna.pruners), 58
PedAnovaImportanceEvaluator (class in op-

tuna.importance), 46
PercentilePruner (class in optuna.pruners), 60
plot_contour() (in module optuna.visualization), 208
plot_contour() (in module op-

tuna.visualization.matplotlib), 223
plot_edf() (in module optuna.visualization), 209
plot_edf() (in module optuna.visualization.matplotlib),

225
plot_hypervolume_history() (in module op-

tuna.visualization), 210
plot_hypervolume_history() (in module op-

tuna.visualization.matplotlib), 227
plot_intermediate_values() (in module op-

tuna.visualization), 211
plot_intermediate_values() (in module op-

tuna.visualization.matplotlib), 229
plot_optimization_history() (in module op-

tuna.visualization), 213
plot_optimization_history() (in module op-

tuna.visualization.matplotlib), 231
plot_parallel_coordinate() (in module op-

tuna.visualization), 214
plot_parallel_coordinate() (in module op-

tuna.visualization.matplotlib), 233
plot_param_importances() (in module op-

tuna.visualization), 215

Index 271

Optuna Documentation, Release 4.0.0.dev

plot_param_importances() (in module op-
tuna.visualization.matplotlib), 235

plot_pareto_front() (in module op-
tuna.visualization), 216

plot_pareto_front() (in module op-
tuna.visualization.matplotlib), 237

plot_rank() (in module optuna.visualization), 218
plot_rank() (in module op-

tuna.visualization.matplotlib), 239
plot_slice() (in module optuna.visualization), 219
plot_slice() (in module op-

tuna.visualization.matplotlib), 242
plot_terminator_improvement() (in module op-

tuna.visualization), 220
plot_terminator_improvement() (in module op-

tuna.visualization.matplotlib), 244
plot_timeline() (in module optuna.visualization), 221
plot_timeline() (in module op-

tuna.visualization.matplotlib), 246
prune() (optuna.pruners.BasePruner method), 54
prune() (optuna.pruners.HyperbandPruner method), 65
prune() (optuna.pruners.MedianPruner method), 56
prune() (optuna.pruners.NopPruner method), 57
prune() (optuna.pruners.PatientPruner method), 59
prune() (optuna.pruners.PercentilePruner method), 61
prune() (optuna.pruners.SuccessiveHalvingPruner

method), 63
prune() (optuna.pruners.ThresholdPruner method), 67
prune() (optuna.pruners.WilcoxonPruner method), 69
PRUNED (optuna.trial.TrialState attribute), 203

Q
q (optuna.distributions.DiscreteUniformDistribution

property), 34
QMCSampler (class in optuna.samplers), 109

R
RandomSampler (class in optuna.samplers), 80
RDBStorage (class in optuna.storages), 127
read_logs() (optuna.storages.JournalFileStorage

method), 149
read_logs() (optuna.storages.JournalRedisStorage

method), 152
real (optuna.study.StudyDirection attribute), 176
real (optuna.trial.TrialState attribute), 205
record_heartbeat() (optuna.storages.RDBStorage

method), 135
RegretBoundEvaluator (class in optuna.terminator),

180
release() (optuna.storages.JournalFileOpenLock

method), 151
release() (optuna.storages.JournalFileSymlinkLock

method), 150

remove_session() (optuna.storages.JournalStorage
method), 146

remove_session() (optuna.storages.RDBStorage
method), 135

report() (optuna.trial.FrozenTrial method), 201
report() (optuna.trial.Trial method), 186
report_cross_validation_scores() (in module op-

tuna.terminator), 184
reseed_rng() (optuna.samplers.BaseSampler method),

75
reseed_rng() (optuna.samplers.BruteForceSampler

method), 116
reseed_rng() (optuna.samplers.CmaEsSampler

method), 94
reseed_rng() (optuna.samplers.GPSampler method),

97
reseed_rng() (optuna.samplers.GridSampler method),

79
reseed_rng() (optuna.samplers.NSGAIIISampler

method), 108
reseed_rng() (optuna.samplers.NSGAIISampler

method), 105
reseed_rng() (optuna.samplers.PartialFixedSampler

method), 100
reseed_rng() (optuna.samplers.QMCSampler method),

113
reseed_rng() (optuna.samplers.RandomSampler

method), 82
reseed_rng() (optuna.samplers.TPESampler method),

88
retried_trial_number() (op-

tuna.storages.RetryFailedTrialCallback static
method), 139

retry_history() (op-
tuna.storages.RetryFailedTrialCallback static
method), 139

RetryFailedTrialCallback (class in op-
tuna.storages), 138

RUNNING (optuna.trial.TrialState attribute), 203

S
sample_independent() (op-

tuna.samplers.BaseSampler method), 75
sample_independent() (op-

tuna.samplers.BruteForceSampler method),
116

sample_independent() (op-
tuna.samplers.CmaEsSampler method),
94

sample_independent() (optuna.samplers.GPSampler
method), 97

sample_independent() (op-
tuna.samplers.GridSampler method), 79

272 Index

Optuna Documentation, Release 4.0.0.dev

sample_independent() (op-
tuna.samplers.NSGAIIISampler method),
108

sample_independent() (op-
tuna.samplers.NSGAIISampler method),
105

sample_independent() (op-
tuna.samplers.PartialFixedSampler method),
100

sample_independent() (op-
tuna.samplers.QMCSampler method), 113

sample_independent() (op-
tuna.samplers.RandomSampler method),
82

sample_independent() (optuna.samplers.TPESampler
method), 89

sample_relative() (optuna.samplers.BaseSampler
method), 76

sample_relative() (op-
tuna.samplers.BruteForceSampler method),
117

sample_relative() (optuna.samplers.CmaEsSampler
method), 95

sample_relative() (optuna.samplers.GPSampler
method), 98

sample_relative() (optuna.samplers.GridSampler
method), 79

sample_relative() (op-
tuna.samplers.NSGAIIISampler method),
109

sample_relative() (optuna.samplers.NSGAIISampler
method), 105

sample_relative() (op-
tuna.samplers.PartialFixedSampler method),
101

sample_relative() (optuna.samplers.QMCSampler
method), 113

sample_relative() (optuna.samplers.RandomSampler
method), 83

sample_relative() (optuna.samplers.TPESampler
method), 89

save_snapshot() (op-
tuna.storages.JournalRedisStorage method),
152

SBXCrossover (class in optuna.samplers.nsgaii), 122
set_metric_names() (optuna.study.Study method), 161
set_study_system_attr() (op-

tuna.storages.JournalStorage method), 147
set_study_system_attr() (op-

tuna.storages.RDBStorage method), 135
set_study_user_attr() (op-

tuna.storages.JournalStorage method), 147
set_study_user_attr() (op-

tuna.storages.RDBStorage method), 135

set_system_attr() (optuna.study.Study method), 162
set_system_attr() (optuna.trial.FixedTrial method),

196
set_system_attr() (optuna.trial.FrozenTrial method),

201
set_system_attr() (optuna.trial.Trial method), 187
set_trial_intermediate_value() (op-

tuna.storages.JournalStorage method), 147
set_trial_intermediate_value() (op-

tuna.storages.RDBStorage method), 136
set_trial_param() (optuna.storages.JournalStorage

method), 148
set_trial_param() (optuna.storages.RDBStorage

method), 136
set_trial_state_values() (op-

tuna.storages.JournalStorage method), 148
set_trial_state_values() (op-

tuna.storages.RDBStorage method), 136
set_trial_system_attr() (op-

tuna.storages.JournalStorage method), 148
set_trial_system_attr() (op-

tuna.storages.RDBStorage method), 137
set_trial_user_attr() (op-

tuna.storages.JournalStorage method), 149
set_trial_user_attr() (op-

tuna.storages.RDBStorage method), 137
set_user_attr() (optuna.study.Study method), 162
set_user_attr() (optuna.trial.Trial method), 187
set_verbosity() (in module optuna.logging), 50
should_prune() (optuna.trial.FrozenTrial method), 202
should_prune() (optuna.trial.Trial method), 188
should_terminate() (optuna.terminator.Terminator

method), 180
single() (optuna.distributions.CategoricalDistribution

method), 38
single() (optuna.distributions.DiscreteUniformDistribution

method), 34
single() (optuna.distributions.FloatDistribution

method), 28
single() (optuna.distributions.IntDistribution method),

30
single() (optuna.distributions.IntLogUniformDistribution

method), 37
single() (optuna.distributions.IntUniformDistribution

method), 35
single() (optuna.distributions.LogUniformDistribution

method), 32
single() (optuna.distributions.UniformDistribution

method), 31
SPXCrossover (class in optuna.samplers.nsgaii), 121
state (optuna.trial.FrozenTrial attribute), 199
StaticErrorEvaluator (class in optuna.terminator),

183
step (optuna.distributions.FloatDistribution attribute),

Index 273

Optuna Documentation, Release 4.0.0.dev

28
step (optuna.distributions.IntDistribution attribute), 29
step (optuna.distributions.IntLogUniformDistribution

attribute), 36
step (optuna.distributions.IntUniformDistribution

attribute), 35
stop() (optuna.study.Study method), 163
StorageInternalError, 41
Study (class in optuna.study), 153
study_name (optuna.study.StudySummary attribute), 177
StudyDirection (class in optuna.study), 174
StudySummary (class in optuna.study), 176
SuccessiveHalvingPruner (class in optuna.pruners),

61
suggest_categorical() (optuna.trial.Trial method),

189
suggest_discrete_uniform() (op-

tuna.trial.FixedTrial method), 197
suggest_discrete_uniform() (op-

tuna.trial.FrozenTrial method), 202
suggest_discrete_uniform() (optuna.trial.Trial

method), 190
suggest_float() (optuna.trial.Trial method), 190
suggest_int() (optuna.trial.Trial method), 192
suggest_loguniform() (optuna.trial.FixedTrial

method), 197
suggest_loguniform() (optuna.trial.FrozenTrial

method), 202
suggest_loguniform() (optuna.trial.Trial method),

193
suggest_uniform() (optuna.trial.FixedTrial method),

197
suggest_uniform() (optuna.trial.FrozenTrial method),

203
suggest_uniform() (optuna.trial.Trial method), 194
system_attrs (optuna.study.Study property), 164
system_attrs (optuna.study.StudySummary attribute),

177
system_attrs (optuna.trial.FrozenTrial attribute), 200
system_attrs (optuna.trial.Trial property), 194

T
tell() (optuna.study.Study method), 164
Terminator (class in optuna.terminator), 178
TerminatorCallback (class in optuna.terminator), 183
ThresholdPruner (class in optuna.pruners), 66
to_bytes() (optuna.study.StudyDirection method), 176
to_bytes() (optuna.trial.TrialState method), 205
to_external_repr() (op-

tuna.distributions.CategoricalDistribution
method), 38

to_external_repr() (op-
tuna.distributions.DiscreteUniformDistribution
method), 34

to_external_repr() (op-
tuna.distributions.FloatDistribution method),
28

to_external_repr() (op-
tuna.distributions.IntDistribution method),
30

to_external_repr() (op-
tuna.distributions.IntLogUniformDistribution
method), 37

to_external_repr() (op-
tuna.distributions.IntUniformDistribution
method), 35

to_external_repr() (op-
tuna.distributions.LogUniformDistribution
method), 32

to_external_repr() (op-
tuna.distributions.UniformDistribution
method), 31

to_internal_repr() (op-
tuna.distributions.CategoricalDistribution
method), 38

to_internal_repr() (op-
tuna.distributions.DiscreteUniformDistribution
method), 34

to_internal_repr() (op-
tuna.distributions.FloatDistribution method),
28

to_internal_repr() (op-
tuna.distributions.IntDistribution method),
30

to_internal_repr() (op-
tuna.distributions.IntLogUniformDistribution
method), 37

to_internal_repr() (op-
tuna.distributions.IntUniformDistribution
method), 36

to_internal_repr() (op-
tuna.distributions.LogUniformDistribution
method), 33

to_internal_repr() (op-
tuna.distributions.UniformDistribution
method), 31

TPESampler (class in optuna.samplers), 83
Trial (class in optuna.trial), 185
TrialPruned, 22, 40
trials (optuna.study.Study property), 165
trials_dataframe() (optuna.study.Study method), 165
TrialState (class in optuna.trial), 203

U
UNDXCrossover (class in optuna.samplers.nsgaii), 124
UniformCrossover (class in optuna.samplers.nsgaii),

119

274 Index

Optuna Documentation, Release 4.0.0.dev

UniformDistribution (class in optuna.distributions),
30

upgrade() (optuna.storages.RDBStorage method), 137
upload_artifact() (in module optuna.artifacts), 26
user_attrs (optuna.study.Study property), 166
user_attrs (optuna.study.StudySummary attribute), 177
user_attrs (optuna.trial.FrozenTrial attribute), 200
user_attrs (optuna.trial.Trial property), 194

V
value (optuna.trial.FrozenTrial attribute), 199
values (optuna.trial.FrozenTrial attribute), 199
VSBXCrossover (class in optuna.samplers.nsgaii), 123

W
WAITING (optuna.trial.TrialState attribute), 203
WilcoxonPruner (class in optuna.pruners), 67

Index 275

	Key Features
	Basic Concepts
	Web Dashboard
	Communication
	Contribution
	License
	Reference
	Installation
	Tutorial
	Key Features
	Recipes

	API Reference
	optuna
	optuna.create_study
	optuna.load_study
	optuna.delete_study
	optuna.copy_study
	optuna.get_all_study_names
	optuna.get_all_study_summaries
	optuna.TrialPruned

	optuna.artifacts
	optuna.cli
	optuna.distributions
	optuna.distributions.FloatDistribution
	optuna.distributions.IntDistribution
	optuna.distributions.UniformDistribution
	optuna.distributions.LogUniformDistribution
	optuna.distributions.DiscreteUniformDistribution
	optuna.distributions.IntUniformDistribution
	optuna.distributions.IntLogUniformDistribution
	optuna.distributions.CategoricalDistribution
	optuna.distributions.distribution_to_json
	optuna.distributions.json_to_distribution
	optuna.distributions.check_distribution_compatibility

	optuna.exceptions
	optuna.exceptions.OptunaError
	optuna.exceptions.TrialPruned
	optuna.exceptions.CLIUsageError
	optuna.exceptions.StorageInternalError
	optuna.exceptions.DuplicatedStudyError

	optuna.importance
	optuna.importance.get_param_importances
	optuna.importance.FanovaImportanceEvaluator
	optuna.importance.MeanDecreaseImpurityImportanceEvaluator
	optuna.importance.PedAnovaImportanceEvaluator

	optuna.integration
	Dependencies of each integration

	optuna.logging
	optuna.logging.get_verbosity
	optuna.logging.set_verbosity
	optuna.logging.disable_default_handler
	optuna.logging.enable_default_handler
	optuna.logging.disable_propagation
	optuna.logging.enable_propagation

	optuna.pruners
	optuna.pruners.BasePruner
	optuna.pruners.MedianPruner
	optuna.pruners.NopPruner
	optuna.pruners.PatientPruner
	optuna.pruners.PercentilePruner
	optuna.pruners.SuccessiveHalvingPruner
	optuna.pruners.HyperbandPruner
	optuna.pruners.ThresholdPruner
	optuna.pruners.WilcoxonPruner

	optuna.samplers
	optuna.samplers.BaseSampler
	optuna.samplers.GridSampler
	optuna.samplers.RandomSampler
	optuna.samplers.TPESampler
	optuna.samplers.CmaEsSampler
	optuna.samplers.GPSampler
	optuna.samplers.PartialFixedSampler
	optuna.samplers.NSGAIISampler
	optuna.samplers.NSGAIIISampler
	optuna.samplers.QMCSampler
	optuna.samplers.BruteForceSampler
	optuna.samplers.nsgaii
	optuna.samplers.nsgaii.BaseCrossover
	optuna.samplers.nsgaii.UniformCrossover
	optuna.samplers.nsgaii.BLXAlphaCrossover
	optuna.samplers.nsgaii.SPXCrossover
	optuna.samplers.nsgaii.SBXCrossover
	optuna.samplers.nsgaii.VSBXCrossover
	optuna.samplers.nsgaii.UNDXCrossover

	optuna.search_space
	optuna.search_space.IntersectionSearchSpace
	optuna.search_space.intersection_search_space

	optuna.storages
	optuna.storages.RDBStorage
	optuna.storages.RetryFailedTrialCallback
	optuna.storages.fail_stale_trials
	optuna.storages.JournalStorage
	optuna.storages.JournalFileStorage
	optuna.storages.JournalFileSymlinkLock
	optuna.storages.JournalFileOpenLock
	optuna.storages.JournalRedisStorage

	optuna.study
	optuna.study.Study
	optuna.study.create_study
	optuna.study.load_study
	optuna.study.delete_study
	optuna.study.copy_study
	optuna.study.get_all_study_names
	optuna.study.get_all_study_summaries
	optuna.study.MaxTrialsCallback
	optuna.study.StudyDirection
	optuna.study.StudySummary

	optuna.terminator
	optuna.terminator.BaseTerminator
	optuna.terminator.Terminator
	optuna.terminator.BaseImprovementEvaluator
	optuna.terminator.RegretBoundEvaluator
	optuna.terminator.BestValueStagnationEvaluator
	optuna.terminator.BaseErrorEvaluator
	optuna.terminator.CrossValidationErrorEvaluator
	optuna.terminator.StaticErrorEvaluator
	optuna.terminator.TerminatorCallback
	optuna.terminator.report_cross_validation_scores

	optuna.trial
	optuna.trial.Trial
	optuna.trial.FixedTrial
	optuna.trial.FrozenTrial
	optuna.trial.TrialState
	optuna.trial.create_trial

	optuna.visualization
	optuna.visualization.plot_contour
	optuna.visualization.plot_edf
	optuna.visualization.plot_hypervolume_history
	optuna.visualization.plot_intermediate_values
	optuna.visualization.plot_optimization_history
	optuna.visualization.plot_parallel_coordinate
	optuna.visualization.plot_param_importances
	optuna.visualization.plot_pareto_front
	optuna.visualization.plot_rank
	optuna.visualization.plot_slice
	optuna.visualization.plot_terminator_improvement
	optuna.visualization.plot_timeline
	optuna.visualization.is_available
	optuna.visualization.matplotlib
	optuna.visualization.matplotlib.plot_contour
	optuna.visualization.matplotlib.plot_edf
	optuna.visualization.matplotlib.plot_hypervolume_history
	optuna.visualization.matplotlib.plot_intermediate_values
	optuna.visualization.matplotlib.plot_optimization_history
	optuna.visualization.matplotlib.plot_parallel_coordinate
	optuna.visualization.matplotlib.plot_param_importances
	optuna.visualization.matplotlib.plot_pareto_front
	optuna.visualization.matplotlib.plot_rank
	optuna.visualization.matplotlib.plot_slice
	optuna.visualization.matplotlib.plot_terminator_improvement
	optuna.visualization.matplotlib.plot_timeline
	optuna.visualization.matplotlib.is_available

	FAQ
	Can I use Optuna with X? (where X is your favorite ML library)
	How to define objective functions that have own arguments?
	Can I use Optuna without remote RDB servers?
	How can I save and resume studies?
	How to suppress log messages of Optuna?
	How to save machine learning models trained in objective functions?
	How can I obtain reproducible optimization results?
	How are exceptions from trials handled?
	How are NaNs returned by trials handled?
	What happens when I dynamically alter a search space?
	How can I use two GPUs for evaluating two trials simultaneously?
	How can I test my objective functions?
	How do I avoid running out of memory (OOM) when optimizing studies?
	How can I output a log only when the best value is updated?
	How do I suggest variables which represent the proportion, that is, are in accordance with Dirichlet distribution?
	How can I optimize a model with some constraints?
	How can I parallelize optimization?
	1. Multi-threading parallelization with a single node
	2. Multi-processing parallelization with single node
	3. Multi-processing parallelization with multiple nodes

	How can I solve the error that occurs when performing parallel optimization with SQLite3?
	Can I monitor trials and make them failed automatically when they are killed unexpectedly?
	How can I deal with permutation as a parameter?
	How can I ignore duplicated samples?

	Indices and tables
	Python Module Index
	Index

